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RIEMANN’S HYPOTHESIS

Peter Rusev

In 1859, i.e. a litle more than a centure and a half ago, appeared the selebrate
memoir Ueber die Anzahl der Primzahlen unter einer gegebenen Grdésse,
Monatsb. der Kénigl. Preuss. Akad. der Wissen. zu Berlin aus dem Jahr 1859
(1860), 671-680 of B. RIEMANN (1826 - 1866). In E. BOMBIERI’S survey Problem of
the Millenium: the Riemann Hypothesis, this memoir is qualified as “epoch-
making” as well as “really astonished for the novelty of ideas included”. In Sieben
Milleniums-Probleme. I, Internat. Math. Nachr., Nr 184 (2000) 29-36, M. DRr-
MOTA calls it “bahnbrechend fiir die analytische Zahlentheorie” thus repeating JORG
BRUDERN, Primzahlverteilung, Vorlesung im Wintersemester 1991/92, Mathema-
tisches Institut Gottingen. These “estimates” and other similar ones confirmed the
words of E. TITCHMARSH at the begining of Chapter X of his The theory of Rie-
mann zeta-function, Oxford 1951: “The memoir, in which Riemann considered
the zeta-function became famous thanks to the great number of ideas included in it.
Many of them has been worked afterwards, and some of them are not exausted even
till now”.

RIEMANN’S memoir is devoted to the function m(x) defined as the number of prime
numbers less or equal to the real and positive number x. This is really the fact, but the
“main role” in it is played by the already mentioned zeta-function. In order to make
clear the basic idea of RIEMANN, let us quote a part of the second section of his memoir:

“Bei dieser Untersuchungen diente mir als Ausgangspunkt die von EULER gemachte
Bemerkung, dass das Product

1 1
(1.1) M—=>-
ps
wenn fiir p alle Primzahlen, fiir n alle ganzen Zahlen gesetzt werden. Die Function
der complexen Verdnderlichen s, welche durch diese beiden Ausdriicke, so lange sie con-
vergieren, darstellt wird, bezeichne ich durch {(s)”.

Namely RIEMANN was the first who considered the function denoted by him by ((s)
as a function of a complex variable and this leaded him to a number of remarkable
discoveries.

After RIEMANN the notation ((s) remained unchanged but the notion “zeta-function”
got a very wide revalence. As RIEMANN has pointed out, by the equality

(1.2) =Y ~

ns
n=1
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is defined a holomorphic function of the complex variable s = o + it provided o > 1.
An easy computation leads to an integral represenation of {(s) by means of the function
m(x). Indeed, from (1.1) it follows that {(s) # 0 in the half-plane Re s > 1 and, moreover,

that
log ¢ (s Zlog <1—> Z{w —n(n—1)}log <1ni>

* 7(x)dx
log((s) = s ———, s=o+it, o>1.
s = [ T ,

Much more deeper is the formula expressing 7(z) in terms of the so-called non-trivial
zeros of the meromorphic function obtained by the analytical continuation of the function
¢(s) in the whole complex plane. The discovery of this formula is one of the main
achievements of RIEMANN included in the memoire under consideration.

There are many ways to prove that ((s) can be analytically contunued on the left of
the line Res = 1. The idea of that one which we are going to sketch here belongs to
RIEMANN. It is based on the equalities

7T5/2ns ?

oo
2
/ exp(—mn’z)z $/2=1 qg. L(s/2) s=o+it,o>0, n=1,23,...,
0

which are corollaries of the well-known integral representation of T'(s) in the half-plane
o > 0, namely

T(s) = /O o exp(—a) da.

If 0 > 1, then
(1.3) 75/ (s/2)¢ / (x)z*/? 1 da,
where

oo

(1.4) Y(x) = exp(-mn’z), x>0

In order to justify the validity of (1.3), RIEMANN used the function
(1.5) 0(z) = Z exp(—mn’z), x> 0.

