A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF AN (n, r)-ARC IN PG $(2, q)$ AND ITS APPLICATIONS

Noboru Hamada, Tatsuya Maruta*, Yusuke Oya

Abstract

Let q be a prime or a prime power ≥ 3. The purpose of this paper is to give a necessary and sufficient condition for the existence of an (n, r)-arc in $\mathrm{PG}(2, q)$ for given integers n, r and q using the geometric structure of points and lines in $\mathrm{PG}(2, q)$ for $n>r \geq 3$. Using the geometric method and a computer, it is shown that there exists no $(34,3)$ arc in $\operatorname{PG}(2,17)$, equivalently, there exists no $[34,3,31]_{17}$ code.

1. Introduction. We denote by \mathbb{F}_{q} the field of q elements with $q \geq 3$. A linear code over \mathbb{F}_{q} of length n, dimension k is a k-dimensional subspace \mathcal{C} of the vector space \mathbb{F}_{q}^{n} of n-tuples over \mathbb{F}_{q}. The vectors in \mathcal{C} are called codewords. \mathcal{C} is called an $[n, k, d]_{q}$ code if every non-zero codeword has at least d non-zero entries and some codeword has exactly d non-zero entries [4], [10], [11], [12].

Let A be a set of n points in $\operatorname{PG}(2, q)$. If A satisfies the following conditions:

[^0](a) $|A \cap L| \leq r$ for every line L,
(b) $|A \cap L|=r$ for some line L,
then A is called an (n, r)-arc of $\mathrm{PG}(2, q)$, where $n>r$ and $2 \leq r \leq q-1$. It is known [3] that if $q<n-3 \leq 2 q$, then there exists an $(n, 3)$-arc of $\mathrm{PG}(2, q)$ if and only if there exists an $[n, 3, n-3]_{q}$ code.

Problem 1. For an integer r with $2 \leq r \leq q-1$, find $m_{r}(2, q)$, the largest value of n for which an (n, r)-arc exists in $P G(2, q)$.

It is known that $m_{r}(2, p) \leq(r-1) p+1$ for any prime p and any integer $r \leq(p+3) / 2$ and $m_{r}(2, p)=(r-1) p+1$ for $p=3,5,7$ and for $2 \leq r \leq p-1$. Problem 1 has been completely solved for $3 \leq q \leq 9$ [11]. For $11 \leq q \leq 19$, the values of $m_{r}(2, q)$ are known as Table 1 [2], [3], [6], [7], [8]. See [11] for $r=2$. See also [12].

There are exactly three $(9,3)$-arcs in $\operatorname{PG}(2,4)$ [11], two $(11,3)$-arcs and six $(16,4)$-arcs in $\operatorname{PG}(2,5)$ [5]. Marcugini et al. classified $\left(m_{r}(2, q), 3\right)$-arcs in $\operatorname{PG}(2, q)$ using a computer for $q=7,8,9,11,13$ ([13], [14], [15]).

Let A be an (n, r)-arc in $\operatorname{PG}(2, q)$. A line L with $|A \cap L|=i$ is called an i-line. Let τ_{i} be the number of i-lines. The list of τ_{i} 's is called the spectrum of A. An easy counting argument yields the following.

Lemma 1.1. The spectrum of an (n, r)-arc in $P G(2, q)$ satisfies

$$
\begin{align*}
\sum_{i=0}^{r} \tau_{i} & =q^{2}+q+1, \tag{1.1}\\
\sum_{i=1}^{r} i \tau_{i} & =n(q+1) \tag{1.2}\\
\sum_{i=2}^{r} i(i-1) \tau_{i} & =n(n-1) . \tag{1.3}
\end{align*}
$$

Let $L=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ be a line. Let $L_{k, 1}, L_{k, 2}, \ldots, L_{k, q}$ be the q lines through P_{k} other than L for $0 \leq k \leq q$. Let $Q_{i, j}$ be the intersection point of $L_{0, i}$ and $L_{1, j}$ for $1 \leq i, j \leq q$. Then L and $L_{k, j}$'s are the $q^{2}+q+1$ lines and $P_{0}, P_{1}, \ldots, P_{q}$ and $Q_{i, j}$'s are the $q^{2}+q+1$ points of $\operatorname{PG}(2, q)$. Let $L_{k, s(k, i, j)}=$ $\left\langle P_{k}, Q_{i, j}\right\rangle$, the line through P_{k} and $Q_{i, j}$. Then $L_{0, s(0, i, j)}, L_{1, s(1, i, j)}, \ldots, L_{q, s(q, i, j)}$ are the lines through $Q_{i, j}$ for $1 \leq i, j \leq q$. Hence there is a one-to-one correspondence
between $Q_{i, j} \in \mathcal{Q}_{q}$ and $[s(0, i, j), s(1, i, j), \ldots, s(q, i, j)] \in S_{q}$, where

$$
\begin{align*}
\mathcal{Q}_{q} & =\left\{Q_{i, j} \mid 1 \leq i, j \leq q\right\}, \tag{1.4}\\
S_{q} & =\{[s(0, i, j), s(1, i, j), \ldots, s(q, i, j)] \mid 1 \leq i, j \leq q\} . \tag{1.5}
\end{align*}
$$

