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ABSTRACT. We prove dispersive estimates for solutions to the wave equation
with a real-valued potential V' € L>*(R™), n = 2 or 3, satisfying V(x) =
O({z)=(n+1)/2=€¢) ¢ > 0,

1. Introduction and statement of results. Let V € L®(R"),
n > 2, be a real-valued function satisfying

(1.1) V(z)| < C{z)~%, VaeR",

with constants C > 0 and § > (n + 1)/2, where (z) = (1 + [2]?)"/2. Denote
by Gy and G the self-adjoint realizations of the operators —A and —A + V(z)
on L?(R™). It is well known that the absolutely continuous spectrums of the
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operators Gy and G coincide with the interval [0,+o00). Moreover, by Kato’s
theorem the operator G has no strictly positive eigenvalues. When n > 3 this
implies that G has no strictly positive resonances neither. Indeed, it is possible to
show in this case that, under the assumption (1.1) with ¢ > 2, such a resonance
is in fact an eigenvalue (e.g. see [5], [6]). When n = 2 it follows easily that,
under the assumption (1.1) with § > 1, there exists an agp > 0 such that G has
no resonances in the interval [ag, +00).

Throughout this paper, given 1 < p < 400, LP will denote the space
LP(R™). Also, given an a > 0 denote by x, € C*°(R) a function supported in
the interval [a, +00), xo = 1 on [a+1,+00). The purpose of this work is to prove
the following

Theorem 1.1 Assume (1.1) fulfilled. If n =3, for everya > 0,2 <p <
400, there exists a constant C' > 0 so that the following estimate holds

eit\/é(\/a)—a(n—i—l)ﬂxa(\/a) ‘

where 1/p+1/p' =1, a=1-2/p.

If n = 2, the estimate (1.2) holds with a = ag, ag being as above. More-
over, if in addition G has no strictly positive resonances, then (1.2) holds for any
a > 0.

Note that given a smooth, bounded function f supported in the interval
(0, +00), the operator-valued function f(v/G) is well defined even if the operator
G is not non-negative. In particular, the operator in the LHS of (1.2) is well
defined.

It is well known that the estimate (1.2) holds true for the free operator
Go with x, = 1 in all dimensions. For n = 3, an analogue of (1.2) (for 2 < p < 4)
is proved in [5] for non-negative potentials satisfying (1.1) as well as an extra
regularity assumption. In [2] an analogue of (1.2) is proved in all dimensions
2(n+1)

n—1

(1.2) < Q=02 g £,

L —Ip

n>3(for2<p< ) for a class of non-negative potentials. Note also the

work [1], where an analogue of (1.2) for n > 3 is proved for all 2 < p < 400 but
with loss of e-derivatives for potentials belonging to the Schwartz class S(R™).
Recently, in [4] an analogue of (1.2) with n = 3 has been proved for a class
of potentials satisfying (1.1) with 4/3 < 6 < 2, but with a weaker decay as
|t| — +o0. Note also the work [3], where a better time decay than that in (1.2)
has been obtained on weighted LP spaces for potentials satisfying (1.1) withn = 3
and § > 2.

To our best knowledge, for the first time in the present paper the estimate
(1.2) is proved in the whole range of values of p. It also seems that the case n = 2
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has not been treated before our work. We believe that the estimate (1.2) holds
in all dimensions under the assumption (1.1) only, but the method developed
here does not work any more when n > 4, because in this case the outgoing
and incoming free resolvents do not satisfy analogues of the estimates (2.15) and
(2.17) below. The reason for this is that the singularity on the diagonal of the
kernels of these resolvents (which in turn is determined by the behaviour at zero
of the corresponding Hankel functions) is too strong when n > 4.

It is expected that the function y, in (1.2) could be replaced by the char-
acteristic function of the interval [0,+o00) (the absolutely continuous spectrum
of G) if one additionally supposes that the zero is neither an eigenvalue nor a
resonance of G. We believe that our method can be modified in a way allowing
to prove such a statement. When n = 3 this seems not to be very difficult in
view of the nice behaviour at zero of both the free and the perturbed resolvents.
When n = 2, however, these resolvents have a logarithmic singularity at zero,
which would make the proof quite technical.

Our method consists of reducing (1.2) to semi-classical estimates (see
Theorem 2.1 below) valid for all 2 < p < +o0o0. The advantage of such an
approach is that one can easily make an interpolation between L? — L? and
L' — L™ estimates.

