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1. Introduction. The study of nonselfadjoint operators is based on
the methods of the characteristic functions and its development began with the
works of M. S. Livšic [19] and his associates in 1950’s [6, 5] and later that of I.
Gohberg, M. Krein, B. Sz. Nagy, C. Foias, L. de Branges, J. Rownyak [8, 23,
3, 4], M. S. Livšic, V. Vinnikov [21, 29] at al. Later on M. S. Livšic and A. A.
Yantsevich in their book [22] proposed an interesting idea for an investigation of
continuous curves (in particular of random processes) with the help of the theory
of the nonselfadjoint operators and their characteristic functions. This idea was
expanded and developed in the work of K. Kirchev, V. Zolotarev [11, 14, 15] at al.
The essence of the theory, created from M. S. Livšic, is the connection between
the theory of the nonselfadjoint operators and the theory of the bounded analytic
functions on the upper half-plane and it considers mostly operators in a Hilbert
space with a finite dimensional or trace class imaginary part.

The matrix function

W (λ) = IE − iPE(A− λI)−1PEL

is called a characteristic function of a bounded operator A : H −→ H with

dim(A − A∗)H < ∞, where E = (A − A∗)H, L =
1

i
(A − A∗)|E and Φ = PE is

the orthogonal projector of the Hilbert space H onto E. W (λ) is defined and
analytic in the set of all regular points of A, analytic in a neighbourhood |λ| > a
of λ = ∞, W (∞) = I and W (λ) possesses the metric properties

(1.1)

W ∗(λ)LW (λ) ≥ L (Imλ > 0),

W ∗(λ)LW (λ) = L (Imλ = 0),

W ∗(λ)LW (λ) ≤ L (Imλ < 0)

for a regular point λ of the operator A. In other words to every bounded operator
A in a Hilbert space with a finite dimensional imaginary part there corresponds a
matrix valued function which characterizes this operator up to an unitary equiv-
alence on the principal subspace of A.

More generally the characteristic function of A : H −→ H can be intro-
duced in the form

W (λ) = I − iΦ(A− λI)−1Φ∗L

by the so called operator colligation X = (A;H,Φ, E;L), where E is a Hilbert
space, Φ : H −→ E and L : E −→ E are bounded linear operators with L∗ = L
and (A−A∗)/i = Φ∗LΦ.
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As an arbitrary finite matrix can be presented in a triangular form by a
corresponding unitary mapping analogous problem can be solved for classes of
nonselfadjoint operators. The operators from these classes are presented in the
so called triangular models using unitary mappings. The study of these models
may give much information about the original operators.

The main point of this investigations is the relation between the invariant
subspaces of the operator A and the factorizations of the characteristic function
W (λ) (given by Potapov’s factorization theorem).

The methods and results of the operator colligation theory have important
applications not only in the investigations of various classes of linear nonselfad-
joint operators, but also in the scattering theory, in the theory of nonstationary
random processes or more generally in the theory of the continuous curves g(t)
in a Hilbert space H:

g(t) = eitAf (f ∈ H).

The obtaining of the asymptotic behaviour of the nonstationary curves, generated
by classes of nonselfadjont operators, allows us to construct a scattering theory
for the couple (A∗, A), where A is an operator from a given class.

An analogous theory can be developed for unbounded operators.
The class of the unbounded operators possesses richer properties than

the class of the bounded nonselfadjoint operators. But the problems, considered
in [6, 22, 11, 14, 15, 29, 12] for the bounded case, concerning triangular models,
characteristic functions, continuous curves, their asymptotics, their corresponding
correlation functions in a connection with the spectral properties of the operators
are too complicated in the unbounded case.

Triangular models, characteristic functions of unbounded operators are
considered by A. V. Kuzhel [16, 17, 18], operator colligations and characteristic
functions are considered by A. G. Rutkas [26], triangular models and nondissipa-
tive curves are considered by the authors in [13].

Note that models of various classes of nonselfadjoint linear operators were
constructed by different methods. Sometimes it is possible to construct different
models of the same class of operators adapted to the solution of various particular
problems.

In our applications in the scattering theory we use the so called time-
dependent method – in other words in a time-dependent approach one deals with
the asymptotic behaviour of Tt = eitA more or less directly.

The class of characteristic functions, introduced for bounded operators A
by M. S. Livšic and M. S. Brodskii [19, 6, 20], and for unbounded densely defined
operators A by A. G. Rutkas [26], with the help of the channel representations
of the imaginary part ImA of A or operator colligations is more general than the
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class of characteristic functions for the operator A from [17, 18] or [28]. But the
functions from [17, 18] and [28] can be used for closed unbounded operators A
with nonempty resolvent set ρ(A).

In this paper we present wide classes of Kr-operators (i. e. closed opera-
tors A in a Hilbert space with an Hermitian part of A with deficiency index (r, r)
(0 < r <∞) and a nonempty resolvent set).

We present the classes of nondissipative operators Ω̃R (part 2, part 3) and

Λ̃R (part 4, part 5), their triangular models, corresponding continuous curves,
their asymptotics, correlation functions and an application in the scattering the-
ory, considered by the authors in [1, 12, 2, 13]. The operators from Ω̃R and Λ̃R

are classes of Kr- operators with r dimensional imaginary parts and equal do-
mains of the operator and its adjoint. In other words following the denotations
of A. Kuzhel ([18]) we have Ω̃R, Λ̃R ⊂ Kr

I .
We present also the continuation of these investigations for a class of un-

bounded dissipative Kr-operators A with domains DA 6= DA∗ concerning analo-
gous problems as in the cases of Ω̃R and Λ̃R (part 6).

The class Ω̃R describes the class of all bounded nondissipative operators
A in a Hilbert space with a finite dimensional imaginary part and presented as a
coupling of a dissipative operator and an antidissipative one with real absolutely
continuous spectra. The class Λ̃R describes the class of all unbounded nondis-
sipative operators A in a Hilbert space with a dense domain DA = D∗A, with
a finite dimensional imaginary part and presented as a coupling of a dissipative
operator and an antidissipative one with real absolutely continuous spectra. We
introduce the next triangular models

(1.2)

Af(x) = α(x)f(x) − i

x∫

0

f(ξ)Π(ξ)S∗Π∗(x)dξ+

+i

l∫

x

f(ξ)Π(ξ)SΠ∗(x)dξ + i

x∫

0

f(ξ)Π(ξ)LΠ∗(x)dξ

for f ∈ L2(0, l; Cn), L = J1 − J2 + S + S∗, α(x) is a bounded nondecreasing
function in [0, l] (see part 2) and

(1.3)

Af(x) = α(x)f(x) + i

x∫

−∞

f(ξ)Π(ξ)(J1 − J2)Π
∗(x)dξ+

+i

+∞∫

−∞

f(ξ)Π(ξ)SΠ∗(x)dξ
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for f ∈ DA ⊂ L2(R; Cn), L = J1−J2+S+S∗, α(x) is an unbounded nondecreasing

function in R (see part 4), describing the classes Ω̃R and Λ̃R correspondingly up
to an unitary equivalence on the principal subspaces. (The selfadjoint matrix
L : C

m −→ C
m and n×m matrix function Π(x) satisfy appropriate conditions –

see part 2 and part 4 correspondingly.) We define in an appropriate way families
of operators and prove their properties which present these families as semigroups
of operators from the class (C0). The families Tt = eitA (t ≤ 0, t ≥ 0), where A has
the form (1.2), are semigroups of operators from the class (C0) with generators

from Ω̃R (see part 2, part 3).
The families

(1.4)
Ttf = − 1

2πi

+∞∫

−∞

(eit(ξ−iδ)((A− (ξ − iδ)I)−1f−

−eit(ξ+iδ)(A− (ξ + iδ)I)−1f)dξ

(t > 0, t < 0), where the integral on the right hand side of (1.4) is in the sense of
a principal value and A has the form (1.3), are semigroups of operators from the

class (C0) with generators from Λ̃R (see part 4, part 5).
These semigroups determine the exponential function by the equalities

eitA = Tt and generate continuous curves eitAf for the models (1.2) and (1.3).
The asymptotics of the curves eitAf with A from the form (1.2) are given

by the next theorem (see part 2):

Theorem 1.1. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold: 1) the function α : [0; l] −→ R satisfies (i), (ii), (iii) (page
112);

2) Q∗(x) is a smooth matrix function on [0; l];
3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).

Then the curve eitAf(x) for each f ∈ H0 after the change of the variable x = σ(u)
satisfies the relation

(1.5)
∥∥eitAf(σ(u)) − eituS±f(σ(u))

∥∥
L2 → 0

as t→ ±∞.

H0 is a suitable subspace of f ∈ L2(0, l; Cn) and in the relation (1.5) we
have used the next denotations

(1.6)
S±f(σ(u)) =

= (Ŝ±f(σ(u)))T±Π(σ(u))(J1|t|i eB1(u)J1 + J2|t|−i eB2(u)J2)Q(σ(u)),
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(1.7) S̃±f(σ(u)) = (Ŝ±f(σ(u)))T±,

(1.8) Ŝ±f = S̃11f + S̃22f + S̃±12f,

(1.9) S̃kkf(σ(u)) =

u∫

a

f̃ ′(w)

w
←∫

a

e
(−1)k+1i eBk(v)

v−u
dvdwJk, k = 1, 2,

(1.10) S̃±12f(σ(u)) = −
b∫

a

f̃ ′(w)F̃∓w (u, b)dwS,

(1.11)
T±h = h

(
J1U2a(u)(u − a)i

eB1(u)e∓
π
2
eB1(u)Γ−1(I + iB̃1(u))J1 +

+ J2Ũ2a(u)(u− a)−i eB2(u)e±
π
2
eB2(u)Γ−1(I − iB̃2(u))J2

)
Π∗(σ(u))

for each f ∈ H0 and each h ∈ C
m. (The operators F̃±w (u, b), U2a(u), Ũ2a(u) are

denoted in part 2 with the help of multiplicative integrals. ) The asymptotics of
the curves Ttf = eitAf with A from the form (1.3) (when α(x) = x) are presented
by the next theorem (see part 4):

Theorem 1.2. Let for the model A defined by (4.35) the next conditions
hold:

1) ‖Q∗′(x)‖ ∈ L2(R), ‖Q∗′(x)‖ ≤ C;
2) B(x) ∈ Cα1(R) (0 < α1 ≤ 1).

Then the curve Ttf has the next asymptotics for each f ∈ S(R; Cn)

(1.12) ‖Ttf(x) − eitxS±f(x)‖L2 → 0

as t→ ±∞, where

(1.13) S±f(x) = (Ŝ±f(x))T±Π(x)(J1|t|iB1(x)J1 + J2|t|−iB2(x)J2)Q(x)

(1.14) Ŝ±f = S̃11f + S̃22f + S̃±12f,
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(1.15)

S̃kkf(x) =

x∫

−∞

f̃ ′(w)

w
←∫

−∞

e
(−1)k−1iBk(v)

v−x
dvdwJk, k = 1, 2,

S̃±12f(x) = −
+∞∫

−∞

f̃ ′(w)F̃∓w (x,+∞)dwS,

for each f ∈ S(R; Cn),

(1.16)
T±h = h

(
J1V−∞(x)e∓

π
2
B1(x)Γ−1(I + iB1(x))J1 +

+ J2Ṽ−∞(x)e±
π
2
B2(x)Γ−1(I − iB2(x))J2

)
Π∗(x) (h ∈ C

m).

and f̃(w) is defined by (4.45).

Here the operators F̃±w (x,= ∞), V−∞(x), Ṽ−∞(x) are defined in part 4
with the help of multiplicative integrals. We present the case, when α(x) = x,
to avoid the complications of the writing. The case of an arbitrary unbounded
nondecreasing function α(x) can be considered analogously after a suitable change
of the variable.

The obtaining of the asymptotics of the corresponding continuous curves
eitAf allows to construct a scattering theory for the couples (A∗, A) and solve
the basic problems from the scattering theory concerning the similarity of A and
A∗, of A and the operator of a multiplying by an independent variable (see part
3, part 5).

The solutions of these problems is based on the obtaining of the form and
the existence of the wave operators for the couples (A∗, A) as strong limits. The
next two theorems describe the wave operators for the couple (A∗, A) in the case

when A ∈ Ω̃R (see part 3).

Theorem 1.3. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold

1) the function α : [0; l] −→ R satisfies (i), (ii), (iii) (page 112);
2) Q∗(x) is a smooth matrix function on [0; l];
3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).

Then there exist the limits

(1.17) lim
t→±∞

(eitA
∗

e−itAf, g) = (S̃∗∓S̃∓f, g)

for all f , g ∈ L2(0, l; Cn) and the operator A satisfies the equalities

(1.18) S̃∗±S̃±A = S̃∗±QS̃±
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onto L2(0, l; Cn) after the change of the variable x = σ(u) where Qf(σ(u)) =
f(σ(u))u.

Theorem 1.4. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold

1) the function α : [0; l] −→ R satisfies (i), (ii), (iii) (page 112);
2) Q∗(x) is a smooth matrix function on [0; l];
3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).

Then there exist the limits

s− lim
t→±∞

eitA
∗

e−itA

on L2(0, l; Cn).

The analogous results concerning wave operators for the couple (A∗, A)

when A ∈ Λ̃R are obtained in the theorems (see part 5):

Theorem 1.5. Let for the model A ∈ Λ̃R, defined by (4.35), the next
conditions hold:

1) ‖Q∗′(x)‖ ∈ L2(R), ‖Q∗′(x)‖ ≤ C;
2) B(x) ∈ Cα1(R) (0 < α1 ≤ 1).

Then there exist the limits

(1.19) lim
t→±∞

(eitA
∗

e−itAf, g) = (S̃∗∓S̃∓f, g)

for all f, g ∈ L2(R; Cn) and the operator A satisfies the equalities

(1.20) S̃∗±S̃±A = S̃∗±QS̃±

onto S(R; Cn), where Qf(x) = xf(x) and S̃± are defined by (4.55).

