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Abstract. This paper presents a recursive method for the construction of
balanced n-ary block designs.

This method is based on the analogy between a balanced incomplete
binary block design (B.I.E .B) and the set of all distinct linear sub-varieties of
the same dimension extracted from a finite projective geometry. If V1 is the
first B.I.E .B resulting from this projective geometry, then by regarding any
block of V1 as a projective geometry, we obtain another system of B.I.E .B.
Then, by reproducing this operation a finite number of times, we get a
family of blocks made up of all obtained B.I.E .B blocks. The family being
partially ordered, we can obtain an n-ary design in which the blocks are
consisted by the juxtaposition of all binary blocks completely nested. These
n-ary designs are balanced and have well defined parameters. Moreover, a
particular balanced n-ary class is deduced with an appreciable reduction of
the number of blocks.
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Introduction. In this article, we propose a new method for the con-

struction of balanced n-ary block designs. Introduced by Tocher [13], these de-

signs generalize the construction of B.I.E .B. Tocher obtained some balanced

ternary designs from trial and error. After that, other construction methods of

n-ary blocks were suggested using a set of mutually orthogonal Latin squares [9],

α-resolvable balanced incomplete block designs [3] or the method of differences

[12]. Other methods of construction of balanced ternary designs can be found in

[2, 7, 8, 11] and balanced n-ary designs in [1, 5, 10]. We suggest here a method

based on the analogy between a balanced incomplete binary block design and the

set of all distinct linear sub-varieties of the same dimension extracted from a finite

projective geometry by using a Galois fields. It consists of a recursive diagram

resulting from a projective geometry from which we extract the set of all distinct

linear sub-varieties of the same dimension. Again, we reproduce this operation

with each sub-variety considered as a projective geometry of a lower dimension.

This repeated operation a finite number of times for each obtained sub-variety,

allows the construction of an n-ary design which blocks are consisted by the jux-

taposition of all binary blocks completely nested. This design is balanced and

each treatment can occur 0, 1, . . . or n−1 times in each block. The parameters of

this design are well defined and take a very simple form when dimensions of the

different extracted linear sub-varieties are in the form mj = m − j, j = 1, n − 1.

With the same approach, we deduce a particular class of n-ary designs by im-

posing that each treatment occurs 0, 1, q1, . . . , qs or n − 1 times in each block of

the final design, the integers q1, . . . , qs must be less than n − 1. These designs

are characterized by a relative reduction of the number of blocks, in particular

the n-ary designs which each treatment occurs at most 1 or n − 1 times in each

block.

I. Description of the method.

Definition 1. An n-ary block design is an arrangement of ν treatments

into b blocks, each of size k, such that every treatment is repeated r times and

occurs 0, 1, 2, . . . or n − 1 times in each block.

Let δij be Kronecker’s symbol, nij the number of times the ith treatment

occurs in the jth block and N = (nij)(v,b) the incidence matrix of the design.

The design is said to be balanced if the product of any two rows of the

incidence matrix N of the design is in the form: (µ − λ) .δil+λ, where µ =
b

∑

j=1
n2

ij
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and λ =
b

∑

j=1
nij.nlj are independent of the rows i and l (i 6= l).

In particular, balanced incomplete binary blocks designs are characterized

by the parameters (ν, b, k, r, λ) where λ is the number of occurrences which two

treatments are in the design.

One of construction methods of a B.I.E .B design consists of its identifica-

tion with a system of linear sub-varieties of an m-dimensional projective geometry

PG (m, pη) defined on a Galois fields of pη elements (cf. Dugué [4]). This analogy

consists to represent a treatment as a point of this geometry and a block as an

h-dimensional linear sub-variety (h < m), allowing to make the deduction of the

associated B.I.E .B parameters easier.

Description of the method

Let Vm be an m-dimensional projective geometry, the method consists

first to build the set of all m1-dimensional linear sub-varieties (m1 < m), which

a system of B.I.E .B (said of the 1st generation) noted {V (i1) : 1 ≤ i1 ≤ b1} cor-

responds. Then, we consider each sub-variety V (i1) of this system as an m1-

dimensional projective geometry, and we build all the m2-dimensional distinct

linear sub-varieties {V (i1, i2) : 1 ≤ i2 ≤ b2} (m2 < m1), contained in the sub-

variety V (i1). This system is identified as B.I.E .B design (said of 2nd generation).