Acknowledgements. A part of this work was carried out while G.
V. was visiting the Universidade Federal de Pernambuco in December 2004 and
F. C. was visiting the University of Nantes in May 2005, under the support of
the agreement Brazil-France in Mathematics — Proc. 69.0014/01-5. F. C. is also
partially supported by the CNP(q, Brazil.

2. Proof of Theorem 1.1. Given parameters a > 0, 0 < h < 1, and
a function ¢ € C§°([a, +00)), denote

®(t; h) = VO p(hV/G) — ™V u(h\/Gy).

It is easy to see that Theorem 1.1 follows from the following

Theorem 2.1. Assume (1.1) fulfilled. If n =3, for everya >0, 2 <p <
+00, there exists a constant C' > 0 so that the following estimate holds

(2.1) D (5 B[ o < CRITOP[E720D2 0w £0,0 < h <1,

where 1/p+1/p' =1, a=1-2/p.
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If n = 2, the estimate (2.1) holds with a = ag, ag being as in the introduc-
tion. Moreover, if in addition G has no strictly positive resonances, then (2.1)
holds for any a > 0.

Indeed, using the identity
1
U—a(n—l—l)/QXa(U) _ / QD(HU)HQ(n+1)/2_1d9,
0

where (o) = o702y (0) € C§°([a, +00)), since 0 < a < 1, we get

eit\@(\/a)—a(n-I—l)/QXa(\/é) . eit@(@)—a(n+l)/2xa(\/G—o)‘

L Lp
1
(2.2) < / 1D(t: 0)[| 0 02" +D/21ap
0

1
< C|t|a(n1)/2/ g—e(r=1)/249 < C|t|,a(n,1)/2’
0
which implies (1.2).

Proof of Theorem 2.1. Clearly, it suffices to prove (2.1) for p = +o0,
p = 1and p =p = 2. In what follows in this section we will show that (2.1)
holds true with p = +o0, p’ = 1. We write ®(¢;h) in terms of the outgoing and
incoming resolvents

RE\) = (Go — N> £i0)"!, RE*(\) = (G- ?+i0)"!

as follows
= ﬂi / e o(hA) ((RT(N\) = RF (V) — (R~ (A) — Ry () AdA
(2.3) =) + Wi / e o(hANTF(ANN == £F(t: ),
+ +
where

T*(\) = Ry (\) (=V + VRE(\)V) R (\).
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Recall that the kernel of the resolvent RE(\) is given in terms of the Hankel
functions by

1 ‘ A g
R ST AN _
RO =4 (52 ) HE =),
where v = (n — 2)/2. The perturbed resolvent R*()\) is defined by the limit

RT(\) = lim (G — M tie) ™t (x) UL — (2)°L%, s> 1/2,
e—0
which exists in view of the limiting absorption principle.
We need now the following

Proposition 2.2. Assume (1.1) fulfilled. If n = 3, the operator-valued
function TE(N\) : L' — L™ is C' in \ and satatisfies the estimates

(2.4) IT* M1 <C, A >,

(2.5) <C, X>a,

H dTi
L'L B

Ya > 0 with a constant C > 0 independent of A, which may depend on a.
If n = 2, the operator-valued function TH()\) : L' — L is Hélder of
order 1/2 and satatisfies the estimates

(2.6) I TN || pipee < CATE A > ag,

(2.7) HTi()\Q —T* )\1 HLl oo < C)\l_l‘)\g — )\1‘1/2, A9 > A1 > ag,

ag being such that G has no resonances in the interval [ag, +00).

Let n = 3. Integrating by parts once the integral in (2.3) and using (2.4)
and (2.5), one easily gets

|2F(th)|| 1 e S CR72E™!, VE#£0,0<h <1,

which clearly implies (2.1) with p = 400, p’ = 1 in this case.
Let n = 2. We will first consider the case [t| > 1. Choose a real-valued
function ¢ € C§°([1/3,1/2]), ¢ > 0, such that [ ¢(o)do = 1. Then the function

TE(\) = 67! /Ti()\ +0V(o/0)do, 0<0<1,
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is smooth with values in £(L', L>) and, in view of (2.6) and (2.7), satisfies the
estimates