Theorem 1.6. Let for the model A ∈ Λ̃R, defined by (4.35), the next
conditions hold:

1) ‖Q∗′(x)‖ ∈ L2(R), ‖Q∗′(x)‖ ≤ C;
2) B(x) ∈ Cα1(R) (0 < α1 ≤ 1).

Then there exist the strong limits s− lim
t→±∞

eitA
∗
e−itA onto L2(R; Cn).

It is worthwhile to mention that for the considered classes Ω̃R and Λ̃R the
analytical solution of the problems, presented in [14, 15, 12], is obtained using
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the characteristic function of M. S. Livšic (see part 2, part 4). It is presented
with the help of the multiplicative integrals from the form

l
→∫

0

ei
T (v)
v−λ

dv and

+∞
→∫

−∞

ei
T (v)
v−λ

dv

(T (v) is a nonnegative (nonpositive) matrix function) and the multiplicative in-
tegrals from these forms take part in the representations of the operators (1.5)
and (1.13), describing the asymptotics of the corresponding continuous curves

(see part 2 and part 4). Moreover the results for the bounded operators from Ω̃R

and the unbounded operators A from Λ̃R with domains DA = DA∗ are close each
other.

A natural continuation of these investigations is the consideration of the
class of Kr-operators A with domains DA 6= DA∗ . In part 6 of this paper we
present the class of dissipative Kr-operators A with domains DA 6= DA∗ and
solve analogous problems as in the cases of the classes Ω̃R and Λ̃R. For the
triangular model of A. Kuzhel ([18])

(1.21)

Af(x) = α(x)f(x)+

+i
x∫
−∞

f(ξ)(α(ξ) + i)Π(ξ)

x
→∫

ξ

eiα(v)B(v)dvΠ∗(x)(α(x) − i)dξ

(where α : R −→ R is an unbounded nondecreasing function, the matrix functions
Π(x), B(x) = Π∗(x)Π(x) satisfy appropriate conditions) describing the class of all
unbounded dissipative Kr-operators with domain DA ⊂ L2(R; Cn), DA 6= DA∗

and with real spectrum, we define a family of operators

(1.22) Ttf(x) = − 1

2πi

+∞∫

−∞

eit(ξ−iδ)(A− (ξ − iδ)I)−1f(x)dξ

(t > 0) in a sense of a principal value in a suitable subset of L2(R; Cn) (see part
6). After proving of the properties of the family (1.22), showing that this family
is a semigroup from the class (C0), we obtain the asymptotics of the continuous
curves, defined by the equality eitAf = Ttf with generators (1.21) (in the case
when α(x) = x). These asymptotics are given by the theorem:

Theorem 1.7. Let for the model A, defined by (6.33), the next conditions
hold:
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1) ‖B(x)‖ ≤ C, ‖xB(x)‖ ≤ C ∀x ∈ R;

2) B(x) ∈ Cα1(R), xB(x) ∈ Cα2(R) (0 < α1 ≤ 1, 0 < α2 ≤ 1);

3) ‖B(x)‖ ∈ L(R), ‖xB(x)‖ ∈ L(R);

4) Q∗(x) is a smooth matrix function on R and ‖Q∗′(x)‖ ∈ L2(R).
Then the curve Ttf(x) for each f(x) = (A − λ0I)

−1(A − µ0I)
−1h(x), h ∈ D1 ∩

H0 ∩ S(R,Cn) has the next asymptotics

(1.23) ‖Ttf(x) − eitxS+f(x)‖L2 −→ 0

as t→ +∞, where S+f(x) is defined by the equality

(1.24)
S+f(x) =

x∫

−∞

h̃(w)

w
←∫

−∞

ei
1+vx
v−x

B(v)dvdwV−∞(x)ti
eB(x)e−

π
2
eB(x)·

·Γ−1(I + iB̃(x))Π∗(x) x−i
x−λ0

· 1
x−µ0

,

V−∞(x) and h̃(x) are defined by (6.45) and (6.61) correspondingly.

In our considerations we have essentially used the characteristic function,
introduced by A. Kuzhel ([17, 18]), which is different from the characteristic
function of M. S. Livšic ([22]) and A. G. Rutkas ([26]), applied in the other two
considered classes and the proved properties of the multiplicative integrals

b
→∫

a

e−i 1+λv
v−λ

B(v)dv or

b
→∫

a

e
−i

1+λα(v)
α(v)−λ

B(v)dv

(Im λ 6= 0, −∞ ≤ a < b ≤ +∞) describing the characteristic function of A.

Kuzhel (see part 6). As in the previous two classes of operators Ω̃R and Λ̃R the
obtained explicit form of the asymptotics of the continuous curves eitAf with A
from the form (1.21) allows to apply these results in the scattering theory for the
couples (A∗, A). The next theorems (see part 6) give the form and the existence
of the wave operator W−(A∗, A) as a strong limit:

Theorem 1.8. Let for the model A, defined by (6.33), the next conditions
hold:

1) ‖B(x)‖ ≤ C, ‖xB(x)‖ ≤ C ∀x ∈ R;

2) B(x) ∈ Cα1(R), xB(x) ∈ Cα2(R) (0 < α1 ≤ 1, 0 < α2 ≤ 1);

3) ‖B(x)‖ ∈ L(R), ‖xB(x)‖ ∈ L(R), ‖e−2π eB(x)‖L2 < 1;
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4) Q∗(x) is a smooth matrix function on R and ‖Q∗′(x)‖ ∈ L2(R).
Then there exists the limit

(1.25) lim
t→−∞

(eitA
∗
e−itAf, g) = (S̃∗+S̃+f, g)

for all f, g ∈ L2(R; Cn) and the operator A satisfies the equality

(1.26) S̃∗+S̃+A = S̃∗+QS̃+

onto the subspace D̃0, where Qf(x) = xf(x) and S̃+ is defined by (6.82).

Theorem 1.9. Let for the model A, defined by (6.33), the next conditions
hold:

1) ‖B(x)‖ ≤ C, ‖xB(x)‖ ≤ C ∀x ∈ R;

2) B(x) ∈ Cα1(R), B(x) ∈ Cα2(R) (0 < α1 ≤ 1, 0 < α2 ≤ 1);

3) ‖B(x)‖ ∈ L(R), ‖xB(x)‖ ∈ L(R), ‖e−2π eB(x)‖L2 < 1;

4) Q∗(x) is a smooth matrix function on R and ‖Q∗′(x)‖ ∈ L(R).
Then there exists the strong limit

s− lim
t→−∞

eitA
∗

e−itA onto L2(R; Cn).

All results in this paper are obtained in an explicit form by using of mul-
tiplicative integrals and the introduced analogue in C

m of the classical gamma-
function. The results in parts 2, 3, 4, 5 are considered by the authors in
[1, 12, 2, 13]. The results in part 6 are new and they have not been published till
now in other papers.

It has to mention that analogously it can be considered the case of a
coupling A of a dissipative Kr-operator and an antidissipative Kr-operator with
different domains DA and DA∗ essentially using the methods and the results,
presented in the last part of this paper for the dissipative Kr-operators. The
separate consideration of the dissipative case of Kr-operators A with different
domains of A and its adjoint is important from the viewpoint of the necessity
of introducing of other preliminary technical results and propositions, concern-
ing the multiplicative integrals, which describe the characteristic function of A.
Kuzhel.
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2. Triangular model and asymptotics of nondissipative curves

with bounded semigroup generators from the class Ω̃R. In this part
we consider a new form of the triangular model of M. S. Livšic, introduced by
the authors in [1, 12]. This new form allows to obtain results for the class of
nondissipative operators (a coupling of a dissipative operator and an antidissipa-
tive one) which are similar to the results of L. A. Sakhnovich [27] for dissipative
operators.

The results of this part and the next part of the paper are presented by
the authors in [1, 12, 2].

Let H be a separable Hilbert space and let A be a bounded linear non-
selfadjoint operator in H with a finite nonhermitian rank, i.e. with a finite dimen-
sional imaginary part dim(A −A∗)H < +∞. (Analogously it can be considered
the case when the imaginary part of A belongs to the trace class.)

Let α(x) be a bounded nondecreasing function on a finite interval [0; l]
which is continuous at 0 and continuous from the left on (0; l], Π(x) is a mea-
surable n × m (1 ≤ n ≤ m) matrix function on [0; l], whose rows are linearly
independent at each point of a set of positive measure, and satisfying the condi-
tion

(2.1) tr Π∗(x)Π(x) = 1.

Let the operator Φ̃ : L2(0, l; Cn) → Cm have the form Φ̃f(x) =
l∫

0

f(x)Π(x)dx

and L : C
m −→ C

m, L∗ = L, detL 6= 0. For the selfadjoint operator L : Cm −→
Cm with detL 6= 0 we can assume without loss of generality that L has the
representation

(2.2) L = J1 − J2 + S + S∗,

where J1, J2, S, S∗ : C
m −→ C

m,

(2.3) J1 =

(
Ir1 0
0 0

)
, J2 =

(
0 0
0 Im−r1

)
, S =

(
0 0

Ŝ 0

)
,

Ik is the identity matrix in C
k (k = r1,m− r1), Ŝ is a (m− r1)× r1 matrix, r1 is

the number of the positive eigenvalues and m− r1 is the number of the negative
eigenvalues of the operator L. This is possible because we can always find an
invertible operator V : C

m −→ C
m (see [1]), so that

L = V (J1 − J2 + S + S∗)V ∗.
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We consider the model (1.2) in the Hilbert space L2(0, l; Cn) which can
be embedded in a colligation

(2.4) X = (A;L2(0, l; Cn),Φ,Cm;L),

where the operator Φ : L2(0, l; Cn) −→ C
m is defined by

(2.5) Φf(x) =

l∫

0

f(x)Π(x)dx.

Then

(2.6) (A−A∗)/i = Φ∗LΦ

where

(2.7) Φ∗h = hΠ∗(x).

If the matrix function B(x) = Π∗(x)Π(x) satisfies the condition

(2.8) B(x)J1 = J1B(x)

for almost all x ∈ [0; l] then the model (1.2) describes the class of all linear
bounded nonselfadjoint operators in a Hilbert space (up to an unitary equiva-
lence) presented as a coupling of a dissipative operator and an antidissipative
one (see [1]). In other words the model A from the form (1.2) has the represen-
tation

(2.9) A = P1AP1 + P2AP2 + P1AP2.

The operators P1, P2 : L2(0, l; Cn) −→ L2(0, l; Cn), defined by the equalities

(2.10) P1f(x) = f(x)Π(x)J1Q(x), P2f(x) = f(x)Π(x)J2Q(x),

are orthogonal projectors in L2(0, l; Cn), where Q(x) is a measurablem×n matrix
function satisfying the condition

(2.11) Π(x)Q(x) = I
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for almost all x ∈ [0; l] and I is the identity matrix in C
n. Then

(2.12)

P1AP1f(x) = α(x)f(x)Π(x)J1Q(x) + i

x∫

0

f(ξ)Π(ξ)J1Π
∗(x)dξ,

P2AP2f(x) = α(x)f(x)Π(x)J2Q(x) − i

x∫

0

f(ξ)Π(ξ)J2Π
∗(x)dξ,

P1AP2f(x) = i

l∫

0

f(ξ)Π(ξ)SΠ∗(x)dξ, P2AP1f(x) = 0.

The operator A1 = P1A is a dissipative operator onto the subspace H1 =
P1L

2(0, l; Cn), A2 = P2A is an antidissipative one onto the subspace H2 =
P2L

2(0, l; Cn) and the subspace H1 is an invariant subspace of the operator A. In
other words the operator A is a coupling of the operators A1 and A2: A = A1∨A2.

Conversely, an arbitrary linear bounded nonselfadjoint operator C ∈ ΩR,
presented as a coupling of a dissipative operator and an antidissipative one with
real spectra determined by a bounded nondecreasing function α : [0; l] −→ R is
unitary equivalent to the model (1.2) (on the principal subspace) with appropriate
matrix functions Π(x), B(x) and L, and B(x) satisfies the condition (2.8).

Let us denote by Ω̃R the set of all operators A ∈ ΩR with the represen-
tation (1.2) (up to the unitary equivalence), satisfying the condition (2.8). This
class describes nondissipative curves with basic operators from Ω with real spec-
tra having a limit of the corresponding correlation function as t → ±∞. Then
the complete characteristic function of the colligation (2.4) with A ∈ Ω̃R has the
form (see [1])

W (λ) =

l
→∫

0

e
iJ2B(θ)J2

λ−α(θ)
Ldθ

l
→∫

0

e
iJ1B(θ)J1

λ−α(θ)
Ldθ

.

We shall be considering only operators from the class Ω̃R with an ab-
solutely continuous spectrum. This means that the inverse function σ(u) of the
function α(x) generates a measure ν which is an absolutely continuous measure
with respect to the Lebesgue measure (the singular part of ν is 0), i.e. the function
σ(u) is absolutely continuous.

We will present the asymptotics of the nondissipative curves eitAf(x), f ∈
L2(0, l; Cn), generated by the operators A ∈ Ω̃R with an absolutely continuous
spectra ([12]). In the course of the obtaining of these asymptotics we have used
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the existence and the form of the limits

(2.13) s− lim
δ→0

b
→∫

a

e
−iT (v)

v−(x±iδ)
dv

= s− lim
δ→0

x−δ
→∫

a

e
−iT (v)

v−x
dve±πT (v)

b
→∫

x+δ

e
−iT (v)

v−x
dv

(for almost all x ∈ [a; b]) for an integrable nonnegative matrix function T (v) and
some corollaries and results of this formula (2.13) that have been considered by
L.A.Sakhnovich in [27] (s − lim denotes a strong limit). The formula (2.13) is
an analogue for multiplicative integrals of the well-known Privalov’s theorem [24]

for the limit values for the integral f(λ) =
b∫
a

p(t)
t−λdt in the scalar case.