Following this first operation, if we juxtapose all the nested sub-varieties V (i1)

and V (i1, i2), we obtain a system of ternary blocks

{V (i1) ∨ V (i1, i2) : 1 ≤ i2 ≤ b2 and 1 ≤ i1 ≤ b1}

where V (i1)∨V (i1, i2) is the juxtaposition of the sub-variety V (i1, i2) with its as-

cending V (i1). On the other hand, if we defer the operation of juxtaposition to a

later step, and we consider again each sub-variety V (i1, i2) as an m2-dimensional

projective geometry, we obtain in the same way a system of m3-dimensional dis-

tinct sub-varieties {V (i1, i2, i3) : 1 ≤ i3 ≤ b3} (m3 < m2), which determines a

system of B.I.E .B design (said of 3rd generation). In this step, if we juxtapose all

the strictly nested sub-varieties V (i1) ,V (i1, i2) and V (i1, i2, i3), we obtain a sys-

tem of balanced quaternary blocks made up of blocks V (i1)∨V (i1, i2)∨V (i1, i2, i3)

where 1 ≤ i3 ≤ b3, 1 ≤ i2 ≤ b2 and 1 ≤ i1 ≤ b1. Similarly, we obtain a balanced

n-any design by repeating (n − 1) times this extraction operation, and by jux-

taposing each final block V (i1, . . . , in−1) with all the stock blocks from where it

derives {V (i1, . . . , ij) : 1 ≤ j ≤ n − 2}. For example, a block of this n-ary design

is in the form V (i1)∨· · ·∨V (i1, . . . , ij)∨· · ·∨V (i1, . . . , in−1). By using the prop-
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erties of these sub-varieties, we determine the parameters ν, b(n), k(n), r(n), µ(n)

and λ(n) of this n-ary block design denoted by Pn

(

ν, b(n), k(n), r(n), µ(n), λ(n)
)

.

The parameters b(n) and k(n) are easily deduced and given by

b(n) =
n−1
∏

j=1
bj, k(n) =

n−1
∑

j=1
kj ,

where bj (resp. kj) is the number of blocks of each B.I.E .B of the jth generation

(resp. the size of bj). The determination of parameters r(n), µ(n) and λ(n) requires

the following result:

Proposition 1. i) The number of distinct m1-dimensional linear sub-

varieties contained in Vm not passing through a given point is : b1 − r1.

ii) The number of distinct m1-dimensional linear sub-varieties contained in Vm

passing through a point t1 and not through another t2 is : r1 − λ1.

iii) The number of distinct m1-dimensional linear sub-varieties contained in Vm

not passing neitheir through t1 nor through t2 is : b1 − 2r1 + λ1.

P r o o f. The results i) and ii) are directly obtained from the definition

of the B.I.E .B′s parameters corresponding to the system of the m1-dimensional

distinct sub-varieties {V (i1) : 1 ≤ i1 ≤ b1}. Concerning the conclusion iii), seeing

that the number of m1-dimensional linear sub-varieties containing t1 or t2 is equal

to the power of the party:

{i1 : {t1, t2 ∈ V (i1)} or {t1 ∈ V (i1) , t2 /∈ V (i1)} or {t1 /∈ V (i1) , t2 ∈ V (i1)}} ,

(i.e. λ1 +2 (r1 − λ1)). So it is then easy to deduce the number of m1-dimensional

linear sub-varieties not containing neitheir t1 nor t2. �

Theorem 1. The designs Pn

(

ν, b(n), k(n), r(n), µ(n), λ(n)
)

are balanced

n-ary designs with the parameters:

r(n) =
n−1
∑

j=0
j. (bj+1 − rj+1) ×

[

n−1
∏

l=j+2

bl

]

×

[

j
∏

l=1

rl

]

,

µ(n) =
n−1
∑

j=0
j2. (bj+1 − rj+1) ×

[

n−1
∏

l=j+2

bl

]

×

[

j
∏

l=1

rl

]

,

and

λ(n) =
n−2
∑

j=1
2j. [rj+1 − λj+1] .

j
∏

l=1

λl ×
n−1
∑

i=j+1
i. (bi+1 − ri+1) .

i
∏

l=j+2

rl.
n−1
∏

l=i+2

bl

+
n−1
∑

j=1
j2. [bj+1 − 2rj+1 + λj+1] .

j
∏

l=1

λl.
n−1
∏

l=j+2

bl
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with
i

∑

l=j+2

rl = 1 if j+1 ≥ i,
n−1
∏

l=q

bl = 1 if q ≥ n, bn−rn = 1 and bn−2rn+λn = 1

where rj (resp. λj) is the number of repetitions of a treatment (resp. the number

of occurrences of any two treatments) in a B.I.E .B of the jth generation.