From the inequalities exp(—mn2z) < exp(—mnz),z > 0,n = 1,2,3,... it follows that

Y(x) = O(exp(—mz)) when z — oo. Since 0(z) = 2¢(x) + 1,60(x) = O(1) when z — oco.
Then, the relations

(1.6) 0(z) =z~ /%0(1/x)

and (z) = (1/2)(f(x) — 1) imply ¥ (z) = O(x~/?) when x — 0. Since o > 1, the
integral on the right-hand side of (1.3) is absolutely convergent. The series defining the
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function (1.4) is uniformly convergent on every compact subset of the ray (0, 00). Hence,

/ P(x 5/2 Yde = / <Z exp(—wn%)) e
0 n=1

= Z /00 exp(—mn2x)z =27  dx = 7 7%/?T(s/2)¢(s)
n=1"0

Further, using 2¢(z) + 1 = 27 /2(2¢(2~1) + 1), from (1.3) after some computations
RIEMANN came to the representation

(1.7) 7 3/2D(s/2)¢(s) = / Y(x) (@2 4+ 2079)/27 Y de, Res > 1.

The integral in the last equahty is uniformly convergent on every compact subset of
the complex plane. That means the left-hand side of (1.7) admits an analytic continuation
in the whole complex plane except the points 0 and 1. The zero point is a pole of the
function I'(s/2), the point s = 1 is a simple pole of ((s) with residu equal to one. The
other poles of I'(s/2) are at the points —2,—4,—6,... and all they are simple. The
equality (1.7) shows that all they are regular points for the already contunued function
¢(s). More precisely, these points are simple zeros of ((s). They are called trivial.
Moreover, there are no other zeros of ((s) in the half-plane Res < 0. Since ((s) # 0
when Re s > 1, all other possible zeros of ((s) are in the closed strip 0 < Re s < 1 named
critical strip. The zeros of ((s) in the crirtical strip are called non-trivial.

The right-hand side of (1.7) does not change if we replace s by 1 — s. This leads
immediately to the relation

(1.8) 7 20(s/2)¢(s) = - TPT((1 - 5)/2)C(1 - 5)
usually refered as a functional equation for ((s).
Let the function £(s) be defined by the equality

(1.9) £(s) = s(s = m*/?T(s/2)¢(s).

It is clear that £(s) is an entire function. Further, the functional equation (1.8) yields
that

(1.10) &(s) =¢&(1—s).
It is clear also that all the zeros of £(s) coinside with the non-trivial zeros of ((s), i.e.
all they are in the critical strip. Moreover, since (s + (1 — s))/2 = 1/2, from (1.10) it
follows that the zeros of £(s) are symmetrically situated with respect to the point 1/2.
It is known that the entire function £(s) is real, i.e. £(s) is a real number if and only if
s is real and, hence, the euality £(5) = £(s) holds for every s € C. That means: if p is a
zero of £(s), then so does paswellas 1 —p. If p=0o +it,then 1l —p=1—0+1it, ie. p
and 1 — p are symmetrcally situated with respect to the line Res = 1/2.

In his memoir RIEMANN claimed that the function ((s) has infinitely many zeros in
the critical strip and moreover, that the following “explicit” formula

(1.11) n(e) =li(@)+ Y (li(*) +1i(z' )

pEN Im p>0
e dt
+/ —— —log2, x>2.
e

t2 —1)logt
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holds for the function 7(x), where [7 is the integral logarithm and A is the set of zeros
of ¢(s) in the critical strip. The validity of the above formula was really confirmed by
H. voN MANGOLDT in 1894.

Let, further, the function Z(z) be defined by

1
(1.12) E(z)=¢ (5 + zz> , ze€C.
Then (1.10) immediately yields
(1.13) E(z) = E(—2),

i.e. the functional equation for {(s) is equivalent to the fact that =(z) is an even function.
Moreover, it is clear that all the possible zeros of Z(z) are in the strip |Im z| < 1/2.
From (1.7), (1.9) and (1.12) it follows that

E(z) = % - (22 + i) /100 W)z ™3/ cos (g 1ogac) dx.

Integrating by parts and using the equality 4¢’(1) +¢(1) = —1/2, RIEMANN got that
0 1
(1.14) 2(z) = 4/ {:c3/21/)’(:c)} x4 cos (g log:c) dx.
1

Based on the last representation he made his remarkable comment about the zeros of
the function Z(z) namely: “... es ist sehr wahrscheinlich, dass alle Wurzeln reell sind.
Hiervon wiére allerdings ein strenger Bewis zu wiinschen, ich habe indess die Aufsuch
desselben nach einigen fliichtigen vergeblichen Versuche vorlaufig bei Seite gelassen, da
er fir den néchsten Zweck meiner Untersuchungen entberlich schien”.