In this part we will denote by ‖ ‖ the norm of a matrix function in C
n

and by ‖ ‖L2 – the norm in L2(0, l; Cn).
We recall that a matrix function T (x) is said to be a matrix function

from the class Cα[a; b] (α > 0) if T (x) is an integrable nonnegative or nonpositive
matrix function on [a; b] and satisfies the condition

‖T (x1) − T (x2)‖ ≤ C|x1 − x2|α

for some constant C > 0 and for all x1, x2 ∈ [a; b].
For a nonnegative (nonpositive) matrix function T (x) ∈ Cα[a; b] (α > 0)

let us denote the next operators

(2.14) F±w (x, u) = s− lim
δ→0

u
→∫

w

e
−iT (v)

v−(x±iδ)
dv
,

(2.15) Pw(x, u) = F+
w (x, u) − F−w (x, u)

for all w, u, x such that a ≤ w < u ≤ b, a ≤ x ≤ b and

(2.16) F±w (x, u) = s− lim
δ→0

x−δ
→∫

w

e
−iT (v)

v−x
dve±πT (x)

u
→∫

x+δ

e
−iT (v)

v−x
dv,

(2.17)

R±1
w (x) = (F±w (x, u)(F±w (x, u))∗)

1
2 =

= s− lim
δ→0

x−δ
→∫

w

e
−iT (v)

v−x
dve±πT (x)




x−δ
→∫

w

e
−iT (v)

v−x
dv




−1

,
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(2.18) Uw(x, u) = R∓1
w (x)F±w (x, u) = s− lim

δ→0

x−δ
→∫

w

e
−iT (v)

v−x
dv

u
→∫

x+δ

e
−iT (v)

v−x
dv,

(2.19) U1w(x, u) = lim
δ→0

x−δ
→∫

w

e
−iT (v)

v−x
dve
−i

uR
x+δ

T (x)
v−x

dv

,

(2.20) U2w(x) = lim
δ→0

x−δ
→∫

w

e
−iT (v)

v−x
dve

i
x−δR
w

T (x)
v−x

dv
,

(2.21) P2w(x, u) = (Rw(x) −R−1
w (x))U2w(x)e−iT (x) ln u−x

x−w ,

(2.22) Qw(x, u) = P2w(x, u)eiT (x) ln(u−x)e−iT (u) ln(u−x),

(2.23) Qw(x) = P1w(x)eiT (x) ln(x−w) ,

(2.24) P1w(x) = (Rw(x) −R−1
w (x))U2w(x)

for all w, u, x such that a ≤ w < x < u ≤ b. (The existence of these limits follows
from the formula (2.13) about the limit values for multiplicative integrals ([27]).)

Using these notations for T (x) ∈ Cα[a; b] (0 < α ≤ 1) we shall recall
several inequalities obtained by L. A. Sakhnovich in [27] which we will use in our
proofs:

(2.25) ‖Uw(x, u) − U1w(x, u)‖ ≤
u∫

x

‖T (x) − T (v)‖
|x− v| dv

for all w, u, x such that a ≤ w ≤ x ≤ u ≤ b,

(2.26) ‖U2a(x1) − U2a(x2)‖ ≤ C

(
x2 − x1

x1 − a

)α′

,
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(2.27) ‖Ra(x1) −Ra(x2)‖ ≤ C

(
x2 − x1

x1 − a

)α′

,

(2.28) ‖F±a (x1, b) − F±a (x2, b)‖ ≤ C

((
x2 − x1

x1 − a

)α′

+

(
x2 − x1

b− x2

)α′
)
,

for all x1, x2 : a ≤ x1 < x2 ≤ b where C > 0 is a suitable constant and
α′ = α/(1 + α).

From the limit formula (2.13) for multiplicative integrals follows the next
representation

(2.29)

b
→∫

a

e
−iT (v)

v−λ
dv = I +

1

2πi

b∫

a

Pa(x, b)

x− λ
dx

for a nonnegative (nonpositive) matrix function T (x) ∈ Cα[a; b] (0 < α ≤ 1) for
each λ ∈ C \ [a; b]. This representation we use in the course of obtaining of the
asymptotics of the continuous curves, generated by the model (1.2).

We shall recall also the next inequalities, obtained by the authors in [12]
(Lemma 1, Lemma 2, Lemma 3) for a nonnegative (nonpositive) matrix function
T (x) ∈ Cα[a; b] (0 < α ≤ 1):

(2.30)
∥∥∥eiT (x) ln(u−x) − eiT (u) ln(u−x)

∥∥∥ ≤ C(u− x)α
′

for u, x: a ≤ x < u ≤ b and ∀α′ : 0 < α′ < α,

(2.31) ‖Pw(x, u) −Qw(x, u)‖ ≤ C(u− x)α
′

for all w, u, x : a ≤ w < x < u ≤ b and ∀α′ : 0 < α′ < α,

(2.32) ‖Qw(x1) −Qw(x2)‖ ≤ C

(
x2 − x1

x1 − w

)α′

for all x1, x2 : a ≤ w < x1 < x2 ≤ b and 0 < α′ < α.
For a selfadjoint matrix function T (u) in C

m we introduce the analogue
in C

m of the classical gamma-function

(2.33) Γ(εI − iT (u)) =

+∞∫

0

e−xe((ε−1)I−iT (u)) ln xdx
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for ε > 0 and we present some properties which we have used for the asymptotic
behaviour of the considered nondissipative curves in this part and the other parts
of the paper (see [12], Lemma 4, Lemma 5, Lemma 6, Lemma 7).

Lemma 2.1. If T (u) is a selfadjoint operator in C
m then there hold the

next equalities

(2.34)

∞eiϕ∫

0

e−ze((ε−1)I−iT (u)) ln zdz = Γ(εI − iT (u))

for all ϕ: −π
2 ≤ ϕ ≤ π

2 and for all ε : 0 < ε < 1.

The equalities (2.34) have been obtained by the Cauchy’s theorem for the
operator function G(z) = e−ze((ε−1)I−iT (u)) ln z and a suitable domain in C.

Lemma 2.2. If T is an arbitrary selfadjoint operator in C
m then the

next equalities hold:

(2.35) Γ(εI − iT )Γ(I − εI + iT ) sin(π(εI − iT )) = πI

for each ε : 0 < ε < 1 and

(2.36) lim
ε→0

Γ(εI − iT ) = πiΓ−1(I + iT )(sinh(πT ))−1.

For future reference we will call a matrix function T (x) on [0; l] a smooth
matrix function if T (x) is differentiable and T ′(x) is continuous on [0; l] (by norm
in C

n).
In this part we will assume that the matrix function Q∗(x) is smooth on

[0; l], B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1) and the function α : [0; l] −→ R satisfies the
conditions:

(i) α(x) is continuous strictly increasing on [0; l];
(ii) the inverse function σ(u) of α(x) is absolutely continuous on [a; b]

(where a = α(0), b = α(l));
(iii) σ′(u) is continuous and satisfies the condition

(2.37) |σ′(u1) − σ′(u2)| ≤ C|u1 − u2|α2 (0 < α2 ≤ 1)

for all u1, u2 ∈ [a; b] and for some constant C > 0.
For our further applications we shall denote the matrix functions defined

by (2.14) (or (2.16)), (2.15), (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23),
(2.24) with F±w (x, u), Pw(x, u), R±1

w (x), Uw(x, u), U1w(x, u), U2w(x), P2w(x, u),
Qw(x, u), Qw(x), P1w(x) respectively for the nonnegative matrix function T (x) =
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J1B(σ(x))J1σ
′(x) on [a; b] and with F̃±w (x, u), P̃w(x, u), R̃±1

w (x), Ũw(x, u),

Ũ1w(x, u), Ũ2w(x), P̃2w(x, u), Q̃w(x, u), Q̃w(x), P̃1w(x) respectively for the non-
positive matrix function T (x) = −J2B(σ(x))J2σ

′(x) on [a; b].
For the simplification of the writing suppose that the initial function

f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ L2(0, l; Cn)

is chosen from the dense set H0 in L2(0, l; Cn) such that there exist f ′k(x) ∈
L2(0, l), k = 1, 2, . . . , n, and f(0) = (0, 0, . . . , 0).

The next theorem gives the asymptotics of the projections of the curve
eitAf as t→ ±∞ on the dense set in L2(0, l; Cn) (see [12]).

Theorem 2.3. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold:

1) the function α : [0; l] −→ R satisfies (i), (ii), (iii);
2) Q∗(x) is a smooth matrix function on [0; l];
3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).

Then the curves P1e
itAP1f(x), P2e

itAP2f(x), P1e
itAP2f(x) for each f ∈ H0 after

the change of the variable x = σ(u) have the next asymptotics

(2.38)
‖P1e

itAP1f(σ(u)) − eitu
u∫

a

f̃ ′(w)U2w(u)(u− w)i
eB1(u)dw·

·|t|i eB1(u)e∓
π
2
eB1(u)Γ−1(I + iB̃1(u))J1Π

∗(σ(u))‖L2 → 0,

(2.39)
‖P2e

itAP2f(σ(u)) − eitu
u∫

a

f̃ ′(w)Ũ2w(u)(u − w)−i eB2(u)dw·

·|t|−i eB2(u)e±
π
2
eB2(u)Γ−1(I − iB̃2(u))J2Π

∗(σ(u))‖L2 → 0,

(2.40)

∥∥P1e
itAP2f(σ(u)) +

+ eitu
b∫

a

f̃ ′(w)(F̃∓w (u, b) − I)dwSU2a(u)(u − a)i
eB1(u) ·

· |t|i eB1(u)e∓
π
2
eB1(u)Γ−1(I + iB̃1(u))J1Π

∗(σ(u))
∥∥∥

L2

→ 0

as t→ +∞, where

(2.41) f̃(w) = f(σ(w))Q∗(σ(w)) ,
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(2.42) B̃k(u) = JkB(σ(u))Jkσ
′(u), k = 1, 2.

For the obtaining of the asymptotics (2.38), (2.39) and (2.40) we have
used suitable representation of the projections of the curve eitAf after the change
of the variable x = σ(u) (see [12]):

(2.43)

P1e
itAP1f(σ(u)) =

= − 1

2πi

∫

γ

eitλ

u− λ




u∫

a

f̃ ′(w)

u
→∫

w

e
i

λ−v
eB1(v)dvJ1Π

∗(σ(u))dw)


 dλ,

(2.44)

P2e
itAP2f(σ(u)) =

= − 1

2πi

∫

γ

eitλ

u− λ




u∫

a

f̃ ′(w)

u
→∫

w

e
i

v−λ
eB2(v)dvJ2Π

∗(σ(u))dw


 dλ,

(2.45)

P1e
itAP2f(σ(u)) =

= − 1

2πi

b∫

a

f̃ ′(w) lim
ε→0




b∫

w

eitx

(u− x)1−ε
P̃w(x, b)SF+

a (x, u)dx +

+

u∫

a

eitx

(u− x)1−ε
(F̃−w (x, b) − I)SPa(x, u)dx


 dwJ1Π

∗(σ(u)).

for f ∈ H̃0, where γ is an arbitrary closed contour containing [α(0);α(l)] ([1]).
We have also used the properties of the multiplicative integrals and the gamma-
function, the limits from the form:

(2.46) lim
ε→0

ε

u∫

w




u∫

x

(η − x)ε−1Pw(x, η)dη


 dx = 0,

(2.47) lim
ε→0

u∫

w

(u− x)ε−1Pw(x, u)dxJ1Π
∗(σ(u)) = 2πiJ1Π

∗(σ(u)),
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obtained in [12], the inequalities (2.30), (2.31), (2.32), the relations from the form

(2.48)
lim
ε→0

u∫

w

eitx

(u− x)1−ε
e−i eB1(u) ln(u−x)dx ∼

∼ πieituti
eB1(u)e−

π
2
eB1(u)Γ−1(I + iB̃1(u))(sinh(πB̃1(u)))

−1

as t→ +∞ and other similar inequalities and relations.

It has to mention that the relations (2.38) and (2.39) present the asymp-
totics of the curve eitT f as t→ ±∞, where T is a dissipative and an antidissipa-
tive operator correspondingly

Tf(x) = α(x)f(x) ± i

x∫

0

f(ξ)Π(ξ)Π∗(x)dξ.

In the dissipative case under somewhat different assumptions and using
different ways a result similar to (2.38) has been obtained by L. A. Sakhnovich
in [27].

Let us consider now the dense set H̃0 in L2(0, l; Cn) such that f ′k(x) ∈
L2(0, l) (k = 1, 2, . . . , n), f(0) = (0, 0, . . . , 0), f(l) = (0, 0, . . . , 0).

For the convenience of the writing let us use the denotations (1.9), (1.10),
(1.8), (1.11) for each f ∈ H0 and each h ∈ C

m. Then using the properties of the

multiplicative integrals we present the operators S± and S̃± in H̃0 in the form
(1.6) and (1.7)

Generalizing the results in Theorem 2.3 we are in a position to give the
asymptotics of the nondissipative curve eitAf for the considered model A using
the introduced denotations. These asymptotics are given by Theorem 1.1.

The obtained asymptotics (1.5) of the curve eitAf allow to consider the be-
haviour of the corresponding correlation function. The next theorem follows from
the form of matrix functions B̃1(u), B̃2(u), the asymptotics (1.5) and straight-
forward calculations.

Theorem 2.4. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold

1) the function α : [0; l] −→ R satisfies (i), (ii), (iii);

2) Q∗(x) is a smooth matrix function on [0; l];

3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).
Then there exists the limit lim

τ→±∞
V (t+τ, s+τ) for the nondissipative curve eitAf
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in the subspace H0 and after the change of the variable x = σ(u)

(2.49)

lim
τ→±∞

V (t+ τ, s+ τ) =

=

b∫

a

ei(t−s)S̃±(f(σ(u)))(S̃±(f(σ(u))))∗σ′(u)du =

= (eituS̃±f(σ(u)), eisuS̃±f(σ(u)))

for all t, s ∈ R where V (t, s) = (eitAf, eisAf) is the correlation function of the

curve eitAf and the operators S̃± are defined for all f ∈ H0 by (1.7).