P r o o f. The final design Pn is an n-ary design. Indeed, if an arbitrary

treatment t belongs to the sub-variety V (i1, . . . , ij) where j ≤ n − 2, then from

one side, t belongs to all the ascending V (i1, . . . , il) (1 ≤ l ≤ j − 1) of this sub-

variety, and from the other side, it is transmitted to certain of its descendants

V (i1, . . . , ij , ij+1, . . . , in−1), which shows that this treatment will occur (n − 1)

times in certain blocks of the design Pn. However, if this treatment isn’t trans-

mitted to a descendant V (i1, . . . , ij , ij+1) of V (i1, . . . , ij), then t is missing from

all its descendants V (i1, . . . , il) (j + 1 ≤ l ≤ n − 1), and then this treatment will

occur exactly j times in the final block. On the other hand, if this treatment is

missing from a sub-variety V (i1), it will be missing from all its descendants and

could not occur in any block resulting from V (i1). This confirms that the system

Pn is an n-ary design. Determination of the parameters of Pn.

Concerning the parameter r(n) =
b(n)
∑

j=1
nij, we can rewrite it in the form

r(n) =
n−1
∑

j=0

∑

l∈Ij

nil

where Ij =
{

l ∈
{

1, . . . , b(n)
}

/nil = j
}

for each j ∈ {0, 1, . . . , n − 1}, and has as

power the number of blocks where a treatment t exactly occurs j times, (the par-

ties Ij are disjointed and their union is
{

1, . . . , b(n)
}

). For an arbitrary treatment

t, we have to evaluate the number of blocks of the design Pn where this treatment

occurs j times.

The number of blocks where the treatment t is missing can be described by the

party A (t, 0) = {(i1) ∈ {1, . . . , b1} / t /∈ V (i1)}, and the blocks where this treat-

ment occurs n − 1 times are described by the party

A (t, n − 1) = {(i1, . . . , in−1) / t ∈ V (i1, . . . , in−1)} , which confirms that the treat-

ment t belongs to all the ascending of the sub-variety V (i1, . . . , in−1). The blocks

where the treatment t occurs j times (1 ≤ j ≤ n − 2), can be described by the

party:

A (t, j) =







(i1, . . . , ij) ∈
j
∏

l=1

{1, . . . , bl} / there exists ij+1 ∈ {1, . . . , bj+1} ,

t ∈ V (i1, . . . , ij) and t /∈ V (i1, . . . , ij+1)







.
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The hypothesis t /∈ V (i1, . . . , ij+1) implies that this treatment can’t occur in all

the descendants of V (i1, . . . , ij+1), whereas the hypothesis t ∈ V (i1, . . . , ij) im-

plies that this treatment t necessarily belongs to all the ascending of V (i1, . . . , ij),

thus this treatment will exactly occur j times in certain blocks of Pn :

V (i1) ∨ · · · ∨ V (i1, . . . , ij) ∨ V (i1, . . . , ij+1) ∨ · · · ∨ V (i1, . . . , in−1) .

An easy calculation allows the evaluation of the power of each of these parties,

so we can deduce the value of the parameter r(n), and similarly µ(n).

Concerning the parameter λ(n), this one can be rewritten in the form:

λ(n) =
n−1
∑

j=0

∑

l′∈Ij,j

nil′ .nll′ + 2
n−2
∑

j=0

n−1
∑

j′=j+1

∑

l′∈Ij,j′

nil′ .nll′ ,

where for j′ ≥ j + 1, Ij,j′ =
{

l′ ∈
{

1, . . . , b(n)
}

/nil′ = j and nll′ = j′
}

describes

the set of blocks where the treatments t and t′ occur exactly j times together.