Let H be a set of x elements in S_{q} denoted by

$$
\begin{equation*}
H=\left\{\left[h_{0, w}, h_{1, w}, \ldots, h_{q, w}\right] \mid w=1,2, \ldots, x\right\} . \tag{1.6}
\end{equation*}
$$

For $0 \leq k \leq q$ and $1 \leq u \leq q$, let

$$
\begin{equation*}
m_{k, u}=\left|\left\{w \in\{1,2, \ldots, x\} \mid h_{k, w}=u\right\}\right| . \tag{1.7}
\end{equation*}
$$

Theorem 1.2. There exists an (n, r)-arc A in $P G(2, q)$ with $\tau_{0}>0$ if and only if there exists a set H with $x=n$ satisfying the following conditions.
(a-0) $m_{k, u} \leq r$ for any $0 \leq k \leq q$ and $1 \leq u \leq q$,
(b-0) $m_{k, u}=r$ for some $0 \leq k \leq q$ and $1 \leq u \leq q$.

Theorem 1.3. There exists an (n, r)-arc A in $P G(2, q)$ with $\tau_{1}>0$ if and only if there exists a set H with $x=n-1$ satisfying the following conditions.
(a-1) $m_{k, u} \leq r$ for any $1 \leq k \leq q$ and $1 \leq u \leq q$,
(b-1) $m_{0, u} \leq r-1$ for any $1 \leq u \leq q$,
(c-1) either $m_{k, u}=r$ for some $1 \leq k \leq q$ and $1 \leq u \leq q$, or $m_{0, u}=r-1$ for some $1 \leq u \leq q$.

Theorem 1.4. There exists an (n, r)-arc A in $P G(2, q)$ with $\tau_{2}>0$ if and only if there exists a set H with $x=n-2$ satisfying the following conditions.
(a-2) $m_{k, u} \leq r$ for any $2 \leq k \leq q$ and $1 \leq u \leq q$,
(b-2) $m_{k, u} \leq r-1$ for any $1 \leq u \leq q$ and $k=0,1$,
(c-2) either $m_{k, u}=r$ for some $2 \leq k \leq q$ and $1 \leq u \leq q$, or $m_{k, u}=r-1$ for some $1 \leq u \leq q$ and $k=0,1$.

Theorems 1.3 and 1.4 can be generalized as follows. Let A be an $(n, r)-$ arc in $\mathrm{PG}(2, q)$ with $\tau_{z}>0$ for some integer $z \geq 3$. Then there exists a line $L=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ such that $A \cap L=\left\{P_{0}, P_{1}, \ldots, P_{z-1}\right\}$. Let $U=\{1,2, \ldots, q\}$, $T_{1}=\{0,1, \ldots, z-1\}$ and $T_{2}=\{z, z+1, \ldots, q\}$.

Theorem 1.5. There exists an (n, r)-arc A in $P G(2, q)$ with $\tau_{z}>0$ for some integer $z \geq 3$ if and only if there exists a set H with $x=n-z$ satisfying the following conditions.
(a-z) $m_{k, u} \leq r$ for any $k \in T_{2}$ and $u \in U$,
(b-z) $m_{k, u} \leq r-1$ for any $k \in T_{1}$ and $u \in U$,
(c-z) either $m_{k, u}=r$ for some $k \in T_{2}$ and $u \in U$, or $m_{k, u}=r-1$ for some $k \in T_{1}$ and $u \in U$.

Remark 1.6. The method using the above theorems is called Hamada's method. To apply the theorems, we first need to construct S_{q} called Hamada's set.

Table 1. The known values and bounds on $m_{r}(2, q)$ for $11 \leq q \leq 19$

r	11	13	16	17	19
r					
2	12	14	18	18	20
3	21	23	$28-33$	$28-35$	$31-39$
4	32	$38-40$	52	$48-52$	$52-58$
5	$43-45$	$49-53$	65	$61-69$	$68-77$
6	56	$64-66$	$78-82$	$79-86$	$86-96$
7	67	79	$93-97$	$95-103$	$105-115$
8	78	92	120	$114-120$	$126-134$
9	$89-90$	105	$129-130$	137	$147-153$
10	$100-102$	$118-119$	$142-148$	154	172
11		$132-133$	$159-164$	$166-171$	191
12		$145-147$	$180-181$	$183-189$	$204-210$
13			$195-199$	$205-207$	$225-230$
14			$210-214$	$221-225$	$243-250$
15			231	$239-243$	$265-270$
16				$256-261$	$286-290$
17					$305-310$
18					$324-330$

It is known from Table 1 that $28 \leq m_{3}(2,17) \leq 35$. Using Hamada's method and a computer, it can be shown that the following theorem holds.

Theorem 1.7. There exists no (34,3)-arc in $P G(2,17)$. Equivalently, there exists no $[34,3,31]_{17}$ code.

Corollary 1.8. $28 \leq m_{3}(2,17) \leq 33$.
Note that the codes obtained from $(n, 3)$-arcs are near-MDS (NMDS) codes [9]. Since the dual codes of NMDS codes are also NMDS [9], we get the following.

Corollary 1.9. There exists no NMDS $[34,31,3]_{17}$ code.
In Section 2, the proofs of Theorems 1.2-1.5 are given. In Section 3, a method how to construct the set S_{p} is given for prime p. In Section 5, the algorithm for searching a $(34,3)$-arc in $\operatorname{PG}(2,17)$ to prove Theorem 1.7 by means of Theorem 1.4 is given.