The next theorem allows to extend the relations (1.5) and (2.49) in the
whole space L2(0, l; Cn).

Theorem 2.5. The operators S± and S̃±, defined by (1.6) and (1.7), are

bounded linear operators in the subspace H̃0.

The boundedness of the operators S± and S̃± follows from the bounded-

ness of S̃11, S̃22 and Ŝ±12 which follows from the dissipative operator P1AP1 and
the antidissipative operator P2AP2, based on the obtained asymptotics (2.38)

and (2.39) correspondingly. For the obtaining of the boundedness of Ŝ±12 we have
also used the boundedness of the operator

(2.50) G(f(σ(u)) =

b∫

u

f̃ ′(w)

b
→∫

w

e
i eB2(v)

v−w
dvdwJ2

and the suitable representation of Ŝ±12 in the form

Ŝ±12f(σ(u)) = −




u∫

a

f̃ ′(w)

w
←∫

a

e
−i eB2(v)

v−u
dvdwF̃∓a (u, b) +

b∫

u

f̃ ′(w)

b
→∫

w

e
i eB2(v)

v−u
dvdw


S.

The next theorem shows the uniformly boundedness of the semigroups
{eitA}t≥0 and {eitA}t≤0 on H̃0 which implies that that {eitA} are semigroups
from the class (C0).

Theorem 2.6. For the model A ∈ Ω̃R, defined by (1.2), the family of
operators {eitA} is uniformly bounded.
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The proof of this theorem is based on the representation

(2.51) ΦeitAf =

b∫

a

(eitAf(σ(u)))Π(σ(u))σ′(u)du =
1

2π

b∫

a

eituĜf(σ(u))du

for each f ∈ H̃0 where

Ĝf(σ(u)) = (S̃11f(σ(u)))Pa(u, b) − (S̃22f(σ(u)))P̃a(u, b)−

−
b∫

a

f̃ ′(w)(F̃+
w (u, b)S(F+

a (u, b) − I) − F̃−w (u, b)S(F−a (u, b) − I))dw,

the inequality

(2.52) ‖eitAf‖2
L2 ≤ ‖f‖2

L2 +
1

2π
‖L‖.‖Ĝf‖2

L2

for each f ∈ H̃0 and the boundedness of Ĝ in H̃0.
Now from Theorem 2.5 it follows that the operators S± and S̃± can be

extended by continuity in L2(0, l; Cn). Then using (2.52) for all f ∈ L2(0, l; Cn)
the next relations hold

(2.53)
∥∥eitAf(σ(u)) − eituS±f(σ(u))

∥∥
L2 → 0 as t→ ±∞ ,

(2.54) lim
τ→±∞

V (t+ τ, s+ τ) = (eituS̃±f(σ(u)), eisuS̃±f(σ(u))).

It is important to mention the next fact: it can be shown that the op-
erators S̃+ and S̃− do not depend on the choice of the matrix function Q(x)
satisfying the condition (2.11) on [0; l]. (We have used this matrix function Q(x)
to define the orthogonal projectors (2.10) which present the considered model A
as a suitable coupling of a dissipative operator and an antidissipative one.)

3. Wave operators and a scattering operator for the couple

(A∗
, A) with A ∈ Ω̃R. The obtained asymptotics (2.53) for the nondissipative

curve generated by the operator A from the class Ω̃R allow us to consider the basic
terms from the scattering theory: wave operators and a scattering operator for
the couple (A∗, A) as in the selfadjoint case [25, 9, 10] and in the dissipative case
[27]. Using the introduced wave operators of A we will show that the operator
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A is similar to the operator of a multiplying by the independent variable in a
subspace of L2(0, l; Cn) after a change of the variable.

Let A ∈ Ω̃R, L, Π(x), Q(x), B(x), α(x), the colligation X are stated as
in part 2.

The form and the existence of the wave operators as storng limits for the
couple (A∗, A) are presented by Theorem 1.3 and Theorem 1.4 with the help of
the explicit form of the asymptotics (2.53) for the nondissipative curve eitAf .

The equality (1.17) follows immediately from (2.54) and the equality
(1.18) follows from the proved equality

(eituS̃±Af, e
isuS̃±f) = (ueituS̃±f, e

isuS̃±f)

for all f ∈ L2(0, l; Cn) and all t, s ∈ R.
If we denote (W±(A∗, A)f, g) = lim

t→±∞
(eitA

∗
e−itAf, g) then the operators

W±(A∗, A) = S̃∗∓S̃∓

are the wave operators as weak limits. Now from (1.18) it follows the similarity
of A and A∗, given by the wave operators:

A∗W±(A∗, A) = W±(A∗, A)A.

The existence of the wave operators as strong limits follows from the
colligation condition (2.6), the relations

‖W (t2)f −W (t1)f‖2
L2 =

∥∥∥∥∥∥

t2∫

t1

eiτA∗A−A∗

i
e−iτAfdτ

∥∥∥∥∥∥

2

L2

=

=

∥∥∥∥∥∥

t2∫

t1

m∑

α,β=1

(e−iτAf, gα)(Leα, eβ)eiτA∗

gβ(x)dτ

∥∥∥∥∥∥

2

L2

≤

≤M1

m∑

α,β=1

|(Leα, eβ)|2
t2∫

t1

|(Φe−iτAf, eα)|2dτ
t2∫

t1

‖eiτA∗

Φ∗eβ‖2dτ

(M1 is a suitable constant, t1, t2 ∈ R, f ∈ L2(0, l; Cn)) for the operator func-
tion W (t) = eitA

∗
e−itA, where {eα}m

1 is an orthonormal basis in C
n, gα(x) =

Φ∗eα = eαΠ∗(x) (x ∈ [0; l]), α = 1, 2, . . . ,m, are channel elements of A. Then
the integrability of ‖eitA∗

Φ∗eβ‖2
L2 and ‖Φe−itAf‖2 (∀f ∈ L2(0, l; Cn)) shows that

‖W (t2)f −W (t1)f‖L2 → 0 as t1, t2 → ±∞
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which together with the uniformly bounded set of operators W (t), t ∈ R, implies
that there exist the strong limits

s− lim
t→±∞

W (t) = s− lim
t→±∞

eitA
∗

e−itA

onto L2(0, l; Cn).

The next theorem shows that the operator A from the class Ω̃R is similar
to the operator Q of a multiplying by the independent variable in a suitable
subspace of L2(0, l; Cm) (after the change of the variable x = σ(u)). This allows
us to define a scattering operator analogously as in the selfadjoint case and in
the dissipative case.

Before continuing with the next theorem it should be noted that the
inverse operator T−1

± of T± is defined by

(3.1)

T−1
± h = hΠ(σ(u))σ′(u)·

·
(
J1i lim

ε→0
Γ(εI + iB̃1(u))e

±π
2
eB1(u)(u− a)−i eB1(u)U∗2a(u)J1 +

+ J2(−i) lim
ε→0

Γ(εI − iB̃2(u))e
∓π

2
eB2(u)(u− a)i

eB2(u)Ũ∗2a(u)J2

)

for h ∈ C
n.

Let us denote the next range of the operator S̃

Y1 = R(S̃) =
{
g ∈ L2(0, l; Cm) : S̃f = g for some f ∈ L2(0, l; Cn)

}
,

and Y = Y1 is the closure of Y1.

Theorem 3.1. The operators Ŝ± in L2(0, l; Cn) have bounded inverse

operators Ŝ−1
± defined in Y and A = Ŝ−1

± QŜ± onto L2(0, l; Cn).

Straightforward calculations and the obtained asymptotics (2.38), (2.39)
show that the operators G± = G11 +G22 +G±12 where

G11g(σ(u)) =
1

2π

d

du

u∫

a

g(σ(τ))Pa(τ, u)dτJ1Q(σ(u))(σ′(u))−1,

G22g(σ(u)) = − 1

2π

d

du

u∫

a

g(σ(τ))P̃a(τ, u)dτJ2Q(σ(u))(σ′(u))−1,

G±12g(σ(u)) = −G11S̃
±
12G22g(σ(u))
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in the subspace of all functions g ∈ L2(0, l; Cm) such that |g′(x)| ≤ C in [0; l]

(where C > 0 is a constant) are bounded inverse operators of Ŝ± and

(3.2) A = Ŝ−1
± QŜ±

onto L2(0, l; Cn).
The proved equality (3.2) implies that the operator A which we consider

after the change of the variable x = σ(u) is similar to the operator Q of a
multiplying by the independent variable u in the space Y .

The representation (3.2) allows us to introduce a scattering operator for
the couple (A∗, A) using (1.7)

W−1
− (A∗, A)W+(A∗, A) = (S̃∗+S̃+)−1S̃∗−S̃− = Ŝ−1

+ (T ∗+T+)−1T ∗−T−Ŝ−.

The obtained asymptotics of the curve eitAf allow to give an explicit form
of the corresponding correlation function.

Theorem 3.2. Let for the model A ∈ Ω̃R, defined by (1.2), the next
conditions hold:

1) the function α : [0; l] −→ R satisfies (i), (ii), (iii);
2) Q∗(x) is a smooth matrix function on [0; l];
3) B(x) ∈ Cα1 [0; l] (0 < α1 ≤ 1).

Then the correlation function V (t, s) of the curve eitAf (f ∈ L2(0, l; Cn)) has the
representation

V (t, s) = (ei(t−s)uS̃±f(σ(u)), S̃±f(σ(u))+

+

±∞∫

0

m∑

α,β=1

Ψα(t+ τ)(Leα, eβ)Ψβ(s+ τ)dτ,

where Ψα(t) = (eituŜ±f, Ŝ
−1∗

± gα), α = 1, 2, . . . ,m, {eα}m
1 is an orthonormal basis

in C
m and gα(x) = Φ∗eα = eαΠ∗(x) (x ∈ [0, l], α = 1, 2, . . . ,m) are the channel

elements of the colligation X.

We have only considered the nonselfadjoint operator A with a finite di-
mensional imaginary part. Analogously one can find the asymptotics of the curve
eitAf in the case when the imaginary part (A− A∗)/i of A belongs to the trace
class.

In order to conclude this part it should be remarked that one can find the
asymptotics of nondissipative curves eitAf (A ∈ Ω̃R) and apply in the scattering
theory in the case of weaker assumptions for B(x) and α(x). But this will give
some technical complications of the consideration.
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4. Triangular model and asymptotics of nondissipative curves

with unbounded semigroup generators from the class Λ̃R. In this

part we present nondissipative curves generated by a class Λ̃R of unbounded
nondissipative operators and having asymptotics. The generators from Λ̃R are
unbounded operators A with a domain DA = DA∗ , a finite dimensional imaginary
part and presented as a coupling of a dissipative operator and an antidissipative
one with real absolutely continuous spectra. We present the triangular model
and basic terms and problems from the single operator colligation theory for the
operators A ∈ Λ̃R.

In an appropriate way we introduce two families of operators from the
class (C0). These semigroups determine the exponential function eitA for A. The
obtaining of the asymptotics of the continuous nondissipative curves eitAf as
t → ±∞ and the limit of the corresponding correlation function in an explicit
form allows to construct the scattering theory for the couple (A∗, A) (i.e. to

consider a perturbation of a closed operator A with an operator iÃ, where Ã is
a finite dimensional selfadjoint operator).

The results of this part and the next part are presented by the authors
in [13].

Let H be a separable Hilbert space. We consider the class Λ of all op-
erators A : DA −→ H with a domain DA, DA = H, DA∗ = DA and finite
dimensional imaginary part (i.e. dim(A − A∗)DA < ∞). (Analogously it can
be considered the case with a trace class imaginary part of A.) In this case the
operator A ∈ Λ has the representation

(4.1) A =
A+A∗

2
+ i

A−A∗

2i
.

and A is a closed operator.
As in the bounded case in the study of an unbounded operator A ∈ Λ

the set

(4.2) X = (A;H,Φ, E;L),

where H, E are Hilbert spaces, Φ : H −→ E and L : E −→ E are linear bounded
operators and L∗ = L, are said to be the operator colligation if A satisfies the
condition

(4.3) (A−A∗)/i ⊂ Φ∗LΦ.

Note that every operator A ∈ Λ can be embedded in a colligation from
the form (4.2) by setting (for example)

E = (A−A∗)H, Φ =

∣∣∣∣
A−A∗

i

∣∣∣∣
E

∣∣∣∣
1/2

, L = sign
A−A∗

i

∣∣∣∣
E

,
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where the absolute value and the sign function are understood in the sense of
the usual functional calculus for selfadjoint operators, A−A∗ is extended in H,
dimE ≥ dimR((A − A∗)|H) where R((A − A∗)|H) is the range of the extension
of (A−A∗)/i in H ([26]).

The set of non-real points of the spectrum σ(A) of A ∈ Λ is finite or
countable and the accumulation points of this set are real (see, for example, [8]
or this can be obtained analogously as in the bounded case in [6]).

The characteristic operator function of the colligation X from the form (4.2)

(4.4) W (λ) = I − iLΦ(A− λI)−1Φ∗,

defined onto E for λ 6∈ σ(A), is analytic on the set ρ(A) of the regular points of
A and W (λ) possesses metric properties as in the bounded case onto the linear
subspace Gλ ⊂ DW (λ) = E, determined by the condition Φ∗Gλ ⊂ (A−λI)DA for
λ 6∈ σ(A). Then the L-metric properties as in (1.1) hold onto Gλ (a such linear
subspace Gλ always can be chosen ([26])).