Let’s evaluate the number of blocks of the final design where these two treatments

occur j times together for j = 0, 1, . . . , n − 1.

i) For j′ ≥ 0, the party B (t, t′; 0, j′) of {1, . . . , b1} such as t′ /∈ V (i1) and

either t /∈ V (i1) , either t ∈ V
(

i1, . . . , ij′
)

\V
(

i1, . . . , ij′+1

)

, describes the blocks

where the treatments don’t occur together.

ii) For j′ ≥ j and j = 1, n − 2, we consider the party B (t, t′; j, j′) of
∏j

l=1 {1, . . . , bl}, defined by :

(i1, . . . , ij) ∈ B (t, t′; j, j′) ⇐⇒ ∃
(

ij+1, ij′
)

∈ {1, . . . , bj+1} ×
{

1, . . . , bj′
}

and

such that, either {t, t′ ∈ V (i1, . . . , ij) and t, t′ /∈ V (i1, . . . , ij+1)}, either
{

t′ ∈ V (i1, . . . , ij) and t′ /∈ V (i1, . . . , ij+1) , t ∈ V
(

i1, . . . , ij , . . . , ij′
)

and

t /∈ V
(

i1, . . . , ij′+1

)}

. This party describes the set of the blocks of the design

Pn where t and t′ occur exactly j times together.

iii) For j = j′ = n−1, the party B (t, t′;n − 1, n − 1) characterized by the

n − 1 tuples (i1, . . . , in−1) such that t, t′ ∈ V (i1, . . . , in−1), describes the blocks

where the treatments t and t′ occur (n − 1) times together. Using the result of

the proposition 1, we determine the power of each of these parties, and then we

deduce the value of the parameter λ(n).

The parameters λ(n) and µ(n) are constant, this confirms that the n-ary

design Pn is balanced. �

If the dimensions mj of the sub-varieties V (i1, . . . , ij) of the jth generation

are in the form mj = m − j : j = 1, n − 1 and n − 1 < m, then the B.I.E .B′s
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parameters of the jth generation are reduced to:

bj = 1 + s + · · · + sm−(j−1) where s = pn (the power of Galois fields)

and

rj = kj = λj−1 = bj+1,

which allows to write the parameters of the design Pn in a simpler form.

Corollary 1. If for each j ∈ {1, . . . , n − 1} the dimension mj of the

sub-variety V (i1, . . . , ij) of the jth generation is equal to mj = m − j, then the

parameters of the n-ary design Pn are in the form:

r(n) =
n−2
∏

l=1

rl.
n−2
∑

j=0
j. (rj − rj+1) + (n − 1)

n−1
∏

l=1

rl,

µ(n) =
n−2
∏

l=1

rl.
n−2
∑

j=0
j2. (rj − rj+1) + (n − 1)2 .

n−1
∏

l=1

rl,

and

λ(n) =
n−3
∏

l=1

λl.
n−3
∑

j=1
2j. (λj − λj+1)

{

n−1
∑

i=j+1
i. (λi−1 − λi)

}

+
n−3
∏

l=1

λl.
n−2
∑

j=1
j2λj (λj−1 − 2λj + λj+1)

+ (n − 1) [2 (n − 2) . (λn−2 − λn−1) + (n − 1) .λn−1] .
n−2
∏

l=1

λl,

where λ0 = b2.

Example. In a PG (3, 2) there are 15 distinct 2-dimensional sub-varieties.

Each sub-variety corresponds to a block entirely determined by one of the equa-

tions:

a1x1 + a2x2 + a3x3 + a4x4 = 0 mod (2)

the ai ∈ GF (2) (the Galois fields of 2 elements), and each point p is defined by

its 4 components (x1, x2, x3, x4). The parameters of the resulting B.I.E .B system

are:

v = b1 = 15, r1 = k1 = 7 and λ1 = 3.

Again, each block which is considered as a 2-dimensionnal linear sub-variety,

provides a new B.I.E .B (7, 7, 3, 3, 1) system of the 2nd generation, these blocks

are entirely determined by the system of equations:
{

a1x1+a2x2+a3x3+a4x4=0 mod(2)
α1x1+α2x2+α3x3+α4x4=0 mod(2)

,where the coefficients ai and αi ∈ GF (2).
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For example, the block b1:{p2, p3, p4, p8, p9, p10, p14} provides the B.I.E .B(7, 7, 3, 3, 1)

defined by the system of equations:
{

x1 = 0 mod(2)
α2x2 + α3x3 + α4x4 = 0 mod(2)

.

In a similar way, we determine the other B.I.E .B (7, 7, 3, 3, 1) sets of the 2nd

generation. Then, by juxtaposing each block bj with each one of its descendants

bj,l l = 1, 7 and j = 1, 15, we obtain the ternary design P3 characterized by the

parameters : ν = 15, b(3) = 105, r(3) = 70, k(3) = 10 and λ(3) = 42. The entries

of the matrix N.tN are µ = 112 on the diagonal and λ = 42 otherwise, where N

is the incidence matrix.