2. The proofs of Theorems 1.2-1.5.

Proof of Theorem 1.2. (1) Assume there exists an $(n, r)-\operatorname{arc} A$ in $\operatorname{PG}(2, q)$ with $\tau_{0}>0$ and that $L=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ is a 0 -line. Then A can be expressed as $A=\left\{Q_{c_{w}, d_{w}} \mid 1 \leq w \leq n\right\}$ using some integers c_{w} and d_{w} in $\{1,2, \ldots, q\}$. Let $L_{k, h_{k, w}}$ be the line through the two points P_{k} and $Q_{c_{w}, d_{w}}$ and let

$$
\begin{equation*}
H=\left\{\left[h_{0, w}, h_{1, w}, \ldots, h_{q, w}\right] \mid w=1,2, \ldots, n\right\} . \tag{2.1}
\end{equation*}
$$

Then $L_{0, h_{0, w}}, L_{1, h_{1, w}}, \ldots, L_{q, h_{q, w}}$ are the $q+1$ lines through $Q_{c_{w}, d_{w}}$. Let $m_{k, u}$ be the number of integers w with $1 \leq w \leq n$ such that $h_{k, w}=u$ for $0 \leq k \leq q$ and $1 \leq u \leq q$. Then $m_{k, u}$ gives the number of points in A on the line $L_{k, u}$. Hence it follows from (a) and (b) that the conditions (a-0) and (b-0) hold.
(2) Assume there exists a set H, given by (2.1), consisting of n elements in S_{q} which satisfies the conditions (a-0) and (b-0). Then there exists a point, denoted by $Q_{c_{w}, d_{w}}$, corresponding to $\left[h_{0, w}, h_{1, w}, \ldots, h_{q, w}\right]$ in H for $1 \leq w \leq n$. Let $A=\left\{Q_{c_{w}, d_{w}} \mid 1 \leq w \leq n\right\}$. Then L is a 0 -line for A. It follows from (a-0) and (b-0) that the conditions (a) and (b) hold. This implies that A is an (n, r)-arc A in $\mathrm{PG}(2, q)$ with $\tau_{0}>0$.

Proof of Theorems 1.3-1.5. Let z be a positive integer.
(1) Assume there exists an (n, r)-arc A in $\operatorname{PG}(2, q)$ with $\tau_{z}>0$ and that $L=$ $\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ is a z-line. Without loss of generality, we may assume that $A \cap L=\left\{P_{0}, P_{1}, \ldots, P_{z-1}\right\}$ and that $A=\left\{P_{0}, P_{1}, \ldots, P_{z-1}\right\} \cup\left\{Q_{c_{w}, d_{w}} \mid 1 \leq w \leq\right.$ $n-z\}$. Let $L_{k, h_{k, w}}$ be the line through the two points P_{k} and $Q_{c_{w}, d_{w}}$ and let

$$
\begin{equation*}
H=\left\{\left[h_{0, w}, h_{1, w}, \ldots, h_{q, w}\right] \mid w=1,2, \ldots, n-z\right\} . \tag{2.2}
\end{equation*}
$$

Then $L_{0, h_{0, w}}, L_{1, h_{1, w}}, \ldots, L_{q, h_{q, w}}$ are the $q+1$ lines through $Q_{c_{w}, d_{w}}$. Let $m_{k, u}$ be the number of integers w with $1 \leq w \leq n-z$ such that $h_{k, w}=u$ for $0 \leq k \leq q$ and $1 \leq u \leq q$. Then $m_{k, u}$ gives the number of points in A on the line $L_{k, u}$. Hence it follows from (a) and (b) that the conditions (a-z), (b-z) and (c-z) hold. (2) Assume there exists a set H, given by (2.2), consisting of $n-z$ elements in S_{q} which satisfies the conditions (a-z), (b-z) and (c-z). Then there exists a point, denoted by $Q_{c_{w}, d_{w}}$, corresponding to $\left[h_{0, w}, h_{1, w}, \ldots, h_{q, w}\right]$ in H for $1 \leq w \leq n-z$. Let $A=\left\{P_{0}, P_{1}, \ldots, P_{z-1}\right\} \cup\left\{Q_{c_{w}, d_{w}} \mid 1 \leq w \leq n-z\right\}$. Then L is a z-line for A. It follows from $(\mathrm{a}-z),(\mathrm{b}-z),(\mathrm{c}-z)$ that the conditions (a) and (b) hold. This implies that A is an (n, r)-arc A in $\operatorname{PG}(2, q)$ with $\tau_{z}>0$.
3. How to construct $\boldsymbol{S}_{\boldsymbol{p}}$ for prime \boldsymbol{p}. In this section, we consider the case when q is a prime p for simplicity. Let L be a line in $\operatorname{PG}(2, p)$ with $L=\left\{P_{0}, P_{1}, \ldots, P_{p}\right\}$. Let $L_{k, 1}, L_{k, 2}, \ldots, L_{k, p}$ be the p lines through P_{k} other than L for $0 \leq k \leq p$. Let $Q_{i, j}=L_{0, i} \cap L_{1, j}$ for $1 \leq i, j \leq p$ as in Section 1. A point P with homogeneous coordinate (a, b, c) is referred to as $P(a, b, c)$. Without loss of generality, we may assume