(2.8) T3 (M)l — e < CATY,

1T () = T*Mlp—pe <671 / 1T\ +0) = T (V)| g1 e $(0/8)do

(2.9) <o IAE /01/2¢(0/0)d0 < COVANTL,
Tﬂ:
‘ ﬁ(k) <6 / IT*(A + o) = TNl L1~ |¢' (0/0)|do
L1 —[o°
(2.10) < Cp2\! / o216/ (0/0)|do < CO-1/2A~L.
Hence,
Oo .
‘ / e o(hA) (T (A) — TE(N)) AdA
0 L1 L
(2.11) < 091/2/ lp(hA)|dXA < COY2R1,
0
w .
‘ / e (RN T (M) AdA
0 R g
o1 [T d + L~ 1p—1/2
(2.12) = ||t e (@(RN)T,"(M)A) dX < Ch™ Mt :
0 L1
By (2.11) and (2.12),
(2.13) 1DF(t; h)|| 1 < CRT! (91/2 + \t\’19’1/2) < Ch™HE| V2,

if we take § = [t|71. If 0 < |t| < 1, by (2.6) we get

(2.14) @ (t; h)|| 1 oo < CRTL
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Clearly, (2.1) with p = 400, p’ = 1 follows in this case from (2.13) and (2.14). O
Proof of Proposition 2.2. We will first prove the following

Lemma 2.3. If n =3, we have for every A > 0,

(2.15) | RE O ()17

<C,
L2— [

<,

(2.16) H dRO )32
L2—Lo°

V0 < e < 1, with a constant C' > 0 independent of \ but depending on e.
If n =2, we have

(2.17) HR§(A)<:C>—1/2—€ <OATV2 Az,

L2— [

(2.18)
[(RE(A2) = RE()) (@) 77| oo < OA A0 = MIY2, X > A > Ao,

VO < e <1, Vg > 0, with a constant C' > 0 independent of X\, A1 and Ao, but
depending on Ay and €.

Proof. When n = 3, the estimates (2.15) and (2.16) are proved in [5]
(Lemma II1.2) and [3] (Proposition 2.1) using that

Hi

1/2( ) :I: :I:zz —1/2

That is why we will consider here only the case n = 2. Recall that, when z — 0,
the function Hy (z) is of the form

(2.19) HSE(Z) = Hgfl(z) + H&Q(z) log z,

with functions Hgfj(z) analytic at z = 0. For z > 1 the function Hi (2) is of the
form

(2.20) HiE () = 555 (2),
where b (2) is a symbol of order —1/2, i.c.

(2.21) 0905 (2)| < €272, 2> 1,
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for all integers 7 > 0. Hence, for A > A\g, we have

|7 )2

< HEO\z — D)2 ()~ 1724
e = s [ =) )y

-

lz—y|>1 |x - y‘

< C sup / llog(Alz — y|)|* dy + CA~! sup /
zeR2 JA\|z—y|<1 zeR2 J A

1-—-2¢
< C)\Q/ log |£])? d€ + CA™! sup / Ldy <O
l€1<1 wer2 JR2 [T — Y|

which implies (2.17). To prove (2.18) we will use the inequality

A2 +
|Hy (0h2) = Hif (oM)[* < o (|HG (oM)] + [Hi (02)]) A %w\ dx
2 2 ClHjE ?
< oAy — A\ (\Hoi(ml)\ + | Hy (oXs)] +\A2—A1|‘1A . 0 (oN) d)\>.

Thus, in view of (2.19)-(2.21), we have for Aa > A1 > Ao,

e = I (BEQ) = REOW) ()20

<Zsup/ £l — y) [ |z — vl ()2 2dy

j= 1 IERQ

+Aa — A\i|” 1/ sup/
A1 zeR2 JR?2

<cy s | llog(\jl — )P = — yldy
=1 zeR2 J)\j|lz—y|<1

2
|z — y[(y) "> *dydA

yl)

+C ) A1 sup/ ()27 %¢dy
Z Ajlz—yl=1

] 1 IERQ
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A2 dy
+C Mg — )\1|1/ A2 sup / —~2—d\
A1 zeR? JA\|z—y|<1 ‘Jj y‘

A2
+CAg — M|t / A1 sup / () "2 % dyd\
A1 z€R2 J A |z—y|>1

2
-3
ot

j=1 €<

2
el oglél s + 007 [ )y
j=1

d
+0ON? / &, CA\] / (y) 2 2dy < O\t
ej<1 1€ R2
which implies (2.18). O
It is easy to see that Proposition 2.2 follows from Lemma 2.3 and the

following

Proposition 2.4. Assume (1.1) fulfilled. Then, there exists a constant
Ao > 0 so that we have

(2.22) (@) 2 RE () )12 <o

L2—L2?2

for A > Ao, 0 < € < 1, with a constant C' > 0 independent of \. Moreover, if
n =3, we have

—3/2—¢ dR:t

) )

(2.23) H(x> <o

L2—[2

for A > Ao, 0 < e < 1, with a constant C' > 0 independent of A. If n = 2, we
have

