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ORNSTEIN-UHLENBECK DIFFUSION OBSERVED AT

RANDOM TIME POINTS
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Abstract. In this paper, we study the quasi-likelihood estimator of the
drift parameter θ in the Ornstein-Uhlenbeck diffusion process, when the
process is observed at random time points, which are assumed to be un-
observable. These time points are arrival times of a Poisson process with
known rate. The asymptotic properties of the quasi-likelihood estimator
(QLE) of θ, as well as those of its approximations are also elucidated. An
extensive simulation study of these estimators is also performed. As a corol-
lary to this work, we obtain the quasi-likelihood estimator iteratively in the
deterministic framework with non-equidistant time points.

1. Introduction. The Ornstein-Uhlenbeck process (O-U process)
{Xt, t ≥ 0} arises as a solution to the following stochastic differential equation

dXt = −θXtdt + dWt(1)
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where {−θXt} represents the systematic part due to the resistance of the medium
and {dWt} represents the random component. It is assumed that these two parts
are independent and that {Wt} is the standard Brownian motion.

We will concentrate on the estimation of the drift parameter θ, for θ > 0,
the so-called ergodic case.

For t ≥ 0, the solution of (1) is

Xt = X0 exp(−θt) +

t
∫

0

exp(−θ(t − s))dWs.

If E(X2
0 ) < ∞ and s < t, then

E(Xt) = E(X0) exp(−θt),

Var(Xt) = (2θ)−1 + (V (X0) − (2θ)−1) exp(−2θt),

ρ(s, t) = Cov(Xs,Xt) = [V (X0) − (2θ)−1(1 − exp(2θs))] exp(−θ(t − s)).

Assume throughout the paper that X0 is N(0, (2θ)−1). Then {Xt} is a stationary
zero-mean Gaussian process with ρ(s, t) = (2θ)−1 exp(−θ(t − s)).

Let Fs = σ(Xu, u ≤ s). Then for s < t,

E(Xt | Fs) = Xs exp(−θ(t − s)),(2)

Var(Xt | Fs) = (2θ)−1(1 − exp(−2θ(t − s))).(3)

Bibby and Sorensen [1] studied the equally spaced case (i.e. di = d,
i = 0, . . . , n − 1, where the sample is given by Xt0 , . . . ,Xtn , and di = ti+1 − ti)
when the underlying diffusion was ergodic and found an estimator θ∗ which they
showed to be consistent for d fixed. They also made the claim of consistency in
the non-ergodic case.

When d = d(n) → 0 as n → ∞, a necessary condition for the consistency
of θ∗ is that nd(n) → 0 as n → ∞ (see [3] and [6]).

LeBreton [9] studied this problem in the ergodic case with unequally
spaced observations in [0, T ] and showed that when max di → 0 and then T → ∞,
the maximum likelihood estimate (MLE) of θ is a consistent estimator of θ.

There has been a considerable amount of recent research interest centered
on the approximation of the continuous time process by a discrete one and its
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effect on statistical inference about the parameters. We refer the reader to Bibby
et al. [2] for an overview of this subject.

Our concern here, however, is a very different one. We consider the sample
S = {XT0

,XT1
, . . . ,XTn}, where T0 = 0, and {Di = Ti+1 − Ti, i = 0, . . . , n − 1}

are i.i.d. Exponential (λ), and independent of the Xt process. We assume that, as
described by the sample, the {Ti} are unobservable random variables. In sections
3 and 4, based on S, we find the quasi-likelihood estimator (QLE) for θ and study
its asymptotic properties as well as those of some approximations to the QLE.
In particular we prove the surprising result that the asymptotic quasi-likelihood

estimator (AQLE)
n−1
∑

i=0
XTi

XTi+1
/

n−1
∑

i=0
X2

Ti
, is a consistent estimator for λ/(λ + θ)

under the sampling scheme S, where the observations are made at random time
points {Ti}, the arrival times of a Poisson process. If λ is known, one has in turn
a consistent estimator for θ.