The colligations X1 = (A1;H1,Φ1, E;L), X2 = (A2;H2,Φ2, E;L) with
operators A1, A2 ∈ Λ are unitary equivalent if there exists an isometric operator
U : H1 −→ H2, which satisfies the conditions UA1 = A2U , Φ∗2 = UΦ∗1. From the
unitary equivalence of the operators A1 and A2 it follows that σ(A1) = σ(A2).
When λ 6∈ σ(A1) then

(A2 − λI)−1 = U(A1 − λI)−1U∗.

This equality implies that the characteristic operator functions W (λ1) and W (λ2)
of the unitary equivalent colligations coincide for all λ 6∈ σ(Ak), k = 1, 2.

Let A ∈ Λ and A : DA −→ H. The subspace H1 ⊂ H is said to be the
invariant subspace of A if DA ∩H1 = H1 and Af ∈ H1 when f ∈ DA ∩H1.

Now we will define a coupling of operators from Λ. Let A1, A2 ∈ Λ and
Ak : DAk

−→ Hk, Pk be the orthogonal projectors of H = H1 ⊕ H2 onto Hk,
k = 1, 2. Let Γ be a linear operator in H with the properties

ΓH1 = 0, P2DΓ = DA2 , R(Γ) ⊂ H1

where DΓ is the domain of Γ and R(Γ) is the range of Γ. The operator

A = A1P1 +A2P2 + Γ

defined in DA = DA1 ⊕ DA2 is said to be the coupling of A1 and A2, i.e. A =
A1 ∨A2. Then DA = H, DA ∩H1 = H1 and H1 is an invariant subspace of A.

Conversely, if a subspace H1 ⊂ H is an invariant subspace of the operator
A ∈ Λ, defined in DA, the orthogonal projector P1 of H onto H1 satisfies the
relation P1(H1 ∩DA) ⊂ DA, then

(4.5) A = P1AP1 + P2AP2 + P1AP2 (P2 = I − P1),
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i.e. A is presented as a coupling of the operators A1 = AP1 = P1AP1 in H1 and
A2 = P2AP2 in H2 (H2 = H ⊖H1) and DAK

= PkDA, DAk
= Hk, k = 1, 2.

If λ 6∈ σ(A1), λ 6∈ σ(A2) and P1AP2DA ⊂ R(A1 − λI) then λ 6∈ σ(A) and
the resolvent (A− λI)−1 of the operator A = A1 ∨A2 has the representation

(4.6)
(A− λI)−1 = P1(A1 − λI)−1P1 + P2(A2 − λI)−1P2−

−P1(A1 − λI)−1P1AP2(A2 − λI)−1P2.

Let A ∈ Λ, A : DA −→ H. The biggest invariant subspace HA of the
operator A is said to be the additional subspace of A, if

1) for each f ∈ HA ∩DA holds (Af, g) = (f,Ag) ∀g ∈ DA, i.e. HA ∩DA

is a subset of the Hermitian domain of A;
2) HA and H ⊖ HA are invariant subspaces of A. Then the additional

subspace HA and the so called principal subspace H1 = H⊖HA of A are invariant
subspaces of A, A∗, Rλ = (A− λI)−1, R̃z = (A∗− zI)−1 for λ 6∈ σ(A), z 6∈ σ(A∗)
and

H1 =
∨

n=0,1,2,...

{
Rn+1

λ0

A−A∗

i
R∗λ0

f, f ∈ H

}

(for an arbitrary fixed λ0: λ0 6∈ σ(A), λ0 6∈ σ(A∗)).
Let A ∈ Λ with a domain DA be embedded in a colligation X from the

form (4.2). If {eα}m
1 is an orthonormal basis in E we denote by gα = Φ∗eα the

so called channel elements of A.
The next two theorems solve the basic problems of the single operator

colligation theory for an unbounded operator A ∈ Λ concerning the coincidence
of the characteristic operator functions of two operators and their unitary equiv-
alence, multiplicative properties of the characteristic function of the coupling of
two operators.

Theorem 4.1. Let the operators Ak : DAk
−→ Hk, k = 1, 2, belong to

the class Λ. Let the characteristic matrix functions of Ak (k = 1, 2)

Wk(λ) = I − i‖((A1 − λI)−1gk
α, g

k
β)‖L

(where gk
α = Φ∗keα, α = 1, 2, . . . ,m are the channel elements of Ak, k = 1, 2,

L∗ = L, detL 6= 0) be equal. Then the operators A1|E1 and A2|E2 are unitarily
equivalent on the principal subspaces HE1 and HE2 where

HEk
=

∨

n=0,1,2,...

{
Rn+1

kλ0
gk
α : α = 1, 2, . . . ,m

}
, k = 1, 2,

Rkλ0 = (Ak −λ0I)
−1 (k = 1, 2), E1 and E2 are linear spans of {g1

α}m
1 and {g2

α}m
1

correspondingly.
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Let the operator A with a domain DA belong to the class Λ and H0 be a
subspace of H such that P0DA ⊂ H0, where P0 is the orthogonal projector of H
onto H0. Let us define an operator A0 onto P0DA by the equality

A0f = P0Af ∀f ∈ P0DA,

i.e. A0f = A0P0g = P0AP0g for all g ∈ DA. Let A be embedded in a colligation
X = (A;H,Φ, E;L). Then the characteristic matrix function

(4.7) W0(λ) = I − iΦP0(A− λI)−1P0Φ
∗L = I − i‖((A− λI)−1g0

α, g
0
β)‖L

(where g0
α = P0gα = P0Φ

∗eα, {eα}m
1 is the orthonormal basis in E) is said to be

the projection of the characteristic matrix function W (λ) of A onto the subspace
H0.

Theorem 4.2. Let the operator A ∈ Λ with a domain DA be a coupling
of the operators Ak ∈ Λ, A : DAk

−→ Hk, k = 1, 2, and H1 ⊕H2 = H. Then the
characteristic operator function W (λ) of A is a product of the projections W (λ)
onto H1 and H2:

(4.8) W (λ) = W1(λ)W2(λ),

where Wk(λ) = I− iΦ(PkAPk −λ)−1PkΦ
∗L are the projections of W (λ) onto Hk,

k = 1, 2.

Next we will present a model describing a class of unbounded operators
from Λ with purely real absolutely continuous spectrum presented as a coupling
of a dissipative operator and an antidissipative one.

Let A belong to the class Λ and let us suppose that the spectrum of A is
real. In the case of a dissipative operator A the multiplicative representation of
the characteristic operator function W (λ) has the form

(4.9) W (λ) =

+∞
→∫

−∞

e
−idE(θ)
α(θ)−λ ,

where
+∞∫
−∞

‖dE(θ)‖ < ∞ (see [27]). The dissipative operator A ∈ Λ with a real

spectrum is an operator with an absolutely continuous spectrum if the charac-
teristic operator function has the representation

(4.10) W (λ) =

+∞
→∫

−∞

e
−iΠ∗(θ)Π(θ)

α(θ)−λ
Ldθ

,
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where

+∞∫

−∞

tr Π∗(θ)Π(θ)dθ <∞ (see [27, 7]).

From (4.10) it follows ([27]) that the operator A ∈ Λ with a real absolutely
continuous spectrum is unitary equivalent to the triangular model

Af(x) = α(x)f(x) + i

x∫

−∞

f(ξ)Π(ξ)LdξΠ∗(x), (f ∈ L2(R))

on the principal subspace, where ‖Π(x)‖2 is an integrable function on R.
In this part we will denote by ‖ ‖ the norm of a matrix function in C

n

and by ‖ ‖L2 the norm in L2(R; Cn).
Let α(x) be an unbounded nondecreasing function on R which is contin-

uous from the left, let Π(x) be a measurable n×m (1 ≤ n ≤ m) matrix function
on R whose rows are linearly independent at each point of a set of a positive

measure and satisfying the conditions
+∞∫
−∞

tr Π∗(θ)Π(θ)dθ <∞ and

(4.11)

+∞∫

−∞

‖Π(x)‖2dx <∞

Let L : C
m −→ C

m be a selfadjoint matrix with detL 6= 0. We can assume
without loss of generality that L has the representation

(4.12) L = J1 − J2 + S + S∗,

where J1, J2, S : C
m −→ C

m have the form (2.3) as in the bounded case
Our object is the model (1.3) with a domain

DA = {f ∈ L2(R; Cn) : α(x)f(x) ∈ L2(R; Cn)},

where L2(R; Cn) = {f(x) = (f1(x), . . . , fn(x)) : R −→ C
n : fk(x) ∈ L2(R), k =

1, 2, . . . , n} is the Hilbert space with a scalar product

(f(x), g(x)) =

+∞∫

−∞

f(x)g∗(x)dx (f, g ∈ L2(R; Cn)).

The domain DA is dense in L2(R; Cn).
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The condition (4.11) implies that A : DA −→ L2(R; Cn). Then the do-
main DA∗ of A∗ coincides with DA, i.e. DA∗ = DA. From the form of A∗ it
follows that A is a closed operator with a dense domain DA in L2(R; Cn). Then
the operator A can be presented in the form

A =
A+A∗

2
+ i

A−A∗

2i
,

A−A∗

2i
f(x) =

1

2

+∞∫

−∞

f(ξ)Π(ξ)LΠ∗(x)dξ, dim A−A∗

2i DA <∞ and A belongs to the

class Λ. Then we can embed the operator A in a colligation

(4.13) X = (A;L2(R; Cn),Φ,Cm;L),

where the bounded operator Φ : L2(R; Cn) −→ C
m is defined by

(4.14) Φf(x) =

+∞∫

−∞

f(x)Π(x)dx.

The imaginary part of A takes the form

(4.15)
A−A∗

i

∣∣∣∣
DA

= Φ∗LΦ|DA
,

where

(4.16) Φ∗h = hΠ∗(x), h ∈ C
m.

Let the matrix function B(x) = Π∗(x)Π(x) satisfy the condition (as in
the bounded case)

(4.17) B(x)J1 = J1B(x)

for almost all x ∈ R. Let Q(x) be a measurable m× n matrix function satisfying
the condition

(4.18) Π(x)Q(x) = I

for almost all x ∈ R, where I is the identity matrix in C
n. Then the operators

P1, P2 : L2(R; Cn) −→ L2(R; Cn) defined by the equalities

(4.19) P1f(x) = f(x)Π(x)J1Q(x), P2f(x) = f(x)Π(x)J2Q(x).
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are orthogonal projectors in L2(R; Cn) Then from (1.3) and (4.19) it follows that

(4.20)

P1AP1f(x) = α(x)f(x)Π(x)J1Q(x) + i

x∫

−∞

f(ξ)Π(ξ)J1Π
∗(x)dξ,

P2AP2f(x) = α(x)f(x)Π(x)J2Q(x) − i

x∫

−∞

f(ξ)Π(ξ)J2Π
∗(x)dξ,

P1AP2f(x) = i

+∞∫

−∞

f(ξ)Π(ξ)SΠ∗(x)dξ, P2AP1f(x) = 0.

The form of A∗ and the equalities (4.20) show that the operator A1 = P1A
is a dissipative operator onto the subspace H1 = P1DA, A2 = P2A is an antidis-
sipative operator onto the subspace H2 = P2DA and P1L

2(R; Cn) ∩ DA is an
invariant subspace of the operator A. This implies that A has the representation

(4.21) A = P1AP1 + P2AP2 + P1AP2

and A is a coupling of the dissipative operator A1 and an antidissipative operator
A2: A = A1 ∨A2.

Conversely as in the bounded case ([1, 12]) if C is a linear operator from
the class Λ with a real spectrum, presented as a coupling of a dissipative operator
and an antidissipative one with real absolutely continuous spectra determined
by an unbounded function α : R −→ R, then C is unitary equivalent to the
operator from the form (1.3) onto the principal subspace and the matrix function
B(x) = Π∗(x)Π(x) satisfies the condition (4.17).

Let us denote by Λ̃R the set of all operators A ∈ Λ with the representation
(1.3) (up to an unitary equivalence to the principal subspace) with purely real
absolutely continuous spectrum and satisfying the condition (4.17). This class

Λ̃R describes nondissipative unbounded operators A with a dense domain DA in
a Hilbert space, DA = DA∗ and presented as a coupling of a dissipative operator
and an antidissipative one with real absolutely continuous spectra. The model
(1.3) we call the triangular model of the operators from the class Λ̃R.

We will show that the operators from Λ̃R generate the so called nondis-
sipative curves having asymptotics and limits of the corresponding correlation
function as t→ ±∞.

The next theorem gives the form of the characteristic operator function
of the operators from the class Λ̃R using the multiplicative properties of the
characteristic matrix function (Theorem 4.2), straightforward calculations and
the properties of the multiplicative integrals.
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Let A ∈ Λ̃R and let A have the representation (1.3). Let the matrix
function B(x) satisfies the condition (4.17), let P1 and P2 are defined by (4.19).

Theorem 4.3. The characteristic matrix function of the model (1.3) has
a representation

(4.22) W (λ) =

+∞
→∫

−∞

e
iJ2B(θ)J2

λ−α(θ)
Ldθ

+∞
→∫

−∞

e
iJ1B(θ)J1

λ−α(θ)
Ldθ

,

where the matrix functions

+∞
→∫

−∞

e
iJ1B(θ)J1

λ−α(θ)
Ldθ

,

+∞
→∫

−∞

e
iJ2B(θ)J2

λ−α(θ)
Ldθ

are the projections of

W (λ) onto the subspaces P1L
2(R; Cn), P2L

2(R; Cn) and the product in (4.22) is
as matrices.

Next we introduce semigroups with generators from Λ̃R and obtain the
asymptotic behaviour of the corresponding curves. That is way we need a suitable
representation of the resolvent of the operator A ∈ Λ̃R. This representation is
given by the next lemma.