(2.24) ()77 (RE(A2) — BE(A)) (@) 77| oo < CAT A2 — Mg [V,

for Ao > A1 > Xy, 0 < e < 1, with a constant C' > 0 independent of \1 and Xo.
If G has no strictly positive resonances, the above estimates hold true for
any Ao > 0 with a constant C > 0 depending on Aq.
Proof. The estimate (2.22) is well known to hold for every A > 0 for the
free operator Gy in all dimensions, i.e. we have

< oML

(2:25) [y R O ) 12

L2112
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Let us now see that (2.22) holds under the assumption (1.1) with § > 1 in all
dimensions. To this end, we will take advantage of the identity

(2.26) (2) " REO) (@) (14 K*(V) = (@) RE(W) (@)™,
where
K*(A) = (@) VRE () (2) ™.
By (2.25), we have with 1/2 < 51 < —1/2,
(2.27) |[E=N)]| o r SCATL VA 0.
Hence, there exists A\g > 0 so that we have

(2.28) H (1+ Ki(/\))_l‘

< Const, Y>>\
1212
Thus, (2.22) follows from (2.25), (2.26) and (2.28). Moreover, if G has no strictly
positive resonances, (2.28) holds for any \g > 0. Therefore, in this case (2.22)
holds for any Ag > 0.

To prove (2.23) we will use that it holds for Gy in all dimensions, i.e.

—3/2—¢ dROi

(2.29) H(x) A (M) (z) ™32~ <CONT

L2—L2

for VA > 0, 0 < € < 1, with a constant C' > 0 independent of \. Let now n = 3.
Then (1.1) is fulfilled with § > 2. Differentiating (2.26) leads to the identity

+
(@)= T ) (14 KE)

+
(230) =) ) (@) RE ) @) ) T RO,
dA dA
Let 3/2 < s1 <0 —1/2. As above, we conclude that (2.28) still holds. Therefore,
(2.23) follows from (2.30) together with the estimates (2.22) and (2.29).
Let now n = 2. Then (1.1) is fulfilled with § > 3/2. We will first show
that (2.24) holds for the free operator Gy, i.e.

(2.31) ()17 (BT (M\2) — B3 (M) (@) 77| o2 SO A2 — M2,
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To this end, fix Ay > A1 and consider the operator-valued function
ME(z) = |2 — M| (@)Y (RE(\2) — RE(\1)) ()" Y/2777¢, zeC.

In view of (2.25), M*(z) is analytic in z for Rez > 0 with values in £(L?) and
satisfies the bounds

(2.32) | ME(2)|| 22 < CeBe2 0 < Rez <1,

with some constants C’,; A > 0 depending on A\; and Ay. Moreover, by (2.25) and
(2.29) we have

(2.33) 1M () 22 < ON

on Rez = 0 and Rez = 1, with a constant C' > 0 independent of z, A\; and As.
By (2.32), (2.33) and the Phragmen-Lindel6f principle we conclude that (2.33)
holds for 0 < Rez < 1. In particular, it holds for z = 1/2, which is equivalent to
(2.31).

In view of (2.26) we have the identity

(2)75 (RF(A2) — R*(\1)) (2) ' (1 4+ K= (\2))
= (2)7* (Ry (A2) — Ry (A1) ()™

(238) (@) REO)@) Y (@) VR — @) TR O0))

Let 1 < 81 < 6 —1/2. Then we have (2.28) with A\ = Ay, which together with
(2.22), (2.31) and (2.34) imply (2.24). O

3. Semi-classical L? estimates. In this section we will prove (2.1)
with p = p’ = 2. In fact, we will show that this estimate holds for all dimensions
and for a larger class of potentials. More precisely, we will prove the following

Theorem 3.1. Assume (1.1) fulfilled with 6 > 1. Then, there exist
constants C,a > 0 such that the following estimate holds

(3.1) Bt )| o go < Ch, W, 0<h <1.

Moreover, if in addition G has no strictly positive resonances, then (3.1) holds
for every a > 0.
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Proof. We begin by proving the following
Lemma 3.2. For every ¢ € C§°((0,+00)), we have

(3.2) ng WG — o(hy/Co) H e

Proof. Define the function ¢ € C§°((0,4+0)) by ¥(c?) = ¢(o). To
prove (3.2) we will make use of the Helffer-Sjostrand formula

o

(3.3) Y(h2G) = oz

= (2)(B*G — 2)71 L(dz),

where L(dz) denotes the Lebesgue measure on C, and ¢ € C5°(C) is an almost
analytic continuation of ¢ supported in a small complex neighbourhood of supp
and satisfying

< On[mzN, VYN >1.