The finite sample properties of these estimators are examined in an ex-
tensive simulation study in Section 5. In our development of this problem when
the process is sampled at random time points, we also obtain the QLE of θ for
the deterministic problem with non-equidistant sampling times in Section 2. The
conclusion is presented in section 6. Some proofs are presented in the Appendix.

2. QLE: The deterministic framework with non-equidistant

time points. We consider a stochastic differential equation according to an
O-U process given by (1), with θ > 0 and X0 ∼ N(0, (2θ)−1).

We suppose that we have a sample {Xt0 ,Xt1 , . . . ,Xtn}, where the times
0 = t0 < t1 < · · · < tn are not necessarily equally spaced.

We use the quasi-likelihood approach in the spirit of Heyde [7] to obtain
the optimal estimator of the drift parameter θ. More explicitly, let H be the fam-
ily of estimating functions h(n, θ), which consists of zero-mean square integrable
martingales

h(n, θ) =

n−1
∑

i=0

biui+1,(4)

where bi is Fti− measurable and possibly a function of θ, and

ui+1 = Xti+1
− E

(

Xti+1
| Fti

)

.(5)

Note that the {biui+1} are uncorrelated; in fact they are martingale differences.
The family H is generated by various choices of {bi}.
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Following Heyde [7], we obtain the optimal weights for bi as

b∗i = E
(

u′

i+1 | Fti

)

/E
(

u2
i+1 | Fti

)

,

where u′

i+1 is the derivative of ui+1 with respect to θ.

Therefore, using equations (2) and (3), the optimal bi is given by

b∗i = −2θdiXtie
−θdi

(

1 − e−2θdi

)

−1

where di = ti+1 − ti for i = 0, 1, . . . , n − 1.

From h∗(n, θ) =
n−1
∑

i=0
b∗i ui+1 = 0, the optimal estimator θ∗ is obtained. It

is also called the quasi-likelihood estimator (QLE) of θ and is a solution of the
equation

n−1
∑

i=0

diXtie
−θdi

(

1 − e−2θdi

)

−1 (

Xti+1
− Xtie

−θdi

)

= 0(6)

In general, there will be no explicit solution for θ∗. However, we can use (6) to
compute θ∗ iteratively with actual data.

Let us now note the following

Remark 2.1. If the ti are equally spaced which entails that di = d for
i = 0, . . . , n − 1, then equation (6) admits an explicit solution for θ given by

e−θ∗d =
n−1
∑

i=0

XtiXti+1

/

n−1
∑

i=0

X2
ti
,

or equivalently

θ∗ = −d−1 ln

(

n−1
∑

i=0

XtiXti+1

/

n−1
∑

i=0

X2
ti

)

,

provided that
n−1
∑

i=0
XtiXti+1

is positive, a result originally obtained by Bibby &

Sorensen [1].

Remark 2.2. In the case of equidistant sampling times, for i =
0, 1, . . . , n− 1, ti+1 − ti = d, and t0 = 0 so that Xti = Xid. Define Ui = Xti ; then
the sequence {Ui} = {Xti} is a stationary ergodic Markov chain. Therefore, from
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the ergodic theorem (Karlin & Taylor [8], Theorem 5.6 p. 487), it follows that, as
n → ∞

1

n

n−1
∑

i=0

XtiXti+1

a.s.
−→ E(Xt0Xt1) = e−dθE(X2

t0
)

and

1

n

n−1
∑

i=0

X2
ti

a.s.
−→ E

(

X2
t0

)

.

Therefore θ̂
a.s.
−→ −d−1 ln

(

E (Xt0Xt1)

E
(

X2
t0

)

)

= θ, a result derived by Bibby & Sorensen

[1] from a more complex argument.

3. QLE: The random time points framework. Now let the
sample be S = {XT0

,XT1
, . . . ,XTn} as before, where the unobservable sequence

{Ti} denotes the arrival time in a homogeneous Poisson process. We assume
T0 = 0 and Di = Ti+1 − Ti for 0 ≤ i ≤ n − 1 are i.i.d. Exponential (λ), and
independent of the process Xt.