1. $P_{0}(1,0,0), P_{1}(0,1,0), Q_{1,1}(0,0,1)$ and $P_{k}(1, k-1,0)$ for $2 \leq k \leq p$,
2. $Q_{i, 1}(0,1, i-1), Q_{1, j}(1,0, j-1)$ for $2 \leq i \leq p, 2 \leq j \leq p$,
3. $L_{k, u}=\left\langle P_{k}, Q_{1, u}\right\rangle$ for $2 \leq k \leq p, 1 \leq u \leq p$,
where $\left\langle P_{k}, Q_{1, u}\right\rangle$ stands for the line through the points P_{k} and $Q_{1, u}$. Since $L_{0, i}=$ $\left\langle P_{0}, Q_{i, 1}\right\rangle$ and $L_{1, j}=\left\langle P_{1}, Q_{1, j}\right\rangle$ for $1 \leq i, j \leq p$, We get the following.

Lemma 3.1. For $2 \leq i \leq p, 2 \leq j \leq p$, the coordinate of the point $Q_{i, j}$ is $Q_{i, j}(1, x,(i-1) x)$ for some $x \in \mathbb{F}_{p}$ with $(i-1) x \equiv j-1 \bmod p$.

Recall that $L_{k, s(k, i, j)}=\left\langle P_{k}, Q_{i, j}\right\rangle$ for $0 \leq k \leq p, 1 \leq i \leq p, 1 \leq j \leq p$. We can construct S_{p} of (1.5) from the next lemma.

Lemma 3.2. $s(k, i, j)$ is determined as follows:
(1) $s(0, i, j)=i$ for $1 \leq i \leq p, 1 \leq j \leq p$,
(2) $s(1, i, j)=j$ for $1 \leq i \leq p, 1 \leq j \leq p$,
(3) $s(k, 1, j)=j$ for $2 \leq k \leq p, 1 \leq j \leq p$,
(4) $s(k, i, 1) \equiv i+k-i k(\bmod p)$ for $k \geq 2, i \geq 2$,
(5) $s(k, i, j)=1$ for $k \geq 2, i \geq 2, j \equiv(i-1)(k-1)+1(\bmod p)$,
(6) $s(k, i, j) \equiv(i-1)(j-1)(k-1)((i-1)(k-1)-(j-1))^{-1}+1(\bmod p)$ for $k \geq 2, i \geq 2, j \geq 2$ with $j \not \equiv(i-1)(k-1)+1(\bmod p)$.

Proof. (1), (2) and (3) follow from $L_{0, i}=\left\langle P_{0}, Q_{i, 1}\right\rangle, L_{1, j}=\left\langle P_{1}, Q_{1, j}\right\rangle$ and $L_{k, j}=\left\langle P_{k}, Q_{1, j}\right\rangle$ for $k \geq 2$.
(4) Assume $L_{k, u}=\left\langle P_{k}, Q_{i, 1}\right\rangle$. Since $P_{k}, Q_{i, 1}$ and $Q_{1, u}$ are collinear, we get

$$
\left|\begin{array}{ccc}
1 & k-1 & 0 \\
0 & 1 & i-1 \\
1 & 0 & u-1
\end{array}\right|=0
$$

giving $u=1-(i-1)(k-1) \in \mathbb{F}_{p}$ as desired.
(5) Since $L_{k, 1}=\left\langle P_{k}, Q_{1,1}\right\rangle=[k-1,-1,0]$, where $[a, b, c]$ stands for the line in $\mathrm{PG}(2, p)$ defined by the equation $a x+b y+c z=0$ with $(a, b, c) \in \mathbb{F}_{p}^{3} \backslash\{(0,0,0)\}$, it holds that $Q_{i, j}\left(1,(j-1)(i-1)^{-1}, j-1\right) \in L_{k, 1}$ if and only if $k-1-(j-1)(i-1)^{-1}=$ 0 , that is, $j=(i-1)(k-1)+1 \in \mathbb{F}_{p}$.
(6) Assume $L_{k, m}=\left\langle P_{k}, Q_{i, j}\right\rangle$. Since $L_{0, i} \cap L_{1, j}=Q_{i, j}\left(1,(j-1)(i-1)^{-1}, j-1\right)$ and $L_{k, m}=\left\langle P_{k}, Q_{1, m}\right\rangle=[(k-1)(m-1),-(m-1),-(k-1)]$, we have $Q_{i, j} \in L_{k, m}$ if and only if $m=(i-1)(j-1)(k-1)((i-1)(k-1)-(j-1))^{-1}+1 \in \mathbb{F}_{p}$.

In the case $i=p$, we have the following as a consequence of the above lemma.

Corollary 3.3. The values $s(k, p, j)$ satisfy the following conditions:
(1) $s(k, p, 1)=k$ for $1 \leq k \leq p$.
(2) $s(k, p, j)=s(j, p, k)$ for $1 \leq k \leq p, 1 \leq j \leq p$.
(3) $s(j, p, j)=(j+1) / 2$ for $j=1,3,5, \ldots, p$.
(4) $s(j, p, j)=(p+j+1) / 2$ for $j=2,4,6, \ldots, p-1$.
(5) If $k+j=p+2$ with $2 \leq k \leq p$, then $s(k, p, j)=1$.
(6) If $k+j \neq p+2$ with $2 \leq k \leq p$ and $2 \leq j \leq p$, then $s(k, p, j) \equiv(j k-1) /(k+j-2)(\bmod p)$.