The above words of RIEMANN has born the conjecture, usually called Riemann’s hy-
pothesis, that all the zeros of the function Z(z) are real. It is equivalent to the conjecture
that all the non-trivial zeros of the function ((s) are on the line Res = 1/2. In spite of
the efforts made in the last 150 years, this conjecture is neither proved, nor disproved.

Remarks

1. EULER’S identity (1.1), considered by him only when s is a real number, is equiv-
alent to the fundamental theorem of Arithmetic to say that if p; < ps < p3 < ... are
the prime numbers, then every natural number n > 2 has a unique representation of the
kind n = p{'ps?ps® ... py*, where aj,1 < j < k are non-negative integers.

2. The series in the right-hand sides of the equalities

o~ (=D)” (="

= L I(s) = N

77(5) Z ns ’ (S) Z (271 + 1)5’
n=1 n=0

as DIRICHLET series, are uniformly convergent on every compact subset of the half-plane

Re s > 0. The holomorphic functions defined by them satisfy the functional equations
(277 = 1)n(1 = 5) = —(2* = 1w cos T-L(s)n(s),

L(1—-s)=2°71"%sin ?F(S)L(s).

corresondingly.The first of them is equivalent to the functional equation for ((s). The
second is contained in a paper of L. EULER published in 1749 and “checked” by him only
for some real values of s.
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In fact, both functions 7(s) and L(s) are analytically contunuable as entire func-
tions. Moreover, n(s) = (1 —2'7%)((s) (G.H. HARDY, Divergent series, Oxford, 1949,
Chapter II, 2.2).

3. The function 7(z) and more precissely, its growth as 2 — oo has been an object of
investigation of many mathematicians. About the year 1800 it was already numerically
cleared that

x
1.15 ~
(115) 7o)~ o, @ oo,
i.e that m(x)z~'logz — 1 when x — oco. At the same time K. GAUSS proposed that
Todt
(1.16) m(x) N/ —, T — 00,
5 logt

so that it is not surprising that the first member of RIEMANN’S explicit formula (1.11)
is just li(x). Let us point out that the validity of GAUSS’ asymptotic formla was proved
independently by J. HADAMARD and J. DE LA VALLEE POUSSIN at the end of 19th
centery. It is well-known that (1.15) and (1.16) are equivalent, but it seems that (1.15)
is much more popular. Each one of them is called asymptotic low of prime numbers
distribution or, briefly, asymptotic low (prime number theorem as well as Primzahlsatz
are also used). It is well-known that its validity is equivalent to the fact that (1+t) # 0
for every real ¢t # 0. Namely the last property of RIEMANN’S zeta-function has been
established by J. HADAMARD and J. DE LA VALLEE POISSIN.

The asymptotics of the function 7*(z) = m(x) — li(xz) as  — oo is still an open
problem. RIEMANN’S explicit formula shows that its behaviour is strongly connected
with the zero-distribution of {(s) in the crirtical strip. Indeed, all the results known till
now confirmed that the asymptotics of the function 7*(z) depends on the absence of
zeros of ((s) in subregions of the critical strip.

In 1899 J. DE LA VALLEE POUSIN proved that ((s) has no zeros in the region defined
by the inequality o > 1 — A(log(|t| + 2))~! and as a corollary he got that 7*(x) =
O(xexp(—a(logz)'/?)). In 1922 J.E. LITLEWOOD proved that ((s) # 0 if ¢ > 1 —
Alog(logt)(logt)~!,t >ty > 0 and thus obtained that

7*(2) = O(z exp(—a(log z loglog z)*/?))
(here and below A and a denote positive constants different in different cases). A sharp-
ening of LITTLEWOOD’S results is given in 1936 by N.G. TcHUDAKOV. He proved that
¢(s) # 0 when o > 1 — A(logt)~%/4(loglogt)~3/%, provided ¢ is suficiently large, and as
a corollary that 7*(x) = O(x exp(—a(logz)~*7(loglog ) ~3/7)).

In 1958 I.M. VINOGRADOV and N.M. KOROBOV proved (independently) that ((s) #
0 when o > 1 — A(log(|t| +3))~/3(loglog(|t| +3))~2/3. A corollary of this result is that

7 (z) = O(x exp(fa(log:c)B/E’)(log1og:c)*1/5)
as x — o0. It seems the last asymptotic estimate is the best one known till now.