Based on S, we find the QLE estimator for θ and study its asymptotic
properties as well as those of some approximations of it.

Let BTi
be the sigma-field generated by {XT0

,XT1
, . . . ,XTi

}, and note
that the derived process {XTi

} is a Markov process (Feller [5], p. 347). Then
conditioning on BTi

will be equivalent to conditioning on XTi
.

We now need the following two results (see Appendix for the proofs)

∗ E
(

XTi+1
| XTi

)

= XTi
µ(λ, θ),(7)

∗ Var
(

XTi+1
| XTi

)

= X2
Ti

(

θ

λ

)2

µ(λ, 2θ)(µ(λ, θ))2 + λ−1µ(λ, 2θ),(8)

where µ(λ, kθ) = λ/(λ + kθ) for k = 1, 2.
In order to obtain the optimal b∗i , we must find:

∗ ui+1 = XTi+1
− E

(

XTi+1
| XTi

)

= XTi+1
− XTi

µ(λ, θ),

∗ b∗i = E
(

u′

i+1 | XTi

)

/E
(

u2
i+1 | XTi

)

.

In this framework, we have
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∗ E
(

u′

i+1 | XTi

)

= E

(

∂

∂θ

(

XTi+1
− XTi

µ(λ, θ)
)

| XTi

)

= λ−1XTi
(µ(λ, θ))2,

∗ E
(

u2
i+1 | XTi

)

= Var
(

XTi+1
| XTi

)

.

Therefore, we obtain

b∗i = λ−1XTi
(µ(λ, θ))2

(

X2
Ti

( θ

λ

)2
µ(λ, 2θ)(µ(λ, θ))2(9)

+λ−1µ(λ, 2θ)
)

−1
.

h∗(n, θ) =

n−1
∑

i=0

b∗i ui+1(10)

= λ
(µ(λ, θ))2

µ(λ, 2θ)

n−1
∑

i=0

XTi

(

(XTi
θµ(λ, θ))2 + λ

)

−1

·
(

XTi+1
− XTi

µ(λ, θ)
)

.

Then, the quasi-likelihood estimator θ∗ of θ is the solution of the following
equation

h∗(n, θ) =
λ(µ(λ, θ))2

µ(λ, 2θ)

n−1
∑

i=0

XTi

(

(XTi
θµ(λ, θ))2 + λ

)

−1
(11)

·
(

XTi+1
− XTi

µ(λ, θ)
)

= 0.

Although there is no explicit solution for θ, numerical computation of the esti-
mator is feasible.

4. Asymptotics and approximations to the QLE In this section,
we obtain an asymptotic estimator of µ(λ, θ) by using equation (11) with its
quadratic variation, and then showing the consistency of this estimator sampled
at random time points.
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The quadratic variation associated with equation (11) is given by

〈h∗(n, θ)〉 =
λ2(µ(λ, θ))4

(µ(λ, 2θ))2

n−1
∑

i=0

X2
Ti

(

(XTi
θµ(λ, θ))2 + λ

)

−2
(12)

· E
(

(

XTi+1
− XTi

µ(λ, θ)
)2

| XTi

)

=
(µ(λ, θ))4

µ(λ, 2θ)

n−1
∑

i=0

X2
Ti

(

(XTi
θµ(λ, θ))2 + λ

)

−1

where E
(

(

XTi+1
− XTi

µ(λ, θ)
)2

| XTi

)

= E
(

u2
i+1 | XTi

)

= Var
(

XTi+1
| XTi

)

.

Let:

Zi = C∗X2
Ti

(

(XTi
θµ(λ, θ))2 + λ

)

−1
(13)

where C∗ =
(µ(λ, θ))4

µ(λ, 2θ)
.

Note that Zi is a non-negative continuous random variable with E(Zi) =

K for 0 < K < ∞, since E(Zi) <
C∗E (XTi

)2

λ
< ∞.

We shall prove in theorem 1 the ergodicity of {XTi
} by using the fact

that every stationary mixing process is ergodic. For that, we need the following
definition of mixing given by Karlin and Taylor [8].