Corollary 3.4. For $2 \leq i \leq p-1$ and $1 \leq j \leq p,[s(1, i, j), s(2, i, j), \ldots$, $s(p, i, j)]$ is obtained from $[s(1, p, j), s(2, p, j), \ldots, s(p, p, j)]$ by the permutation on
the entries such that $s(k, i, j)=s(c(k, i), p, j)$ for $k=1,2, \ldots, p$, where $c(k, i) \equiv$ $p+k-(k-1) i(\bmod p)$.

Proof. We have $s(1, i, j)=s(c(1, i), p, j)=j$ by part (2) of Lemma 3.2. Assume $k \geq 2, i \geq 2, j \geq 2$ with $j \not \equiv(i-1)(k-1)+1(\bmod p)$ so that part (6) of Lemma 3.2 holds. Then $s(k, i, j)=d \in\{1,2, \ldots, p\}$ such that

$$
((i-1)(k-1)-(j-1))(d-1) \equiv(i-1)(j-1)(k-1) \quad(\bmod p)
$$

Since $(p-1)(c(k, i)-1)-(j-1) \equiv(i-1)(k-1)-(j-1)$ and $(p-1)(j-$ $1)(c(k, i)-1) \equiv(i-1)(j-1)(k-1)(\bmod p)$, we get $s(k, i, j)=s(c(k, i), p, j)$.

Next, assume $k \geq 2, i \geq 2$ and $j=1$ so that part (4) of Lemma 3.2 holds. Then $s(k, i, 1) \equiv i+k-i k$ and $s(c(k, i), p, 1) \equiv p+c(k, i)-p \cdot c(k, i) \equiv i+k-i k$ $(\bmod p)$. This implies $s(k, i, 1)=s(c(k, i), p, 1)$.

Finally, assume $k \geq 2, i \geq 2$ and $j \equiv(i-1)(k-1)+1(\bmod p)$ so that part (5) of Lemma 3.2 holds. Then $s(k, i, j)=s(c(k, i), p, j)=1$ since $(p-1)(c(k, i)-1)+1 \equiv(i-1)(k-1)+1 \equiv j(\bmod p)$. Thus $s(k, i, j)=$ $s(c(k, i), p, j)$.

Since there is a one-to-one correspondence between $[s(0, i, j), \ldots, s(p, i, j)] \in$ S_{p} and $Q_{i, j} \in \mathcal{Q}_{q}, Q_{i, j}$ is also referred to as $Q_{i, j}[s(0, i, j), \ldots, s(p, i, j)]$.

Example 3.5. For $p=5$, we get the following by Lemmas 3.1 and 3.2:

$$
\begin{array}{ll}
P_{0}(1,0,0), & P_{1}(0,1,0), P_{2}(1,1,0), \\
P_{3}(1,2,0), P_{4}(1,3,0), P_{5}(1,4,0), \\
Q_{1,1}(0,0,1)=Q_{1,1}[1,1,1,1,1,1], & Q_{2,1}(0,1,1)=Q_{2,1}[2,1,5,4,3,2], \\
Q_{1,2}(1,0,1)=Q_{1,2}[1,2,2,2,2,2], & Q_{2,2}(1,1,1)=Q_{2,2}[2,2,1,3,5,4], \\
Q_{1,3}(1,0,2)=Q_{1,3}[1,3,3,3,3,3], & Q_{2,3}(1,2,2)=Q_{2,3}[2,3,4,1,2,5], \\
Q_{1,4}(1,0,3)=Q_{1,4}[1,4,4,4,4,4], & Q_{2,4}(1,3,3)=Q_{2,4}[2,4,2,5,1,3], \\
Q_{1,5}(1,0,4)=Q_{1,5}[1,5,5,5,5,5], & Q_{2,5}(1,4,4)=Q_{2,5}[2,5,3,2,4,1], \\
Q_{3,1}(0,1,2)=Q_{3,1}[3,1,4,2,5,3], & Q_{4,1}(0,1,3)=Q_{4,1}[4,1,3,5,2,4], \\
Q_{3,2}(1,3,1)=Q_{3,2}[3,2,3,4,1,5], & Q_{4,2}(1,2,1)=Q_{4,2}[4,2,5,1,4,3], \\
Q_{3,3}(1,1,2)=Q_{3,3}[3,3,1,5,4,2], & Q_{4,3}(1,4,2)=Q_{4,3}[4,3,2,4,5,1], \\
Q_{3,4}(1,4,3)=Q_{3,4}[3,4,5,3,2,1], & Q_{4,4}(1,1,3)=Q_{4,4}[4,4,1,2,3,5], \\
Q_{3,5}(1,2,4)=Q_{3,5}[3,5,2,1,3,4], & Q_{4,5}(1,3,4)=Q_{4,5}[4,5,4,3,1,2], \\
Q_{5,1}(0,1,4)=Q_{5,1}[5,1,2,3,4,5], & \\
Q_{5,2}(1,4,1)=Q_{5,2}[5,2,4,5,3,1], & \\
Q_{5,3}(1,3,2)=Q_{5,3}[5,3,5,2,1,4], & \\
Q_{5,4}(1,2,3)=Q_{5,4}[5,4,3,1,5,2], & \\
Q_{5,5}(1,1,4)=Q_{5,5}[5,5,1,4,2,3] . &
\end{array}
$$

As for the correspondence between $Q_{i, j} \in \mathcal{Q}_{q}$ and $[s(0, i, j), s(1, i, j), \ldots, s(q, i, j)] \in$ S_{q} for $q=7,11,13,16,17,19$, see [16].