Thus we have

| (R*G) = ¥ (h*Go)|| oo

o
5(2)

< O(h2)/c

(34) < On(h?) /C T2V (| (R2Go — 2) Y| a o [|(02G = 2) |2 (),
P

|(W*Go — 2) 'V (R*G = 2) 7| o 12 L(d2)

where Cy, = supp . Now (3.2) follows from (3.4) and the trivial bounds

(3.5) |(h*Go = 2)7 Y| a2 + ||(R°G < 2[Imz|7".

)7
We will derive now (3.1) from Lemma 3.2 and the following

Proposition 3.3. Assume (1.1) fulfilled with 6 > 1 and let ¢ €
C§°(la,+0)). Then, for every s > 1/2 there exist constants C,a > 0 such
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that the following estimates hold

o0 . 2
o) [ [@ e G|, dt < ClfE Vi Lo <nzl
—00

(3.7) /OO H<x>—seit@<p(h¢5)f(]; dt < Clf|2s, Vfel®0<h<l.

—00
Using Duhamel’s formula

B GE) - T G) = 2 (G0 — BV E))

VGo

_ [tsin((t = 7)VGo) VG .
(3.8) /O Ner 1% o(hWG)d
we obtain

NVCp(h/G) — ™D o (h/Go)

= (£1(VG) = (/o) ) Vo (V)

o1/ Go)e™ T (p(hVG) = p(hy/Go) )
(3.9) —ip1(h\/Gp) sin (t\/_) ( h\/_>

+ipy ( h\/— ) sin (t\/_) ( \/—)

/ &1(h/Go) sin ( (t—7 \/G_()) Ve”‘/ago(h\/a)dﬂ

where ¢1 € C§°([a,+00)) is such that v19 = ¢, @(0) = op(o), ¢1(0) =
o 1p1(0). For all nontrivial f,g € L2, in view of Lemma 3.2, Proposition 3.3
and (3.9), we have with 0 < s —1/2 < 1, Vy > 0,

[(@(t; 1), 9)| < OW*)IIfllz2llgll 2
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o) [~ (Ve Ea/Bs, (o) sin (1t - 7)v/Go) 1(h/Golg) | dr

—0o0

< O\ lz2llgll 2 + O(h)y /Z |- Conv@ys]|, ar

+0(h)y 7t / h

—00

H(x>_5 sin (T\/G_0> ng(h\/G_o)gHz2 dr

< O(W*)lIfllz2llgllz2 + Oh)YIIfI72 + Oh)y~ llgll7

(3.10) <OMflz2llglr2,

if we choose v = ||g||2/||f||z2, which clearly implies (3.1). O

Proof of Proposition 3.3. Without loss of generality we may sup-
pose that the function ¢ is real-valued. Denote by H the Hilbert space L?(R; L?).
Clearly, (3.7) is equivalent to the fact that the operator Ay, : L? — H defined by

(ARf) (z,t) = (2) e Co(h/G) f

is bounded uniformly in . Observe that the adjoint Aj : H — L? is defined by
ALf = / e TV (WG ()~ f (7, z)dr,

so we have, Vf,g € H,
(3.11) A fghe = [ ottt ) e,
where

plta) = [ o) S VOR G )5, i

—0o0

Hence, for the Fourier transform, p(\, x), of p(t,z) with respect to the variable ¢
we have

(3.12) AN ) = QN (A, ),
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where Q()) is the Fourier transform of the operator
(e) e OV G (@)

On the other hand, the formula

VG2 (h/G) = % / Z e (hA) (RT(N) — R™(A)) AdA
shows that

(3.13) Q) = (1) AR (hA) (@)™ (RF(A) = R™(N)) ()~
By (2.22) and (3.13) we conclude

(3.14) QN[ L2—r2 < C

with a constant C' > 0 independent of A and h. By (3.12) and (3.14),
(3.15) 1A Iz < CIF ) g2,

which together with (3.11) leads to

i gl =| [ (0090

<c[ 1Ozl ) A

o (o)
<m/nww%&+m*/uw»@w
— 00 — 00
(3.16) = Oyl 13+ Cr Mgl = 2017 dllg e

if we take v = ||g||%/|| fll#, with a constant C > 0 independent of h, f and g. It
follows from (3.16) that the operator Ay Aj : H — H is bounded uniformly in h,
and hence so is the operator Ay : L? — H. This proves (3.7). Clearly, (3.6) is
treated in the same way using (2.25) instead of (2.22). O
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