Definition 4.1. A stationary process {Yk} is said to be mixing (or strong
mixing) if for all sets A and B of k-dimensional real sequences, and ∀k ≥ 1

lim
n→∞

{P (Y1, Y2, . . . Yk) ∈ A and (Yn+1, Yn+2, . . . , Yn+k) ∈ B}(14)

= P {(Y1, Y2, . . . Yk) ∈ A}P {(Y1, Y2, . . . Yk) ∈ B} .

Hencerforth, Yk = XTk
, k = 0, . . . , n.

Lemma 4.1. Let {Xt} be an O-U ergodic Markov process and {Tk}, k ≥
0, a process with non-negative i.i.d. increments, and let us suppose that the two
processes are independent. Then:

a) Yk = XTk
is N(0, σ2) ∀k ≥ 0,

b) {Yk} = {XTk
} is a stationary process.
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P r o o f.

a) ϕ(s) = E
(

eisYk
)

= E
(

E
(

eisYk | Tk

))

, but E
(

eisYk | Tk = tk
)

=

E
(

eisXtk | Tk = tk
)

= e−σ2 s2

2 . Then E
(

eisYk
)

= e−σ2 s2

2 , thus proving
Yk ∼ N(0, σ2), where σ2 is the variance of X0.

b) The distribution of (Yk, Yl) is the same as that of (Yk+m, Yl+m)∀m ≥ 1.
Indeed, E

(

ei(s1Yk+s2Yl)
)

= E
(

E
(

ei(s1Y1+s2Yl) | Tk, Tl

))

.

But,

E
(

ei(s1Yk+s2Yl) | Tk = tk, Tl = tl

)

= E
(

ei(s1Xtk
+s2Xtl

) | Tk = tk, Tl = tl

)

= E
(

ei(s1Xtk
+s2Xtl

)
)

= e−
1

2((s
2
1
+s2

2
)σ2+2σ2s1s2ρtktl),

where ρtktl = e−θ(tl−tk).

Thus E
(

ei(s1Yk+s2Yl)
)

= E
(

e−
1

2((s
2
1
+s2

2
)σ2+2σ2s1s2ρTkTl

)
)

.

The last expression depends only on the distribution of (Tl − Tk) which
is the same as that of (Tl+m − Tk+m), since the increments (Tj+1 − Tj)

are i.i.d. This proves (Yk, Yl)
d
∼ (Yk+m, Yl+m),∀m ≥ 1. Taking into

account the Markovian nature of {Yk}, (Yk1
, Yk2

, . . . , Ykj
)

d
∼ (Yk1+m, . . . ,

Ykj+m) and {Yk} is thus a stationary process. �

We now prove the following theorem.

Theorem 4.1. Let {Xt} be an O-U stationary ergodic Markov process
and {Tk} a process with non-negative i.i.d. increments, where the two processes
are independent. Then {XTk

} is a stationary Markov ergodic process.

P r o o f. From Lemma 4.1, {XTk
} is a Markov stationary process, with

XTk
∼ N(0, σ2).

To prove the ergodicity of {XTk
}, we verify that (14) is true using the

characteristic function. Indeed, for k = 1 and as seen in the proof of Lemma 4.1,

E
(

ei(s1Y1+s2Yn+1)
)

= e−
s2
1

σ2

2 e−
s2
2

σ2

2 E
(

e−σ2s1s2ρTn+1,T1

)

,

where

ρTn+1,T1
= e−θ(Tn+1−T1).(15)
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Now, Tn → ∞ a.s. entails that ρTn+1,T1
→ 0 a.s. and e−σ2s1s2ρTn+1,T1 → 1

a.s.
However, as this sequence is bounded, E

(

e−σ2s1s2ρTn+1,T1

)

→ 1. This

proves that the joint distribution of (Y1, Yn+1) converges to the product of two
N(0, σ2), thus proving that equation (14) holds for k = 1.

For k = 2, we have:

ϕ = E
(

ei(s1Y1+s2Y2+s3Yn+1+s4Yn+2)
)

= E
(

E
(

ei(s1Y1+s2Y2+s3Yn+1+s4Yn+2) | T1, T2, Tn+1, Tn+2

))

.