Example 3.6. It is known that $m_{3}(2,5)=11$. It follows from Lemma 1.1 that there exists a $(11,3)$-arc in $\operatorname{PG}(2,5)$ with $\tau_{2}>0$. Let $A=\left\{P_{0}, P_{1}, Q_{1,1}, Q_{2,2}\right.$, $\left.Q_{2,4}, Q_{3,3}, Q_{3,5}, Q_{4,3}, Q_{4,5}, Q_{5,2}, Q_{5,4}\right\}$, see the previous example for the coordinates of the points in A. Then the corresponding set $H \subset S_{5}$ is $H=\{[1,1,1,1,1,1]$, $[2,2,1,3,5,4], \quad[2,4,2,5,1,3], \quad[3,3,1,5,4,2], \quad[3,5,2,1,3,4], \quad[4,3,2,4,5,1]$, $[4,5,4,3,1,2],[5,2,4,5,3,1],[5,4,3,1,5,2]\}$ and the values $m_{k, u}$ corresponding to H are given by

$$
\begin{aligned}
& \left(m_{01}, m_{02}, m_{03}, m_{04}, m_{05}\right)=(1,2,2,2,2), \\
& \left(m_{11}, m_{12}, m_{13}, m_{14}, m_{15}\right)=(1,2,2,2,2), \\
& \left(m_{21}, m_{22}, m_{23}, m_{24}, m_{25}\right)=(3,3,1,2,0), \\
& \left(m_{31}, m_{32}, m_{33}, m_{34}, m_{35}\right)=(3,0,2,1,3), \\
& \left(m_{41}, m_{42}, m_{43}, m_{44}, m_{45}\right)=(3,0,2,1,3), \\
& \left(m_{51}, m_{52}, m_{53}, m_{54}, m_{55}\right)=(3,3,1,2,0) .
\end{aligned}
$$

Since H satisfies the conditions (a-2), (b-2), (c-2) of Theorem 1.4, it follows that A is a $(11,3)$-arc in $\operatorname{PG}(2,5)$ with $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}\right)=(4,4,7,16)$. It is known that there are exactly two $(11,3)$-arcs in $\mathrm{PG}(2,5)$ up to projective equivalence, see [17].
4. The basic algorithm for searching ($n, 3$)-arcs. In this section, an outline of the basic algorithm used in the search is presented. The program accomplishes an exhaustive search for ($n, 3$)-arcs in $\mathrm{PG}(2, q)$ from some fixed points. It is based on a backtracking algorithm. Let K_{n} be a set of n points in $\operatorname{PG}(2, q)$. The condition $\left|K_{n} \cap L\right| \leq 3$ for any line L in $\operatorname{PG}(2, q)$ is called 3-ARC for K_{n}. The points of the plane are labeled as $R_{0}, R_{1}, \ldots, R_{q^{2}+q}$ (the particular order does not matter). The program retains the 3-ARC and tries to extend the starting set K_{s} until it reaches the length S. In doing the extension, the program exploits the information of the set T_{j} obtained by Hamada's method after each choice, where $T_{j}=\left\{R_{i} \in \mathrm{PG}(2, q) \mid K_{j} \cup\left\{R_{i}\right\}\right.$ satisfies 3-ARC, $\left.i>m\right\}$ for $m=\max \left\{i \mid R_{i} \in K_{j}\right\}$. At the choice of the j th point, the program selects a point in T_{j-1} which has a larger index than the previous choice. After each extension, it computes the set T_{j+1} for the current $(j+1,3)$-arc.

The program backtracks in three cases:

- After the choice of the S th point;
- After the choice of the j th point $R_{k} \in T_{j-1}$, if $\left|\left\{R_{i} \mid k \leq i \leq q^{2}+q\right\} \cap T_{j-1}\right|<$ $S-(j-1)$;
- After the extension of the j th point, if $\left|T_{j}\right|<S-j$ for the current T_{j}.

In these cases, exploiting Lemma 3.2, the program can restore the correct status after the backtracking step without previous information.

```
\(\underline{\text { Algorithm for searching ( } S, 3 \text { )-arcs }}\)
INPUT: \(K_{s}\) : the set of \(s\) fixed points
OUTPUT: \(\left\{K_{S}\right\}\) : set of arcs
const \(\quad \max =q(q+1)\);
var J:integer;
                        T:array[1..S] of set of points;
                        // T[i][j] means j-th point of i-th set;
                Tree:array[1..S] of integer;
    begin
            \(\mathrm{J}:=\mathrm{s}+1\); Find_solution(T[J]);Tree[J]:= |T[J]|;
            while ( \(\mathrm{J}>\mathrm{s}\) ) do
            begin
                if (Tree[J]>0) and ( \(\mathrm{J}<\max\) ) then
            begin
                    Tree[J]:=Tree[J]-1;
                    \(\mathrm{J}:=\mathrm{J}+1\); Find_solution(T[J]);
                    if \(J=S\) then print:
                                    \(K_{s} \cup \mathrm{~T}[1][\) Tree[1]] \(\cup \mathrm{T}[2][\) Tree[2]] \(\cup \cdots \cup \mathrm{T}[\mathrm{J}][\) Tree[J]];
                    if \(|\mathrm{T}[\mathrm{J}]|<(\mathrm{S}-\mathrm{J})\) then
                    Tree[J]:= 0
                    else Tree \([\mathrm{J}]:=|\mathrm{T}[\mathrm{J}]|\);
                    end
            else
                    \(\mathrm{J}:=\mathrm{J}-1 ;\)
        end;
    end.
```