In 1901 H. voN KocH proved that if RIEMANN’S hypothesis is true, then n*(z) =
O(x'/?log ) as © — oo. He proved also that if 7*(z) = O(2?*¢) for some fixed 6 €
[1/2,1) and arbitrary positive ¢ when & — oo, then ((s) # 0 for o > 6. Since logx =
O(zf) for every positive e when z — oo, it follows that the validity of the estimate
7*(x) = O(2'/?log ), — oo leads to the validity of RIEMANN’S hypothesis.

4. The denotations for the function (1.9) and (1.12) are assumed by E. TITCHMARSH.
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The entire function defined by the right-hand side of (1.9) appeared first in RIEMANN’S
memoir. Replacing s by 1/2+it, he defined in fact the function Z(t), denoting it by £(¢).
From (1.14) it follows that

E(z) = 2/100 U(x)cos((z/2)logz) dz,

where
(1.17) () = {3¢' () + 22" () }2'/4.
Then, after substituting x by exp 2u, —oco < u < 0o, one gets
(1.18) E(z) = 2/ ®(u) cos zu du,
0
where
(1.19) O(u) = 2U(exp2u) exp2u, —00 < u < 00,
ie.
(oo}
(1.20) D(u) =2 Z(2w2n4 exp(9u/2) — 3mn? exp(5u/2)) exp(—mn? exp 2u).
n=1

It is not quite obvious that the function ®(u) is even, but this is really the fact.
Indeed, (1.17), (1.19) and the relation = = exp 2u yield

(I)(—U) — 2{3¢I($_1) + I_1¢II(I_1)}$_5/4
Further, using that 2¢(z) +1 = 2= /2{2¢(z~')+1},0 < = < oo, after some computation
one gets

2{3¢/(x7") + a1 (@)} = 2{sy/ (@) + 2y (2)}24,0 < 2 < oo,
ie. ®(—u) = P(u),0 < u < co. Then, (1.18) can be written as

(1.21) 2(z) = /OO D (u) exp(izu) du.

5. It was already mentioned that RIEMAN’S hypothesis is neither proved nor dis-
proved. But it is well-known that infinitely many zeros of the function ((s) are located
on the line Re s = 1/2 which is equivalent to the existing of infinitely many real zeros of
RIEMAN’S ¢-function. The first proof was given by H.G. HARDY Sur les zéros de la
fonction £(s) de Riemann, C. R. 153 (1914), 1012-1014.
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XUIIOTE3ATA HA PUMAH

Ilerbp Pyces

Taszu roguna ce HapbpmBar 150 roguHu OT IIyOGJIMKYBaHETO HA 3HAMEHUTHS MEMOap
Ueber die Anzahl der Primzahlen unter einer gegebenen Grésse (Bbpxy
6posi Ha IPOCTUTE YUCJa IIO-MAJIKH OT aajeHa “Besuunua’) Monatsb. der Konigl.
Akad. der Wissen. zu Berlin aus dem Jahr 1959 (1960), 671-680 na B. Puman (1826—
1866).

OTHpaBHa TOYKa Ha MU3CJIeBaHUATA Ha Puman e ABJIIZKIMOTO Ha Oﬁnep ThXKJIeC-

1 1
H17%22E7 s> 1,

P

TBO

K'bJETO D “IpobsArsa’ MPOCTUTE, & N — €CTECTBEHUTE UHCJIA.
['maBHOTO BHHMaHHE B MeMoOapa € OT/e/eHO Ha DYHKIUATA

() =3,

KOATO 3a NpPbB I'bT € TpeTupaHa KaTo (pyHKIHUA Ha KOMILIEKCHATA HPOMEHJIUBA
s = 0 + it umenHo ot Puman.

C (1) dyskuumsra ((s) e nedunupana xoraro o > 1. Kakro ycranossia Puman,
TS € aHAJUTHYHO NMPOIb/KAMA B IgjaTa KOMIJIEKCHA PaBHUHA KaTo MepoMopdHa
dyukuus ¢ eauHeTBeH (poct) mosroc B Toukara s = 1. Tosa e ciencreue or GyHK-
[MOHAJHOTO ypaBHEHUe

720 (s/2)¢(s) = 7 P01~ )/2)C(1 - )

monydeno or Puman. Ot Hero cienpa, de Toukute —2, —4, —6,... ca MPOCTH HYJIHA
Ha “npogbikenara’ (-pyHKuusA, Hapedenu TpuBnaaHu. Tbit kato ((s) # 0 xoraTo
|Res| > 1, s # —2,—4,—6,... apyru Hynu mMoxe ja uma B upnnara 0 < Res < 1.
BebmaocT, KakTO € 10Ka3aHo Mo-K'bCHO, BbpXy npasuTe jJunnn Res = 0 u Res = 1
HaMa Hysu Ha ((S).

