EVERY n-DIMENSIONAL SEPARABLE METRIC SPACE CONTAINS A TOTALLY DISCONNECTED ($n-1$)-DIMENSIONAL SUBSET WITH NO TRUE QUASI-COMPONENTS*

Abstract

Vladimir Todorov, Petar Stoev

The quasi-component $Q(x)$ of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called a true quasi-component. In this note we give a simple construction of (at least) ($n-1$)-dimensional totally disconnected subspace Y of a given n-dimensional separable metric space X such that every quasi-component in Y is a single point.

1. Basic concepts and definitions. Let X be a topological space and $x \in X$ be some point of X. The intersection $Q(x)$ of all closed and open (clopen) subsets of X that contain x is called the quasi-component of x. The quasi-component may consists of more than one point even if X does not contain a connected subspace different from a point - for example the Knaster-Kuratowski fan [1].

Suppose, further, that X is a separable metric space and $\operatorname{dim} X=n$. Then X may be regarded as a subset of some Euclidean space \mathbb{R}^{m} for $m \leq 2 n+1$ [2, p. 262].

A topological space X is called totally disconnected if X does not contain a connected subspace different from a point [3].

And so, we suppose below that $X \subset \mathbb{R}^{m}$ and $\operatorname{dim} X=n$. We call as well that $F \subset X$ is a separator in X, if F is a closed subset of X and $X \backslash F$ is not connected.
2. The space Y. Denote by \mathcal{S} the set of all separators of X. It is easy to see that the cardinality card \mathcal{S} of \mathcal{S} is equal to \mathbf{c}, the cardinal number of the continuum.

Consider next the set \mathcal{P} of all hyperplanes in \mathbb{R}^{m} and denote by \mathcal{P}_{0} the subset of \mathcal{P} which consists of hyperplanes p with equations

$$
p: a_{0}+a_{1} x_{1}+a_{2} x+\cdots+a_{m} x_{m}=0
$$

such that $a_{k}, k=0,1, \ldots, m$ are rational numbers. Evidently, \mathcal{P}_{0} is a countable set and, hence, the set $\mathcal{P}_{1}=\mathcal{P} \backslash \mathcal{P}_{0}$ has cardinality c. After that it is obvious that to every separator $F \in \mathcal{S}$ one can attach a hyperplane $p_{F} \in \mathcal{P}_{1}$ so that the intersection $F \cap p_{F}$ is non empty set and, moreover, it is possible to choose $x_{F} \in F \cap p_{F}$ in such a way that $x_{F} \neq x_{G}$ for every two different elements F and G in \mathcal{S} (we suppose here that $\operatorname{dim} X>1$.

[^0]Then, the desired set Y is $\left\{x_{F} \mid F \in \mathcal{S}\right\}$. Clearly, Y is not connected between any pair $x \neq y$ of different points of Y because one can find a hyperplane $p_{x y} \in \mathcal{P}_{0}$ which separates x and y in \mathbb{R}^{m} and, evidently, $p_{x y} \cap Y=\emptyset$.

Next, it is easy to see that $\operatorname{dim} Y \geq n-1$, because Y meets every partition in X. Note that if we add a single point $\{*\}$ to Y, the space $Y^{*}=Y \cup\{*\}$ remains totally disconnected, which is an answer of a question of G. Dimov

REFERENCES

[1] B. Knaster, K. Kuratowski. Sur les ensembles et non connexes. Fundam. Math., 2 (1921), 206-255.
[2] P. Alexandroff, B. Pasinkov. An introduction to the Dimension Theory. Moscow, Nauka, 1973 (in Russian).
[3] R. Engelking. Outline of general topology. North-Holland, Amsterdam, 1968.
V. Todorov, P. Stoev

Department of Mathematics
University of Architecture, Civil Engineering and Geodesy
1, Hr. Smirnenski Blvd
1421 Sofia, Bulgaria
e-mail: vttp@yahoo.com

ВСЯКО n-МЕРНО СЕПАРАБЕЛНО МЕТРИЧНО ПРОСТРАНСТВО СЪДЪРЖА НАПЪЛНО НЕСВЪРЗАНО ($n-1$)-МЕРНО ПОДМНОЖЕСТВО С ЕДНОТОЧКОВИ КВАЗИКОМПОНЕНТИ

Владимир Тодоров, Петър Стоев

Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.

[^0]: *2000 Mathematics Subject Classification: 17C55.
 Key words: Totally disconnected n-dimensional space.