Construction of particular n-ary designs

Generally, the design Pn contains an important number of blocks for large

values of m. However, using certain restrictions, it is possible to substantially

reduce the number of blocks, by imposing for example that each treatment oc-

curs 0, 1, q1, . . . , qs or n − 1 times, where the (qi) are strictly increasing. This is

equivalent to extract the particular balanced n-ary design from the design Pn.

In a precise way, we have:

Proposition 2. For each sequence (q1, . . . , qs) of integers such that

1 = q0 < q1 < · · · < qs < n − 1, there exists a balanced n-ary design Qn in

which each treatment occurs 0, 1, q1, . . . , qs or n− 1 times. This design is entirely

determined by the parameters
(

ν, b′(n), r′(n), k(n), λ′(n)
)

where k(n) is the same as

above and

b′(n) = (b1 − r1) .
n−1
∏

j=2
bj +

s
∑

l=0

ql
∏

j=1
rj. (bql+1 − rql+1) .

n−1
∏

j=ql+2
bj +

n−1
∏

j=1
rj ,

r′(n) =
s

∑

l=0

ql

ql
∏

j=1
rj. (bql+1 − rql+1) .

n−1
∏

j=ql+2
bj + (n − 1)

n−1
∏

j=1
rj ,

µ′(n) =
s

∑

l=0

q2
l

ql
∏

j=1
rj. (bql+1 − rql+1) .

n−1
∏

j=ql+2
bj + (n − 1)2

n−1
∏

j=1
rj

and

λ′(n) =
s

∑

τ=0
q2
τ .

qτ
∏

j=1
λj . (bqτ+1 − 2rqτ+1 + λqτ+1) .

n−1
∏

j=qτ+2
bj

+ 2
s

∑

τ=0
qτ .qτ ′ .

qτ
∏

j=1
λj . (rqτ+1 − λqτ+1) .

qτ ′
∏

j=qτ+2
rj.

(

bqτ ′+1 − rqτ ′+1

)

.
n−1
∏

j=qτ ′+2
bj

+ 2 (n − 1)
s

∑

τ=0
qτ

qτ
∏

j=1
λj . (rqτ+1 − λqτ+1) .

n−1
∏

j=qτ+2
rj + (n − 1)2

n−1
∏

j=1
λj .
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P r o o f. A block of the design Qn is in the form V (i1)∨· · ·∨V (i1, . . . , in−1),

in which an arbitrary treatment occurs 0, 1, q1, . . . , qs or n−1 times. These blocks

are entirely described by one of the following parties:

A (t, 0) = {i1 ∈ {1, . . . , b1} /t /∈ V (i1)} ,

and for l : 0 ≤ l ≤ s, with q0 = 1,

A (t, ql) =







(i1, . . . , iql
) ∈

ql
∏

u=1
{1, . . . , bu} /∃iql+1 ∈ {1, . . . , bql+1} ,

t ∈ V (i1, . . . , iql
) and t /∈ V (i1, . . . , iql+1)







,

and

A (t, n − 1) = {(i1, . . . , in−1) /t ∈ V (i1, . . . , in−1)} .

An easy calculation provides the number b′(n) of all these blocks on the one

hand, and on the other hand, so that a treatment t don’t belong to a block

of the design Qn, it’s necessary that this treatment is missing from the sub-

variety V (i1) (i.e. i1 ∈ A (t, 0)). In contrast, it is sufficient that (i1, . . . , iql
) ∈

A (t, ql) so that it occurs ql times, and it is necessary to retain only the blocks

V (i1) ∨ · · · ∨ V (i1, . . . , in−1), for which t ∈ V (i1, . . . , in−1) , so that it exactly

occurs (n − 1) times. This confirms that this design is an n-ary design.

The values of the parameters r′(n) and µ′(n) are easily deduced. Concerning the

parameter λ′(n), considering the configuration of the design Qn, we note that two

arbitrary treatments t and t′ occur 0, 1, q1, . . . , qs or n − 1 times together in a

block of this design. These blocks are entirely described by one of the following

parties:

(a) B
(

t, t′; 0, 0
)

=
{

i1 ∈ {1, . . . , b1} /t or t′ /∈ V (i1)
}

,

(b) for l = 0, 1, . . . , s with q0 = 1,

B
(

t, t′; ql, ql

)

=







{i1, . . . , iql
} ∈

ql
∏

u=1
{1, . . . , bu} /∃iql+1 ∈ {1, . . . , bql+1} ,

t, t′ ∈ V (i1, . . . , iql
) and t, t′ /∈ V ({i1, . . . , iql+1})