5. The algorithm for searching (2q,3)-arcs in $\operatorname{PG}(2, q)$. The basic algorithm just presented was not capable of showing Theorem 1.7 in a rea-
sonable time, so we considered how to fix as many points as possible in the ($n, 3$)arcs. Let L be a line in $\mathrm{PG}(2, q)$ with $L=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$. Let $L_{k, 1}, L_{k, 2}, \ldots, L_{k, q}$ be the q lines through P_{k} other than L for $0 \leq k \leq q$. Let $Q_{i, j}=L_{0, i} \cap L_{1, j}$ for $1 \leq i, j \leq q$ as in Section 1 .

Let c_{i} be the number of i-lines on a fixed point. The vector $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$ for a point in the $(n, 3)$-arc A is called the point-type of A. As a shorthand, we denote by $i^{c_{i}}$ the point-type.

Lemma 5.1. The possible point-types p_{i} of points on a $(2 q, 3)$-arc in $P G(2, q)$ are

$$
p_{1}=1^{1} 2^{1} 3^{q-1}, p_{2}=2^{3} 3^{q-2} .
$$

Proof. The point-type $p=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$ on a (2q,3)-arc satisfies $c_{0}=0$ and

$$
\sum_{i=2}^{3}(i-1) c_{i}=2 q-1, \quad \sum_{i=1}^{3} c_{i}=q+1
$$

Given sets S_{1}, \ldots, S_{n}, if it is possible to choose a different element from each set S_{i}, then the chosen elements are called distinct representative of the sets. We use Hall's following theorem to prove a lemma.

Theorem 5.2 ([1]). The sets A_{1}, \ldots, A_{n} have a system of distinct representatives if and only if, for all $k=1, \ldots, n$, any $k A_{i} s$ contain at least k elements in their union.

Lemma 5.3. Let A be $a(2 q, 3)$-arc in $P G(2, q)$ with a point of type p_{2}. Assume $P_{0}, P_{1}, Q_{1,1} \in A$ and that P_{0} is a point of type p_{2}. If L and $L_{0,1}$ are 2-lines, then $a(q-1)$-set $\left\{Q_{i, w_{i}} \mid 2 \leq i \leq q, 1 \leq w_{i} \leq q\right\} \subset A$ with distinct w_{2}, \ldots, w_{q} exists.

Proof. Assume there exists a $(2 q, 3)$-arc A in $\mathrm{PG}(2, q)$ with P_{0} a point of A of type $p_{2}, P_{1}, Q_{1,1} \in A$ and that L and $L_{0,1}$ are 2 -lines. Since there exist three 2 -lines through P_{0} by Lemma 5.1, without loss of generality, we may assume $L_{0,2}$ is a 2-line through P_{0} other than L and $L_{0,1}$. Then, for all $3 \leq i \leq q, L_{0, i}$ is a 3 -line. Let $B_{i}=\left\{j \mid L_{0, i} \cap L_{1, j} \cap A \neq \emptyset, 1 \leq j \leq q\right\}$. Then $\left|B_{2}\right|=1$ and $\left|B_{i}\right|=2$ for $3 \leq i \leq q$. Since $L_{1, j} \backslash\left\{P_{1}\right\}$ has at most two points of A for $1 \leq j \leq q$, for any k sets $B_{i_{1}}, \ldots, B_{i_{k}} \in\left\{B_{3}, \ldots, B_{q}\right\}$ and B_{2}, it holds that $\left|\cup_{l=1}^{k} B_{i_{l}} \cup B_{2}\right| \geq(2 k+1) / 2=k+1 / 2$ for any k. By Theorem $5.2, B_{2}, \ldots, B_{q}$ have a system of $q-1$ distinct representatives w_{2}, \ldots, w_{q} so that $1 \leq w_{i} \leq q$ for any i.

Lemma 5.4. $A(34,3)$-arc in $P G(2,17)$ has a point of type $p_{2}=2^{3} 3^{q-2}$.

Proof. Let A be a $(34,3)$-arc in $\operatorname{PG}(2,17)$. Since $n=34, r=3$ and $p=17$, the possible spectrum of A is $\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}\right)=(69+a, 51-3 a, 3 a, 187-a)$ for some integer a with $0 \leq a \leq 17$ from Lemma 1.1. By Lemma 5.1, the points of A are of type $p_{1}=1^{1} 2^{1} 3^{q-1}$ or $p_{2}=2^{3} 3^{q-2}$. Let x_{i} be the number of points of type p_{i} in A. Then $x_{1}+x_{2}=n=34$. Since $\tau_{1}=x_{1}$, we have $\tau_{1}=51-3 a \leq 34$. Since a is an integer, $\tau_{1}=x_{1} \leq 33$. Hence $x_{2}>0$.