At first for the considered model A from the form (1.3) in this part we
assume that the matrix functions Π(x) satisfies the conditions: ‖Π(x)‖ ≤ C,
‖Π(x)‖ ∈ L2(R) (for some constant C > 0). We also suppose that the function
α : R −→ R satisfies the conditions:

(i) α(x) is continuous unbounded strictly increasing on R;
(ii) the inverse function σ(u) of α(x) is absolutely continuous on R;
(iii) σ′(u) is a bounded function on R.
For the simplification of writing suppose that the initial function f(x) =

(f1(x), . . . , fn(x)) is chosen from the set

(4.23)
H̃0 = {f ∈ L2(R; Cn) : f ′ ∈ L2(R; Cn), ‖f(x)‖ ≤Mf ,

‖f ′(x)‖ ≤Mf , lim
x→±∞

f(x)Q∗(x) = 0}

(Mf > 0 is a constant) which is dense in L2(R; Cn).

Lemma 4.4. Let A be the model (1.3), let Q(x) be a measurable matrix
function on R, the function ‖Q∗′(x)‖ be bounded, ‖Q∗′(x)‖ ∈ L2(R). Then for

each f ∈ H̃0 and for each λ 6∈ R the resolvent (A−λI)−1f has the representation

(4.24) (A− λI)−1f(x) = 1/(α(x) − λ)Z(λ, x)f(x)Π∗(x),
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(Imλ 6= 0) where

(4.25)

Z(λ, x)f(x) =

+∞∫

−∞

((f(ξ)Q∗(ξ))′

( x
→∫

ξ

e
−iJ1B(θ)J1

α(θ)−λ
dθ
J1+

+

x
→∫

ξ

e
iJ2B(θ)J2

α(θ)−λ
dθ
J2)χ(−∞;x](ξ)−

−

+∞
→∫

ξ

e
J2B(θ)J2
α(θ)−λ

dθ
S

x
→∫

−∞

e
−iJ1B(θ)J1

α(θ)−λ
dθ
J1

)
dξ.

For further applications of the resolvent of the model A it has to mention
the next representation of (A− λI)−1f for each f ∈ L2(R; Cn)

(4.26)

(A− λI)−1f(x) =
f(x)

α(x) − λ
−

− 1

α(x) − λ

+∞∫

−∞

1

α(η) − λ
X(λ, η)f(η)dηΠ∗(x) = Y (λ, x)/(α(x) − λ)

with Y (λ, x) = f(x) −
+∞∫
−∞

(1/(α(η) − λ))X(λ, η)f(η)dηΠ∗(x) (∀λ 6∈ R). Here

X(λ, x)f(x) ∈ L(R; Cm) and ‖X(λ, η)f(η)‖ ≤ M̃f‖f̂(η)‖, ‖f̂(η)‖ ∈ L(R), M̃f

is a suitable positive constant depending on the function f and 1/| Im λ|. From
(4.26) it follows the inequality

(4.27) ‖(A − λI)−1f(x)‖ ≤ 1

|α(x) − λ|(‖f(x)‖ + C̃f‖Π∗(x)‖)

where C̃f > 0 is a constant depending on f and 1/| Im λ|.
On the other side if f ∈ H̃0 from (4.24), the properties of the multiplica-

tive integrals and the condition ‖B(x)‖ ≤ C we obtain the inequality

(4.28) ‖(A− λI)−1f(x)‖ ≤ 1

|α(x) − λ|Cf‖Π∗(x)‖,

where Cf > 0 is a constant depending only on the function f ∈ H̃0 (but not on
1/| Im λ|).
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Now we will introduce families of operators {Tt}t≥0, {Tt}t≤0 which are
semigroups of operators, generating the exponential function in the case of un-
bounded operator A ∈ Λ̃R. Then we will present the asymptotics of the curves
Ttf , f ∈ L2(R; Cn) as t→ ±∞.

For the operator A from the class Λ̃R we may assume without loss of
generality that it has the form (1.3).

Let ‖Π∗′(x)‖ be bounded on R, ‖Π∗′(x)‖ ∈ L2(R), lim
x→±∞

Π∗(x)Q∗(x) = 0.

Let the function α(x) satisfy the condition (i), (ii), (iii). Let ‖Q∗′(x)‖ be bounded
on R, ‖Q∗′(x)‖ ∈ L2(R).

It has to mention that in the particular case L = I the operator A is
dissipative and this case is noticed in [27]. In the case when L = J1 − J2 (i.e.
S = 0) the operator A has the form A = P1AP1 + P2AP2 and the both spaces
H1 = P1L

2(R; Cn) and H2 = P2L
2(R; Cn) are invariant subspaces of A. In this

part we consider the case when S 6= 0.
For an arbitrary sufficiently small δ > 0 and for every f ∈ DA we define

the next families of operators Ttf by the equality (1.4) in the case of t > 0 and
in the case of t < 0, where the integral on the right hand side of (1.4) is in the
sense of a principal value.

The existence of the integral in (1.4) for all f ∈ DA follows from the
representation

lim
R→∞

R∫

−R

(eit(ξ−iδ)(A− (ξ − iδ)I)−1f − eit(ξ+iδ)(A− (ξ + iδ)I)−1f)dξ =

= lim
R→∞

R∫

−R

(
eit(ξ−iδ)

ξ − iδ − λ0
(A− (ξ − iδ)I)−1g − eit(ξ+iδ)

ξ + iδ − λ0
(A− (ξ + iδ)I)−1g

)
dξ,

(where g = (A − λ0I)f , Imλ0 > δ > 0 when t > 0 and Imλ0 < −δ < 0
when t < 0), using the resolvent equation, the Lebesgue convergence theorem
and the Residue theorem for the function eitz/(z−λ0) and domains with suitable
contours.

On the other hand Ttf ∈ L2(R; Cn) for each f ∈ DA which follows
from (4.26) and straightforward calculations.

It has to mention also the independence of the definition (1.4) of Ttf for

f ∈ DA ∩ H̃0 on the choice of δ > 0. In other words the introduced families
{Tt}t>0 and {Tt}t<0 are well defined by (1.4) in DA ∩ H̃0.

Next two theorems describe the properties of the families of operators
{Tt}t>0 and {Tt}t<0, which present these families as a semigroups of operators
from the class (C0) with a generator iA and solve the question of a differentiability
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of the considered semigroups. Only the boundedness of Tt will be presented
further after the obtaining of the asymptotics of Ttf as t→ ±∞.

Theorem 4.5. The families of operators {Tt}t>0 and {Tt}t<0, defined by
(1.4), satisfy the conditions

(4.29) TsTtf = Ts+tf ∀f ∈ DA (∀t, s > 0 and ∀t, s < 0),

(4.30) lim
t→0

Ttf = f ∀f ∈ DA (t→ 0, t > 0 and t→ 0, t < 0).

Theorem 4.6. The families of operators {Tt}t≥0 and {Tt}t≤0, defined by
(1.4), satisfy the conditions

(4.31)
d

dt
Ttf(x) = iATtf(x) ∀f ∈ DA,

(4.32) lim
t→0

Ttf − f

t
= iAf ∀f ∈ DA.

The relation (4.30) allows to define

(4.33) T0f = f ∀f ∈ DA

and we can consider the families {Tt}t≥0 and {Tt}t≤0.
The proofs of Theorem 4.5 and Theorem 4.6 (see [13]) are based on the

use of the representation f = (A − λ0I)
−1g (for f ∈ DA), the representation

(4.26), the inequality (4.27), other appropriate inequalities, the Residue theorem,
the Lebesgue convergence theorem.

The properties of the families of operators Tt allow us to define the nondis-
sipative curves generated by the unbounded operators A ∈ Λ̃R using the families
{Tt}t≤0 and {Tt}t≥0 for each f ∈ H̃0 by Ttf when t ≤ 0 and t ≥ 0.

We will present in an explicit form of the asymptotics of the curves Ttf ,
generated by the unbounded operators A from Λ̃R when f belongs to the suitable
dense set in L2(R; Cn).

Let A ∈ Λ̃R be the model from the form (1.3), let L, Π(x), Q(x), B(x),
P1, P2, α(x), σ(u) be stated as above.
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Before continuing with the asymptotics of the curves, generated from A,
it has to mention that the model (1.3) after the change of the variable x = σ(u)
can be written in the form

(4.34)

Ag(u) = ug(u) + i

u∫

−∞

g(η)Π̂(η)(J1 − J2)σ
′(η)dηΠ̂∗(u)+

+i

+∞∫

−∞

g(η)Π̂(η)Sσ′(η)dηΠ̂∗(u)

(where g ∈ L2(R; Cn;σ(u)), ‖Π̂(u)‖ ∈ L2(R;σ(u))) when the function f(σ(u)) ∈
L2(R; Cn;σ(u)), ‖Π(σ(u))‖ ∈ L2(R) and the function α(x) satisfies the conditions
(i), (ii), (iii).

For the simplification of writing we can consider the model

(4.35)

Af(x) = xf(x) + i

x∫

−∞

f(ξ)Π(ξ)(J1 − J2)dξΠ
∗(x)+

+i

+∞∫

−∞

f(ξ)Π(ξ)SdξΠ∗(x)

(i.e. α(x) = x) with a domain

(4.36) DA = {f ∈ L2(R; Cn) : xf(x) ∈ L2(R; Cn)}.

It has to mention that the asymptotics of the curves generated by the
model (4.34) can be obtained analogously to the asymptotics of the curves gen-
erated by (4.35) if we suppose the additional condition for σ(u): σ′(u) ∈ Cα2(R)
(0 < α2 ≤ 1) (i.e. |σ′(u1) − σ′(u2)| ≤ C|u1 − u2|α2 for all u1, u2 ∈ R and some
constant C > 0).

Let the model A ∈ Λ̃R be defined by (4.35) with a domain DA, defined
by (4.36), let L, Π(x), Q(x), B(x) be stated as above.

Before continuing with the next theorems we need some denotations. Let
B(x) belongs to the class Cα1(R) (0 < α1 ≤ 1), i.e. ‖B(x1) − B(x2)‖ ≤ C|x1 −
x2|α1 for all x1, x2 ∈ R and some constant C > 0. Let us denote the next
operators analogously as in the bounded case in part 2

(4.37) B1(x) = J1B(x)J1, B2(x) = J2B(x)J2,
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(4.38) F±w (x, u) = s− lim
δ→0

u
→∫

w

e
−iB1(v)

v−(x±iδ)
dv
, F̃±w (x, u) = s− lim

δ→0

u
→∫

w

e
iB2(v)

v−(x±iδ)
dv
,

(4.39) Pw(x, u) = F+
w (x, u) − F−w (x, u), P̃w(x, u) = F̃+

w (x, u) − F̃−w (x, u)

for all w, u, x ∈ R such that −∞ ≤ w < u ≤ +∞ and

(4.40) F±w (x, u) = s− lim
δ→0

x−δ
→∫

w

e
−iB1(v)

v−x
dve±πB1(x)

u
→∫

x+δ

e
−iB1(v)

v−x
dv ,

(4.41) F̃±w (x, u) = s− lim
δ→0

x−δ
→∫

w

e
iB2(v)

v−x
dve∓πB2(x)

u
→∫

x+δ

e
iB2(v)

v−x
dv ,

(4.42) V−∞(x) = s− lim
δ→0

x−δ
→∫

−∞

e
−iB1(v)

v−x
dveiB1(x) ln δ,

(4.43) Ṽ−∞(x) = s− lim
δ→0

x−δ
→∫

−∞

e
iB2(v)

v−x
dve−iB2(x) ln δ

for all w, u, x such that −∞ ≤ w < x < u ≤ +∞. Now using (4.38) from (4.24),
(4.25) it follows the existence of the limits Z±(ξ, x)f(x) = lim

δ→0
Z(ξ ± iδ, x) and

these limits have the form

(4.44)
Z±(ξ, x)f(x) =

+∞∫

−∞

f̃ ′(w)((F±w (ξ, x)J1 + F̃±w (ξ, x)J2)χ(−∞;x](w)−

−F̃±w (ξ,∞)SF̃±−∞(ξ, x)J1)dw,

where

(4.45) f̃(w) = f(w)Q∗(w) for f ∈ H̃0.
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Let us denote by S(R; Cn) the set of all smooth fast decreasing functions
f(x) = (f1(x), . . . , fn(x)).

Now we are in a position to give the asymptotics of the nondissipative
curves Ttf as t → ±∞ for f ∈ (R; Cn). These asymptotics are presented by
Theorem 1.2.

The main point of the obtaining of the asimptotics (1.12) is a suitable
representation of the operators Tt, defined by (1.4) for the model A with the
form (4.35) (see [13], Lemma 5.1):

(4.46)

Ttf(x) = − 1

2πi

∫

R\∆

eitξ

ξ − λ0
· 1

x− ξ
Z−(ξ, x)g(x)Π∗(x)dξ−

− lim
ε→0

1

2πi

∫

∆

eitξ

(x− ξ)1−ε
Z−(ξ, x)f(x)Π∗(x)dξ−

− 1

2πi

∫

∆

eitξ

ξ − λ0
dξf(x) + eitλ0f(x)

when t > 0 and Imλ0 > 0,

(4.47)

Ttf(x) = − 1

2πi

∫

R\∆

eitξ

ξ − λ0
· 1

x− ξ
Z+(ξ, x)g(x)Π∗(x)dξ−

− lim
ε→0

1

2πi

∫

∆

eitξ

(x− ξ)1−ε
Z+(ξ, x)f(x)Π∗(x)dξ−

− 1

2πi

∫

∆

eitξ

ξ − λ0
dξf(x) + eitλ0f(x)

when t < 0 and Imλ0 < 0 correspondingly for all f ∈ L2(R; Cn), where ∆ =
[x−β;x+β], β > 0 is a suitable fixed number, g(x) = (A−λ0I)f(x), Z±(ξ, x)f(x)

are defined by (4.44) and f̃(w) is defined by (4.45).
From the representations (4.46) and (4.47) it follows that the asymptotic

behaviour of Ttf as t→ ±∞ depends only on the asymptotic behaviour of

lim
ε→0

1

2πi

∫

∆

eitξ

(x− ξ)1−ε
Z∓(ξ, x)f(x)Π∗(x)dξ,

correspondingly. The other addends in (4.46) and (4.47) tend to 0 as t → +∞
and t→ −∞ correspondingly.
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Next we use the methods and the ideas as in [12, 2] for the bounded
case, the properties of the multiplicative integrals in (4.44), appropriate in-
equalities concerning multiplicative integrals for the matrix functions B1(x),
B2(x) ∈ Cα1(R) (0 < α1 ≤ 1) (as (2.26), (2.27), (2.28), (2.30), (2.25), (2.32)
and other similar inequalities), the asymptotic behaviour

lim
ε→0

u∫

w

eitx

(u− x)1−ε
e−iC(u) ln(u−x)dx ∼

∼ πieitutiC(u)e−
π
2
C(u)Γ−1(I + iC(u))(sinh(πC(u)))−1

as t→ +∞ for a nonnegative matrix function C(u), obtained in the bounded case.
Then using these ideas, the Lebesgue convergence theorem and the Lebesgue
lemma for the Fourier transform we obtain consecutively the asymptotics of the
projections P1e

itAP1f , P1e
itAP2f , P1e

itAP2f , i.e.