But, as E
(

ei(s1Y1+s2Y2+s3Yn+1+s4Yn+2) | T1 = t1, T2 = t2, Tn+1 = tn+1, Tn+2 =

tn+2

)

is the characteristic function of a multivariate normal distribution with

zero mean and σ2 variance, therefore:

ϕ = E
(

e−
σ2

2
(s2

1
+s2

2
+s2

3
+s2

4
+2ρ12s1s2+2ρ13s1s3+2ρ14s1s4

+2ρ23s2s3+2ρ24s2s4+2ρ34s3s4)
)

.

where















ρ12 = e−θ(T2−T1), ρ13 = e−θ(Tn+1−T1),

ρ14 = e−θ(Tn+2−T1), ρ23 = e−θ(Tn+1−T2),

ρ24 = e−θ(Tn+2−T2), ρ34 = e−θ(Tn+2−Tn+1).

Note that Tn → ∞ a.s. entails {ρ13, ρ14, ρ23, ρ24 → 0} a.s., and ρ34
d

−→

e−θU , where U
d
∼ (T4 − T3), say, and independent from ρ12 since ∀n, ρ34 is so as

well.
Then,

e
−

σ2

2

 P
i

s2
i +2

PP
i<j

ρijsij

!
d

−→ e
−

σ2

2

�
4P

i=1

s2
i +2ρ12s1s2+2s3s4e−θU

�
.

As this sequence is positive and bounded by 1, the sequence of first mo-
ments converges.

Therefore,

ϕ
d

−→ E

(

e−
σ2

2
(s2

1
+s2

2
+2ρ12s1s2)

)

E

(

e−
σ2

2
(s2

3
+s2

4
+2s3s4e−θU )

)

.
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which is the product of the characteristic function of (Y1, Y2) with that of (Y3, Y4),
thus proving the mixing property. �

Remark 4.1. Note that the results in Theorem 4.1 are true not only
for Poisson arrivals, but also under the general condition of non-negative i.i.d.
increments.

We now state and prove the following lemma.

Lemma 4.2. As n → ∞, 〈h∗(n, θ)〉 → ∞ a.s., and thus h∗(n, θ)/〈h∗(n, θ)〉
→ 0 a.s. as n → ∞,∀θ.

P r o o f. It is sufficient to prove that the quadratic variation 〈h∗(n, θ)〉
diverges to infinity, since the second part of this lemma is a consequence of the
Strong Law of Large Numbers (SLLN) for zero mean square integrable martin-
gales (Davidson [4], Theorem 20.10).

Since {XTi
} is an ergodic process by Theorem 4.1, and 〈h∗(n, θ)〉 =

n−1
∑

i=0
Zi

from equations (12) and (13), then
〈h∗(n, θ)〉

n
=

n−1P
i=0

Zi

n
→ K, 0 < K < ∞. Thus

〈h∗(n, θ)〉 → ∞ a.s. �

We state without proof, the following corollary which is a consequence of
Lemma 4.2.

Corollary 4.1.

n−1
∑

i=0
XTi

XTi+1

(

X2
Ti

θ2µ2(λ, θ) + λ
)

−1

n−1
∑

i=0
X2

Ti

(

X2
Ti

θ2µ2(λ, θ) + λ
)

−1

a.s.
−→ µ(λ, θ).(16)

Inspired by this result and the ergodicity of {XTi
}, we can show very

easily that

1

n

n−1
∑

i=0

XTi+1
XTi

a.s.
−→ E (XT1

XT0
) = µ(λ, θ)E(X2

T0
),

and 1
n

n−1
∑

i=0
X2

Ti

a.s.
−→ E

(

X2
T0

)