Exploiting these lemmas, we introduce the improved program doing an exhaustive search for $(34,3)$-arcs in $\operatorname{PG}(2,17)$ to show Theorem 1.7 in reasonable time. Let A be a $(34,3)$-arc in $\mathrm{PG}(2,17)$. Without loss of generality, we may assume that $P_{0}, P_{1}, Q_{1,1}, Q_{2,2} \in A$ and that L and $L_{0,1}$ are 2 -lines. By Lemma 5.3, A has $q-1$ points $Q_{2, w_{2}}, \ldots, Q_{q, w_{q}}$ with distinct $w_{2}, \ldots, w_{q} \in\{1, \ldots, q\}$ such that $w_{2}=2$. First, the program sets $K_{4}=\left\{P_{0}, P_{1}, Q_{1,1}, Q_{2,2}\right\}$ as the starting set and extend it to K_{19} containing the $q-1$ points using the algorithm in Section 4. Next, the program regards K_{19} as the starting set and tries to extend it to K_{34}. Thus we divide the search into two stages. When the program finished searching $(34,3)$-arcs which contains K_{19}, it backtracks from K_{19} to find a new K_{19}. Repeating this procedure, the program tries to extend every K_{19} which has 4 points $P_{0}, P_{1}, Q_{1,1}, Q_{2,2}$ to K_{34}.

Our program verified that $(34,3)$-arcs in $\mathrm{PG}(2,17)$ do not exist. Hence $m_{3}(2,17) \leq 33$. At the end of the exhaustive search the program found 2372866546 cases for K_{19}. And the execution of the program took about 3 days.

Acknowledgement. The authors would like to thank the anonymous referees for their helpful suggestions.

REFERENCES

[1] Anderson I. A first course in Combinatorial Mathematics. Oxford University Press, 2nd ed., Oxford, 1989.
[2] Ball S. Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2,q). http://www-ma4.upc.es/~simeon/codebounds.html, January 2012
[3] Ball S., J. W. P. Hirschfeld. Bounds on (n, r) arcs and their applications to linear codes. Finite Fields Appl., 3 (2005), 326-336.
[4] Bierbrauer J. Introduction to Coding Theory. Chapman \& Hall/CRC, 2005.
[5] Boukliev I., S. Kapralov, T. Maruta, M. Fukui. Optimal linear codes of dimension 4 over F_{5}. IEEE Trans. Inform. Theory, 43 (1997), 308-313.
[6] Cook G. R. Arcs in a finite projective plane. PhD Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/
[7] Daskalov R. N. On the maximum size of some (k, r)-arcs in $\mathrm{PG}(2, q)$. Discrete Math., 308 (2008), 565-570.
[8] Daskalov R. N., E. Metodieva. New arcs in PG(2, 17) and PG(2, 19). In: Proc. of the 12th Intern. Workshop ACCT, Novosibirsk, Russia, 2010, 93-97.
[9] Dodunekov S., I. Landjev. On near-MDS codes. J. Geometry, 54 (1995), 30-43.
[10] Hill R. Optimal linear codes. In: Cryptography and Coding II (Ed. C. Mitchell), Oxford Univ. Press, Oxford, 1992, 75-104.
[11] Hirschfeld J. W. P. Projective Geometries over Finite Fields. Clarendon Press,2nd ed., Oxford, 1998.
[12] Hirschfeld J. W. P., L. Storme. The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Finite Geometries (Eds A. Blokhuis et al.), Developments in Mathematics, 3 (2001), Kluwer, 201-246.
[13] Marcugini S., A. Milani, F. Pambianco. Maximal ($n, 3$)-arcs in PG(2,11). Discrete Math., 208/209 (1999), 421-426.
[14] Marcugini S., A. Milani, F. Pambianco. Classification of the $[n, 3, n-3]_{q}$ NMDS codes over $G F(7), G F(8)$ and $G F(9)$. Ars Combinatoria, 61 (2001), 263-269.
[15] Marcugini S., A. Milani, F. Pambianco. Maximal ($n, 3$)-arcs in PG(2, 13). Discrete Math., 294 (2005), 139-145.
[16] Maruta T. Correspondence between $Q_{i, j}$ in $\operatorname{PG}(2, q)$ and $[s(0, i, j), \ldots, s(q, i, j)]$ in S_{q}. http://www.mi.s.osakafu-u.ac.jp/~maruta/hamada-set.html
[17] Yazdi M. O. The classification of ($k ; 3$)-arcs over the Galois field of order five. PhD Thesis, University of Sussex, 1983.

Noboru Hamada
Osaka Women's University
Osaka 599-8531, Japan
e-mail: n-hamada@koala.odn.ne.jp
Tatsuya Maruta and Yusuke Oya
Department of Mathematics and Information Sciences
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
e-mail: maruta@mi.s.osakafu-u.ac.jp
e-mail: yuu.vim-0319@hotmail.co.jp

Received March 19, 2012
Final Accepted April 26, 2012

[^0]: ACM Computing Classification System (1998): E.4.
 Key words: (n, r)-arcs, projective plane, linear codes.
 *This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