(4.48)

− 1

2πi
lim
ε→0

x+β∫

x−β

eitξ

(x− ξ)1−ε




x∫

−∞

f̃ ′(w)F−w (ξ, x)dw


 dξJ1Π

∗(x) ∼

∼ eitx
x∫

−∞

f̃ ′(w)U2w(x)(x −w)iB1(x)dwtiB1(x)efracπ2B1(x)·

·Γ−1(I + iB1(x))J1Π
∗(x),

(4.49)

− 1

2πi
lim
ε→0

x+β∫

x−β

eitξ

(x− ξ)1−ε




x∫

−∞

f̃ ′(w)F̃−w (ξ, x)dw


 dξJ2Π

∗(x) ∼

∼ eitx
x∫

−∞

f̃ ′(w)Ũ2w(x)(x− w)−iB2(x)dwt−iB2(x)e
π
2
B2(x).

.Γ−1(I − iB2(x))J2Π
∗(x),

lim
ε→0

x+β∫

x−β

eitξ

(x− ξ)1−ε




+∞∫

−∞

f̃ ′(w)F̃−w (ξ,∞)SF−−∞(ξ, x)dw


 dξJ1Π

∗(x) ∼

∼ 2πieitx
+∞∫

−∞

f̃ ′(w)F̃−w (x,∞)dwSV−∞(u)tiB1(x)e−
π
2
B1(x).

.Γ−1(I + iB1(x))J1Π
∗(x)



136 Kiril P. Kirchev, Galina S. Borisova

as t→ +∞, where

U2w(x) = lim
δ→0

x−δ
→∫

w

e
−iB1(v)

v−x
dve

i
x−δR
w

B1(x)
v−x

dv
,

Ũ2w(x) = lim
δ→0

x−δ
→∫

w

e
iB2(v)

v−x
dve

i
x−δR
w

−B2(x)

v−x
dv
.

This proves the asymptotics (1.12) in the case when t → +∞. Analogously we
obtain the asymptotics (1.12) in the case when t→ −∞.

As in the bounded case in part 3 we obtain the boundedness of the oper-
ators S±, defined by (1.13), using the dissipativness and the antidissipativness of
the operators P1AP1 and P2AP2 correspondingly onto DA, the decreasing func-
tion ψ1(t) = ‖P1TtP1f‖2

L2 and the increasing function ψ2(t) = ‖P2TtP2f‖2
L2 in R

for each fixed f ∈ S(R,Cn). We also use the obtained asymptotics (1.12), the
boundedness of the operator

(4.50)

+∞∫

x

f̃ ′(w)

+∞
→∫

w

e
iB2(v)

v−x
dvdwJ2

in S(R; Cn) and the representation of S̃±12f in the form

S̃±12f(x) =

= −




x∫

−∞

f̃ ′(w)

w
←∫

−∞

e
−iB2(v)

v−x
dvdwF̃∓−∞(x,∞) +

+∞∫

x

f̃ ′(w)

+∞
→∫

w

e
iB2(v)

v−x
dvdw


S.

So we obtain the next theorem.

Theorem 4.7. The operators S± and Ŝ±, defined by (1.13) and (1.15),
are bounded linear operators in the subspace S(R; Cn) of the smooth fast decreas-
ing functions.

The next theorem finishes the description of the families of operators
{Tt}t≥0, {Tt}t≤0 and together with the properties of these families, obtained above
(Theorem 4.5, Theorem 4.6), shows that {Tt}t≥0 and {Tt}t≤0 are semigroups of
operators from the class (C0).
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Theorem 4.8. The families of operators {Tt}t≥0, {Tt}t≤0, defined by
(1.4) for the model A from the form (4.35), are uniformly bounded families of
operators in S(R; Cn).

The proof of Theorem 4.8 is analogous to the proof of Theorem 4.6 (see
[13], Theorem 5.4). The uniformly boundedness of the families of operators
{Tt}t≥0, {Tt}t≤0 follows from the colligation condition (4.15) and the inequal-
ities

(4.51)

‖Ttf‖2
L2 ≤ ‖f‖2

L2 + ‖L‖
+∞∫

0

|ΦTτf |2dτ ≤

≤ ‖f‖2
L2 +

1

2π
‖L‖

+∞∫

−∞

|Ĝf(x)|2dx = ‖f‖2
L2 +

1

2π
‖L‖.‖Ĝf‖2

L2

for each f ∈ S(R; Cn). In (4.51) we have used the representation of

(4.52) ΦTtf(x) =
1

2π

+∞∫

−∞

eitξĜf(ξ)dξ,

which follows after direct calculations from the properties of the multiplicative
integrals and the limits, similar to the limits as in (2.46). We have also used the

form of Ĝf(ξ)
(4.53)

Ĝf(ξ) =

+∞∫

−∞

f̃ ′(w)(Pw(ξ,+∞)J1 − P̃w(ξ,+∞)J2−

−(F̃+
w (ξ,∞)S(F+

−∞(ξ,∞) − I) − F̃−w (ξ,∞)S(F−−∞(ξ,∞) − I))J1)dw =

= S̃11f(ξ)P−∞(ξ,+∞)J1 − S̃22f(ξ)P̃−∞(ξ,+∞)J2−

−
+∞∫

−∞

f̃ ′(w)(F̃+
w (ξ,∞)S(F+

−∞(ξ,∞) − I)−

−F̃−w (ξ,∞)S(F−−∞(ξ,∞) − I))J1dw

using the introduced denotations (1.15), the boundedness of operator Ĝ in S(R; Cn)

given by the boundedness of S̃11, S̃22 and the operator (4.50) (see Theorem 4.7).
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The proved boundedness of the operators from the semigroups {Tt}t≤0

and {Tt}t≥0 in the subspace S(R; Cn) (dense in L2(R; Cn)) allows us to extend
Tt by continuity in L2(R; Cn) and to define the exponential function for the

unbounded operators A ∈ Λ̃R by

eitA = Tt (t ∈ R)

and to consider the nondissipative curves eitAf = Ttf for f ∈ L2(R; Cn). Then
Theorem 1.2 and Theorem 4.7 imply that for all f ∈ L2(R; Cn) the next relation
holds

‖eitAf(x) − eitxS±f(x)‖L2 → 0 as t→ ±∞.

The obtained asymptotics (1.12) allow to determine the behaviour of the
correlation function V (t+ τ, s + τ) = (ei(t+τ)Af, ei(s+τ)Af) of the nondissipative
curves eitAf as τ → ±∞.

Theorem 4.9. Let for the model A ∈ Λ̃R, defined by (4.35), next condi-
tions hold:

1) ‖Q∗′(x)‖ ∈ L2(R), ‖Q∗′(x)‖ ≤ C;
2) B(x) ∈ Cα1(R) (0 < α1 ≤ 1).

Then there exist the limits of the correlation function lim
τ→±∞

V (t+ τ, s+ τ) of the

nondissipative curves eitAf for each f ∈ L2(R; Cn) and

(4.54) lim
τ→±∞

V (t+ τ, s + τ) =

+∞∫

−∞

ei(t−s)xS̃±f(x)(S̃±f(x))∗dx

for all f ∈ S(R; Cn), t, s ∈ R, where V (t, s) = (eitAf, eisAf) is the correlation

function of the curve eitAf and the operators S̃± are defined by

(4.55) S̃±f(x) = T±Ŝ±f(x),

Ŝ±, T± are defined by (1.15) and (1.16).

5. Wave operators and a scattering operator for the couple

(A∗
, A) with A ∈ Λ̃R and applications. The obtained asymptotics (1.12)

for the nondissipative curves eitAf generated by the unbounded operators A from
the class Λ̃R with domains DA = DA∗ allow us to apply these results for a con-
structing of the scattering theory for the couple (A∗, A) as in the selfadjoint case
[25, 9, 10], as in the bounded dissipative case [27] and in the bounded nondis-
sipative case [12]. In other words we consider a finite dimensional perturbation
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A+ iÃ of the closed operator A presented as a coupling of a dissipative operator
and an antidissipative one with a dense domain DA, where Ã is a finite dimen-
sional selfadjoint operator. We obtain explicit forms of the wave operators of A,
the scattering operator and the similarity of A to the operator of a multiplying
by the independent variable in a subspace of L2(R; Cn). We obtain also the form
of the correlation function of the nondissipative curves eitAf .

Let the model A ∈ Λ̃R be defined by (4.35), let L, Π(x), Q(x), B(x), the
colligation X be stated as in part 4.

Theorem 1.5 gives the form of the wave operators of the couple (A∗, A)
as a weak limit.

The equality (1.19) implies the existence of the wave operators of the
couple (A∗, A) defined by

(W±(A∗, A)f, g) = lim
t→±∞

(eitA
∗

e−itAf, g) = (S̃∗∓S̃∓f, g)

and W±(A∗, A) = S̃∗∓S̃∓ as weak limits. Theorem 1.6 proves the existence of the
wave operators as a strong limit.

The proof of this theorem (see [13], Theorem 7.2) is analogous to the

proof of Theorem 1.4. But in this case we have used the form of the operator Ĝ,
defined by (4.53) and its boundedness, obtained in the course of the proving of
Theorem 4.9.

Now from the equality (1.20) it follows that

A∗W±(A∗, A) = W±(A∗, A)A

which express the similarity of A and A∗, given by the wave operators W±(A∗, A).

The next theorem deals with the similarity of the model A ∈ Λ̃R, defined
by (4.35), and the operator Q of a multiplying by an independent variable in a
suitable subspace of L2(R; Cn) and presents this similarity in an explicit form.
This allows us to define a scattering operator analogously as in the bounded
selfadjoint case, the bounded dissipative case and the bounded nondissipative
case.

Let us denote the range of the operator Ŝ± by

R(Ŝ±) = {g ∈ L2(R; Cn) : Ŝ±f = g for some f ∈ L2(R; Cn)}

and Y± = R(Ŝ±) be the closure of R(Ŝ±).

Theorem 5.1. The operators Ŝ±, defined by (1.15) in S(R; Cn), have

inverse bounded operators Ŝ−1
± defined in Y± and

(5.1) A = Ŝ−1
± QŜ±
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onto S(R; Cn).

The proof of this theorem (see [13], Theorem 7.3) follows the ideas of the
proof of Theorem 3.1. For the operators

G± = G11 +G22 +G±12,

where

Gkkg(x) =
1

2π

d

dx

x∫

−∞

g(τ)P
(k)
−∞(τ, x)dτJkQ(x), k = 1, 2,

G±12 = −G11S̃
±
12G22g(x)

(where P
(1)
−∞(τ, x) = P−∞(τ, x) and P

(2)
−∞(τ, x) = P̃−∞(τ, x)) in the subspace of all

functions g ∈ L2(R; Cm) such that g′ ∈ L2(R; Cm), ‖g′(x)‖ ≤ C straightforward

calculations show that G± are bounded inverse operators of Ŝ±. Then from the

representation (4.55) of S̃±, the existence and the form of T−1
±

T−1
± h = hΠ(x)(J1i lim

ε→0
Γ(εI + iB1(x))e

±π
2
B1(x)V ∗−∞(x)J1+

+J2(−i) lim
ε→0

Γ(εI − iB2(x))e
∓π

2
B2(x)Ṽ ∗−∞(x)J2)

(h ∈ C
n) and the equality (1.20) we obtain (5.1).
Now Theorem 5.1 allows us to introduce a scattering operator for the

couple (A∗, A) using the representation (4.55), Theorem 1.5 and Theorem 1.6

W−1
− (A∗, A)W+(A∗, A) = (S̃∗+S̃+)−1S̃∗−S̃−.

The proved similarity (5.1) of the model A and the operator Q of a multi-
plying by an independent variable and the obtained limits (4.54) of the correlation
function V (t + τ, s + τ) as τ → ±∞ of the nondissipative curves eitAf allow us
to obtain the form of the correlation function V (t, s). We consider the function

(5.2) W (t, s) = − ∂

∂τ
V (t+ τ, s+ τ)|τ=0

called an infinitesimal correlation function of the curve eitAf (f ∈ L2(R; Cn)),
introduced by M. S. Livšic and A. A. Yantsevich in [22] for a bounded opera-
tor A.

From the representation (5.2), the limits (4.54), the colligation condition
(4.15) and the similarity (5.1) it follows the form of the correlation function. This
form is given by the next theorem.
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Theorem 5.2. Let for the model A ∈ Λ̃R, defined by (4.35), next condi-
tions hold:

1) ‖Q∗′(x)‖ ∈ L2(R), ‖Q∗′(x)‖ ≤ C;
2) B(x) ∈ Cα1(R) (0 < α1 ≤ 1).