.
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Therefore, we have:

n−1
∑

i=0
XTi

XTi+1

n−1
∑

i=0
X2

Ti

a.s.
−→ µ(λ, θ),(17)

which proves the consistency of this estimator.
The result in (17) is obviously an approximate solution to (11), and

hencerforth this estimator will be denoted by AQLE. Indeed, if we define

h+(n, θ) =

n−1
∑

i=0

XTi

(

XTi+1
− µ(λ, θ)XTi

)

as an estimating equation, then h+(n, θ) = 0, yields

n−1
∑

i=0
XTi

Xti+1

n=1
∑

i=0
X2

Ti

as an estimator

for µ(λ, θ).
Thus we have two competing estimators for µ(λ, θ): the quasi-likelihood

estimator (QLE) of µ(λ, θ) given as the solution to the equation (11), and an

approximation (AQLE) to it, given by
n−1
∑

i=0
XTi

XTi+1

/

n−1
∑

i=0
X2

Ti
, which is consistent.

We conjecture that the QLE is also consistent and that both estimators
are asymptotically normal. A simulation study is performed in the next section in
which the bias of each estimator is compared in an attempt to determine whether
the QLE is also consistent. Histograms are constructed for different sample sizes
in order to study the limiting distributions.

5. Simulation study. From sections 3 and 4, we have two estimators:
the QLE given as a solution to equation (11) which is optimal, and the AQLE
defined by equation (17) which was shown to be consistent. The asymptotic
distribution of neither of these estimators has yet been studied theoretically,
although we conjecture that each is asymptotically normal. Here we propose an
extensive numerical simulation study in order to attempt to answer the following
questions:

(i) What is the asymptotic distribution of each estimator?

(ii) How is the bias related to µ(λ, θ)?
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Table 1. m = 1000, n = 100, λ = 1, θ = 0.125, µ(λ, θ) = 8.8889 · 10−1

Sample mean Sample standard deviation

QLE 8.7333 · 10−1 5.4224 · 10−2

AQLE 8.7154 · 10−1 5.5068 · 10−2

Figure 1. Histograms: AQLE (left), QLE (right)

Table 2. m = 1000, n = 500, λ = 1, θ = 0.125, µ(λ, θ) = 8.8889 · 10−1

Sample mean Sample standard deviation

QLE 8.8565 · 10−1 2.2835 · 10−2

AQLE 8.8530 · 10−1 2.2884 · 10−2

Figure 2. Histograms: AQLE (left), QLE (right)



Quasi-likelihood estimation . . . 303

Table 3. m = 1000, n = 5000, λ = 1, θ = 0.125, µ(λ, θ) = 8.8889 · 10−1

Sample mean Sample standard deviation

QLE 8.8879 · 10−1 6.7259 · 10−3

AQLE 8.8877 · 10−1 6.7624 · 10−3

Figure 3. Histograms: AQLE (left), QLE (right)

Table 4. m = 1000, n = 100, λ = 1, θ = 0.5, µ(λ, θ) = 6.6667 · 10−1

Sample mean Sample standard deviation

QLE 6.5819 · 10−1 8.0505 · 10−2

AQLE 6.5670 · 10−1 8.0835 · 10−2

Figure 4. Histograms: AQLE (left), QLE (right)
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Table 5. m = 1000, n = 500, λ = 1, θ = 0.5, µ(λ, θ) = 6.6667 · 10−1

Sample mean Sample standard deviation

QLE 6.6434 · 10−1 3.5963 · 10−2

AQLE 6.6353 · 10−1 3.6152 · 10−2

Figure 5. Histograms: AQLE (left), QLE (right)

Table 6. m = 1000, n = 5000, λ = 1, θ = 0.5, µ(λ, θ) = 6.6667 · 10−1

Sample mean Sample standard deviation

QLE 6.6701 · 10−1 1.1365 · 10−2

AQLE 6.6698 · 10−1 1.1439 · 10−2

Figure 6. Histograms: AQLE (left), QLE (right)
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(iii) How is the bias related to the sample size?