,

(c) for 0 ≤ l′ < l ≤ s,

B
(

t, t′; ql, ql′
)

=















{

i1, . . . , iql′

}

∈
ql′
∏

u=1
{1, . . . , bu} /∃iql′+1 ∈

{

1, . . . , bql′+1

}

,

t′ ∈ V
(

i1, . . . , iql′

)

and t′ /∈ V
(

i1, . . . , iql′+1

)

and
t ∈ V (i1, . . . , iql

) and t /∈ V (i1, . . . , iql+1)















,
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(d) for 0 < l ≤ s,

B
(

t, t′;n − 1, ql

)

=

{

{i1, . . . , iql
} /∃iql+1 ∈ {1, . . . , bql+1} , t′ ∈ V (i1, . . . , iql

)

and t′ /∈ V (i1, . . . , iql+1) and t ∈ V (i1, . . . , in−1)

}

,

and

(e) B
(

t, t′;n − 1, n − 1
)

=
{

{i1, . . . , in−1} /t, t′ ∈ V (i1, . . . , in−1)
}

.

So, the number of blocks V (i1) ∨ · · · ∨ V (i1, . . . , in−1) where for example t and

t′ occur qτ times together (0 ≤ τ ≤ s) is the sum of the powers of the parties

B (t, t′; qτ , qτ ) , B (t, t′; qτ ′ , qτ ) , (τ ′ > τ) and B (t, t′;n − 1, qτ ) respectively mul-

tiplied by the coefficients 1, 2 and 2, taking into account the symmetrical role

of the two treatments t and t′. Then, an elementary calculation provides the

value of λ′(n). Moreover, these parameters are independent of the treatments;

this confirms that the design Qn is balanced. �

A particular n-ary design resulting from the previous design Qn in the n-

ary design in which each treatment occurs 0, 1 or (n − 1) times, which corresponds

to omit the sequence (q1, . . . , qs) .

Corollary 2. There exists a balanced n-ary design Rn in which each

treatment occurs 0, 1 or (n − 1) times. This design is entirely determined by the

parameters
(

ν, b
′′(n), r

′′(n), k(n), λ
′′(n)

)

where k(n) is the same as above and

b
′′(n) = (b1 − r1) .

n−1
∏

j=2
bj + r1 (b2 − r2) .

n−1
∏

j=3
bj +

n−1
∏

j=1
rj,

r
′′(n) = r1 (b2 − r2) .

n−1
∏

j=3
bj + (n − 1) .

n−1
∏

j=1
rj ,

µ
′′(n) = r1 (b2 − r2) .

n−1
∏

j=3
bj + (n − 1)2 .

n−1
∏

j=1
rj ,

and

λ
′′(n) = λ1 (b2 − 2r2 + λ2) .

n−1
∏

j=3
bj + 2 (n − 1) .λ1 (r2 − λ2)

n−1
∏

j=3
rj + (n − 1)2

n−1
∏

j=1
λj .

The number of blocks in the design Rn is relatively smaller than that of

design Pn.

Finally, we finish by the following result which is the analogy of the Corol-

lary 1:
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Corollary 3. If the dimension of the sub-varieties V (i1, . . . , ij) of the

jth generation is equal to mj = m − j, then the parameters of the n-ary design

Q∗

n are in the form:

b∗(n) = (b1 − b2)
n−1
∏

j=2
bj +

n−1
∏

j=2
bj

s
∑

l=0

(bql+1 − bql+2) +
n−1
∏

l=1

bj+1,

r∗(n) =
n−2
∏

j=1
rj.

s
∑

l=0

ql. (rql
− rql+1) + (n − 1)

n−1
∏

j=1
rj,

µ∗(n) =
n−2
∏

j=1
rj .

n−2
∑

l=0

q2
l . (rql

− rql+1) + (n − 1)2 .
n−1
∏

j=1
rj ,

and

λ∗(n) =
n−3
∏

j=1
λj.

s
∑

τ=0
q2
τ .λqτ (λqτ−1 − 2λqτ + λqτ+1)

+ 2
n−3
∏

j=1
λj .

s
∑

τ=0
qτ .qτ ′ . (λqτ − λqτ+1) .

(

λqτ ′−1 − λqτ ′

)

+ 2 (n − 1)
n−2
∏

j=1
λj .

s
∑

τ=0
qτ . (λqτ − λqτ+1) + (n − 1)2 .

n−1
∏

j=1
λj

where λ0 = b2 and bn = rn−1.
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