Heka N e MHOXKECTBOTO Ha HETpPHMBHAJIHUTE Hyin Ha ((S), T.e. TE3W, KOUTO Ca B
upnnara 0 < Res < 1 u 7(x) e 6poar Ha mpocTuTe Yncjaa HeHaaMuHABamM - > 0.
Puman npuema e ((s) nma 6e36poiiHO MHOIO HETPUBUAJIHA HYJIM M OCBEH TOBA TBbPJIN
4e 3a m(z) e BaIMHA ciaegHaTa GopMya

(2) n(e) =li(z) + Y (li(z”) +li(z'""))

pEN,Im p>0
0 dt
+/ T g2, z2>2
. (t2—=1)logt

K'bJIeTO |7 € MHTErPaJHASAT JIOTaPUTHM.
QOyuxnuara £(s), neduHupana ¢ paBeHCTBOTO

£(s) = s(s — 1w */*T(s/2)¢(s)

€ XoJ10MOp(HA B IsJ1aTa KOMILJIEKCHA PaBHUHA, T.€. Ts € Isia dyuknus. OcBen Tosa,
MHOXKECTBOTO Ha HYJIUTE U CHBIAJA C MHOXKECTBOTO HA HeTpuBuasHuTe Hyau Ha ((s),
T.e. Ha Te3u 3a Kouto 0 < Res < 1. C paseHcTBOTO
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() = ¢ (% + iz)

1
e neduHUpaHa CHIIO IsIa DYHKIMS, HyJIATE Ha KOATO ca B uBunara | Im z| < 5

Ha Puman ce qbjiku xumoresara, 9e hyHKnuaTa =(2) nMa caMo peaiHu HyJId, KO-
SITO € eKBUBAJIEHTHA C XMIIOTE3aTa, Y€ HeTPUBHUAJIHNUTE Hyu Ha ((S) ca BbPXy IpaBaTa

1
nmHus Res = 3 Ta3u xunoresa HUTO € TOTBBPIEHA, HUTO € OIPOBEPTHATA JOCETa.

3a aHAIUTUYIHATA TEOPHUsl HA YHUCIATa OT (PYHIAMEHTAJHO 3HAYEHHE € aCUMIITO-
TUYHOTO noBeeHue Ha dyHKnuATa 7 () Koraro & — oo. Okoso 1800 r e ycranoBeHO
—1
emMnupuyHo, e m(x) ~ z(logx) ™",z — 00, KOETO € eKBUBAJIEHTHO C

(3) w(x) ~li(z), = — oo.

Iosenenuero obade na dbyuxknuara 7 (x) = w(x) — li(x) Koraro © — oo e Bce ome
3arajika 3a CbBPEMEHHATA MaTeMaTHIeCKa HAYKa.

B npenyiozkenunsi 0630p TIABHOTO BHUMAaHHME BbPXYy MeMoapa Ha PuMaH e oTje-
JIEHO Ha M3BOja Ha (DYHKIMOHATHOTO ypaBHeHHE 3a (dyHKImaTa ((S), KOETO, KAKTO
U3TJIEXK/IQ, € JOBEJIO JI0 XUIMOTE3aTa 38 HETPUBUAHUATE U HYyJIH.

VYuomenaro e, ye dopmynara (2) 3a 7(z), KAKTO U BAJIUHOCTTA Ha CbOTHOIIEHH-
ero (3), e moka3zana B Kpas Ha 19-u Bek u, ye 6e36poiino MuOro or Hysute Ha ((s) ca

BbPXy IpaBara JuHHS Res = 1 € yCTaHOBEHO B HAYAJIOTO HA MHUHAJMs Bek. IIpoc-
JIGJCHN Ca yCHJIMSTa PECIL. peSy%ITaTI/ITe OT TsX 3a yTOYHsIBAHE HA Pa3IPEJeJCHUETO
Ha HeTpuBHAIHUTE Hynu Ha ((S), KAKTO M BJIMSAHUETO UM BbPXY ACHMIITOTHKATA HA
dyuxnuara 7 (x).