Assuming:

T0 ≡ 0

Ti+1 − Ti ∼ Exponential(λ)

X0 ∼ N (0, (2θ)−1)

Xt|Xs ∼ N
(

Xse
(−θ(t−s)), (2θ)−1(1 − e(−2θ(t−s))

)

Note that, 48 different cases as follows were simulated:

m (number of samples) 1000
n (size of each sample) 100, 500, 1000, 5000
θ 0.5, 0.25, 0.125
λ 1, 0.5, 0.2, 0.1

The simulation study is too large to include all the results here. We
present only the following cases: m = 1000, λ = 1, θ = .125 and n = 100, 500,
5000 and m = 1000, λ = 1, θ = .5. It should be noted that the histograms are
centered at 0 by subtracting the true mean.

The main conclusions related to our three questions are as follows:

(i) Both estimators appear to have asymptotically normal distributions, since
in all cases the histograms with n ≥ 500 appear to be normal.

(ii) as µ → 1, the bias of both the QLE and the AQLE increase. This can be
seen by comparing Tables 1, 2 and 3 with Tables 4, 5 and 6 respectively.

(iii) For both values of µ and for nearly all sample sizes, the absolute value of
the bias, of the QLE is less than that of the AQLE. The only exception is
for µ = 6.667 × 10−1 and n = 5000. In this case the bias of the QLE =
.00094 and of the AQLE = −.00031. This suggests that the QLE is also
consistent.

6. Conclusion. We have studied the quasi-likelihood estimator of
the drift parameter θ in the Ornstein-Uhlenbeck diffusion process observed at
Poisson arrival times, which are assumed unobservable. An asymptotic version of
this estimator, the AQLE, has also been elucidated and shown to be consistent.
An extensive simulation study supports our conjectures that the QLE is also
consistent and that both estimators are asymptotically normal. As a corollary
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to this work we obtain the QLE iteratively in the deterministic framework with
non-equidistant points.
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Appendix. Here are the proofs of equations (7) and (8) of section 3.
Let {Xt}, t ≥ 0 be an O-U process, sampled at random time points Tk,

where {Tk}, k ≥ 0 is a Poisson process. To simplify the notation, let {XTk
} =

{Yk}. We have the following results.

1) E (Yk+1 | Yk) = Ykµ(λ, θ), where µ(λ, θ) = λ
λ+θ

P r o o f.
E (Yk+1 | Yk) = E (E (Yk+1 | Yk, Tk, Tk+1)) .

But,

E
(

XTk+1
| XTk

, Tk = tk, Tk+1 = tk+1

)

= E
(

Xtk+1
| Xtk , Tk = tk, Tk+1 = tk+1

)

= Xtke−θ(tk+1−tk),

by using (2).

Then,

E
(

XTk+1
| XTk

)

= XTk
E
(

e−θ(Tk+1−Tk)
)

= XTk
µ(λ, θ).

Similarly, we show that

E (Yk+m | Yk) = Yk(µ(λ, θ))m,∀m ≥ 1. �

2) Var (Yk+1 | Yk) = Y 2
k

(

θ
λ

)2
(µ(λ, θ))2µ(λ, 2θ) + λ−1µ(λ, 2θ).

P r o o f. It is well known that

Var (Yk+1 | Yk) = Var (E (Yk+1 | Yk, Tk, Tk+1))

+ E (Var (Yk+1 | Yk, Tk, Tk+1)) .
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But,

Var (E (Yk+1 | Yk, Tk, Tk+1)) = Var
(

Yke
−θ(Tk+1−Tk) | Yk

)

= Y 2
k

pq

(p + q)2(p + q + 1)
,

where (Tk+1 − Tk) is Beta (p, q) with p = λ
θ

and q = 1.

Using (3), we have

Var (Yk+1 | Yk, Tk, Tk+1) = σ2
(

1 − e−2θ(Tk+1−Tk)
)

Then,

E (Var (Yk+1 | Yk, Tk, Tk+1)) = σ2(1 − µ(λ, 2θ))

= λ−1µ(λ, 2θ).

Finally, we have

Var (Yk+1 | Yk) = aY 2
k + b.

where

{

a =
(

θ
λ

)2
(µ(λ, θ))2µ(λ, 2θ)

b = λ−1µ(λ, 2θ).
�
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