Then the correlation function V (t, s) of the curve eitAf (f ∈ L2(R; Cn)) has the
representation

V (t, s) = (ei(t−s)xS̃±f(x), S̃±f(x)) +

±∞∫

0

m∑

α,β=1

Ψ±α (t+ τ)(Leα, eβ)Ψ±α (s+ τ)dτ,

where Ψ±α (t) = (eitxŜ±f(x), Ŝ−1∗

± gα(x)), α = 1, 2, . . . ,m, {eα}m
1 is an orthonor-

mal basis in C
m and gα(x) = Φ∗eα = eαΠ∗(x) (x ∈ R, α = 1, 2, . . . ,m) are the

channel elements of the colligation X defined by (4.13).

6. Triangular model and asymptotics of dissipative curves
with unbounded semigroup generators iA with different domains
of A and A∗. The presented classes of operators Ω̃R and Λ̃R in the previous
parts of this paper are Kr-operators A with domains DA = DA∗ and a finite
dimensional imaginary parts (following the denotations in these cases r = m).
We recall that a closed operator A in a Hilbert space H is called a quasi-Hermitian
operator of a rank r (Kr-operator) if the restriction of the operator A onto the
Hermitian domain of A is an Hermitian operator with finite and equal defect
numbers (r, r) and nonempty resolvent set ρ(A).

In this part we will continue our considerations for a class of dissipative
unbounded Kr-operators A with domain DA 6= DA∗ and a real spectrum.

The results presented in this part are new and they have not been pub-
lished till now in other papers.

In [18] A. Kuzhel has considered the triangular model of all Kr-operators
A with a real spectrum and characteristic functions from the form

W (λ) =

l
→∫

0

e
−i 1+λα(v)

α(v)−λ
dE(v)J

where α(v) is a nondecreasing real function in (0; l) (or (−∞; +∞)), E(v)J is a
monotonically increasing family of Hermitian matrices.

We consider the triangular model (1.21) where α : R −→ R is an un-
bounded nondecreasing function, Π(x) is a measurable n × m (1 ≤ n ≤ m,
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r ≤ m) matrix function whose rows are linearly independent on each point of a
set of positive measure and satisfying the conditions:

(6.1)

+∞∫

−∞

‖Π(x)‖2dx < +∞,

(6.2)

+∞∫

−∞

trB(x)dx < +∞,

where
B(x) = Π∗(x)Π(x)

and f ∈ L2(R; Cn).
The model (1.21) describes the class of all unbounded dissipative Kr-

operators with a domain DA ⊂ L2(R; Cn) with a real spectrum and with a char-
acteristic matrix function

(6.3) W (λ) =

+∞
→∫

−∞

e
−i 1+λα(v)

α(v)−λ
B(v)dv

.

The model (1.21) satisfies the condition Im(Af, f) ≥ 0, ∀f ∈ DA, and conse-
quently A is a dissipative operator.

On the other hand the operator A is densely defined (see Corollary 3.3,
[18]).

Direct calculations show that the resolvent of A has the representation

(6.4)

(A− λI)−1f(x) =
f(x)

α(x) − λ
−

−i
x∫

−∞

α(ξ) + i

α(ξ) − λ
f(ξ)Π(ξ)

x
→∫

ξ

e
−i 1+λα(v)

α(v)−λ
B(v)dv

dξΠ∗(x)
α(x) − i

α(x) − λ

for each λ 6∈ R and f ∈ L2(R; Cn). Following [18] we obtain that for all λ:
Imλ 6= 0 the resolvent (A−λI)−1 is defined and bounded on the space L2(R; Cn)
and the spectrum of A lies on the real axis.

Let us consider the auxiliary selfadjoint operator

(6.5) Bi = iRi − iR∗i + 2R∗iRi,
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where Ri = (A− iI)−1. Then following the ideas from [18] we obtain the repre-
sentation

(6.6) Bif(x) =

+∞∫

−∞

α(ξ) + i

α(ξ) − i
f(ξ)Π(ξ)

+∞
→∫

ξ

eB(v)dvdξ

+∞
←∫

x

eB(v)dvΠ∗(x)
α(x) − i

α(x) + i
.

Denoting the operators

(6.7) Φf(x) =

+∞∫

−∞

α(x) + i

α(x) − i
f(x)Π(x)

+∞
→∫

x

eB(v)dvdx, ∀f ∈ L2(R; Cn),

(6.8) Φ∗h = h

+∞
←∫

x

eB(v)dvΠ∗(x)
α(x) − i

α(x) + i
, h ∈ C

m

it follows that

(6.9) Bif = Φ∗Φf.

Following the ideas of A.Kuzhel ([18]) the condition under which DA =
DA∗ for the model A from the form (1.21) takes the form

DA = DA∗ ⇐⇒ tr

+∞∫

−∞

(α2(x) + 1)B(x)dx <∞,

(i.e. DA = DA∗ if and only if (α2(x) + 1)B(x) is an integrable matrix function
on R).

Remarks. It has to mention that the case when (α2(x) + 1)B(x) is
an integrable matrix function on R the model A of A. Kuzhel, defined by (1.21),
coincides with the model of M. S. Livšic for the dissipative operator

Af(x) = α(x)f(x) + i

+∞∫

−∞

f(ξ)Π̃(ξ)dξΠ̃∗(x)

when DA = DA∗ , where

Π̃∗(x) =

x
→∫

−∞

eiα(v)B(v)dvΠ∗(x)(α(x) − i)
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and tr(α2(x) + 1)B(x) = tr Π̃∗(x)Π̃(x) = tr B̃(x).
Let us consider now the model A with the representation (1.21), where

(α2(x) + 1)B(x) is not integrable function on R. This implies that A is a dissi-
pative closed densely defined operator with DA 6= DA∗ .

Let us denote

(6.10) D1 = {f ∈ L2(R; Cn) : α(x)f(x) ∈ L2(R; Cn)}

We define the family of operators {Tt}t>0 by the equality (1.22) in the sense of
a principal value, where f = (A − λ0I)

−1g, ∀g ∈ D1, λ0 is an arbitrary fixed
number with Imλ0 > 0, δ is an arbitrary number with 0 < δ < Imλ0 and t > 0.

Theorem 6.1. The operator Tt (t > 0), defined by (1.22), satisfies the
conditions:

1) the integral in (1.22) exists in the sense of a principal value for each
f = (A− λ0I)

−1g, where g ∈ D1;
2) Ttf(x) ∈ L2(R; Cn) for all f = (A− λ0I)

−1g, g ∈ D1;
3) Ttf(x) does not depend on the choice of the sufficiently small number

δ > 0 for f = (A− λ0I)
−1g, g ∈ D1.

P r o o f. Let g ∈ D1 and f = (A−λ0I)
−1g, let λ0 be a fixed number with

Imλ0 > 0 and δ : 0 < δ < Imλ0. Then after calculations and using the Residue
theorem the operator (1.22) takes the form

(6.11)

Ttf(x) = − 1

2πi

+∞∫

−∞

eit(ξ−iδ)(A− (ξ − iδ)I)−1f(x)dξ =

= − 1

2πi

+∞∫

−∞

eit(ξ−iδ)(A− (ξ − iδ)I)−1(A− λ0I)
−1g(x)dξ =

= − 1

2πi

+∞∫

−∞

eit(ξ−iδ)

ξ − iδ − λ0
(A− (ξ − iδ)I)−1d(x)dξ + eitλ0f(x).

On the other hand from the definition of the multiplicative integral we have

(6.12)

∥∥∥∥∥∥∥

x
→∫

ξ

e
−i

1+(ξ−iδ)α(v)
α(v)−(ξ−iδ)

B(v)dv

∥∥∥∥∥∥∥
=

=

∥∥∥∥∥∥∥

x
→∫

ξ

e

�
−i (1+ξα(v))(α(v)−ξ)−δ2α(v)

(α(v)−ξ)2+δ2)
− δ(α2(v)+1)

(α(v)−ξ)2+δ2)

�
B(v)dv

∥∥∥∥∥∥∥
≤ 1,
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∀ξ, x ∈ R, ξ ≤ x.
Now from the form (6.4) of the resolvent (A − (ξ − iδ)I)−1g and the

inequality (6.12) it follows the existence of the integral on the right hand side in
the last equality in (6.11), i.e. Ttf is defined by (1.22) for all f = (A− λ0I)

−1g,
g ∈ D1.

The condition 2) follows from the relations (6.11) and the representation
of the resolvent (A− (ξ − iδ)I)−1g for g ∈ D1.

Finally for the obtaining of the independence of the definition of Ttf by
(1.22) on the choice of δ > 0 (0 < δ < Imλ0) we apply the Residue theorem for the
function eitz(A− zI)−1f and for a suitable domain in the lower half-plane. Then
using the form (6.4) of the resolvent and the inequalities as in (6.12), concerning
the multiplicative integrals, we obtain

+∞∫

−∞

eit(ξ−iτ)(A− (ξ − iτ)I)−1f(x)dξ =

+∞∫

−∞

eit(ξ−iδ)(A− (ξ − iδ)I)−1f(x)dξ

for arbitrary τ, δ : 0 < δ < τ < Imλ0, f = (A − λ0I)
−1g for all g ∈ D1. The

proof is complete. �

The condition 3) in Theorem 6.1 implies that the operators from the
family {Tt}t>0, defined by (1.22), onto the set

D0 = {f ∈ DA : f = (A− λ0I)
−1g ∀g ∈ D1}

are well-defined operators.
Next we will show that the family {Tt}t>0, defined by (1.22), possesses the

properties of the semigroup of operators from the class (C0) with a differentiability
and a generator iA.

Theorem 6.2. The family of operators {Tt}t>0 defined by (1.22) satisfies
the conditions

(6.13) TsTtf = Ts+tf ∀f ∈ D0 (∀t, s > 0),

(6.14) lim
t→0

Ttf = f ∀f ∈ D0 (t > 0).

P r o o f. The proof of (6.13) is analogous to the proof of (4.29) in the case
when t > 0 (see [13], Theorem 4.1).
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Let f ∈ D0 and then f = (A − λ0I)
−1g, where g ∈ D1. Let δ > 0 be

a fixed number such that 0 < δ < Imλ0. From the representation (6.4) of the
resolvent, the definition (1.22) of Tt and the Resolvent equation we obtain

Ttf(x) = Tt(A− λ0I)
−1g(x) =

= − 1

2πi

+∞∫

−∞

eit(ξ−iδ)(A− (ξ − iδ)I)−1(A− λ0I)
−1g(x)dξ =

= − 1

2πi

+∞∫

−∞

eit(ξ−iδ)

ξ − iδ − λ0
((A− (ξ − iδ)I)−1g(x) − (A− λ0I)

−1g(x))dξ =

= − 1

2πi

+∞∫

−∞

eit(η−iδ)

ξ − iδ − λ0

1

α(x) − η + iδ
g(x)dη+

+
1

2π

+∞∫

−∞

(α(η) + i)g(η)Π(η)




+∞∫

−∞

eit(ξ−iδ)

ξ − iδ − λ0
· α(x) − i

α(x) − ξ + iδ
· 1

α(η) − ξ + iδ
·

·

x
→∫

η

e
−i 1+(ξ−iδ)α(v)

α(v)−ξ+iδ
B(v)dv

dξ


 dηΠ∗(x) + eitλ0f(x).

These relations and the Lebesgue convergence theorem show that

(6.15)

lim
t→0,t>0

Ttf(x) = − 1

2πi

+∞∫

−∞

(A− (ξ − iδ)I)−1(A− λ0)
−1g(x)dξ =

= − 1

2πi

+∞∫

−∞

1

ξ − iδ − λ0
(A− (ξ − iδ)I)−1g(x)dξ + f(x)

according to the norm ‖ ‖L2 .
Now we calculate the integral on the right hand side of (6.15) applying the

Residue theorem for the function ϕ(z) = 1/(z − λ0)(A− zI)−1g and the domain
G with a contour ΓR = [AB] ∪ LR, where

LR = {z =
√
R2 + δ2eiϕ;−π + ψR ≤ ϕ ≤ −ψR},

[AB] = {z = x− iδ;−R ≤ x ≤ R},
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(ψR = arctan
δ

R
for an arbitrary sufficiently large R > 0) and then letting R →

∞. These calculations show that

(6.16)

+∞∫

−∞

1

ξ − iδ − λ0
(A− (ξ − iδ)I)−1g(x)dξ = 0.

The equalities (6.16) and (6.15) imply that (6.14) holds and the theorem is
proved. �

The relation (6.14) allows to define the operator Tt in the case when t = 0
by the equality

(6.17) T0f(x) = lim
t→0,t>0

Ttf(x) = f(x) ∀f ∈ D0.

The next theorem solves the question of a differentiability of the fam-
ily {Tt}t≥0, defined by (1.22) and (6.17), and determines the generator of the
considered family.

Theorem 6.3. The family of operators {Tt}t≥0, defined by (1.22) and
(6.17), satisfies the conditions

(6.18)
d

dt
Ttf(x) = iATtf(x) ∀f ∈ D̂0,

(6.19) lim
t→0,t>0

Ttf − f

t
= iAf ∀f ∈ D̂0,

where

D̂0 = {f ∈ L2(R; Cn) : f = (A− λ0I)
−1(A− µ0I)

−1h,∀h ∈ D1}

(µ0 6= λ0, Imµ0 > 0).

P r o o f. The model A is a closed operator. Then from the representation
(6.4) of the resolvent (A− (ξ − iδ)I)−1 direct calculations show that

(6.20) ATtf(x) = TtAf(x) ∀f ∈ D̂0.
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Then if f ∈ D̂0, i.e. f = (A− λ0I)
−1g = (A− λ0I)

−1(A− µ0I)
−1h (h ∈ D1), we

obtain

(6.21)

iATtf(x) = iTtA(A− λ0I)
−1(A− µ0I)

−1h(x) =

= − 1

2πi

+∞∫

−∞

eit(ξ−iδ)

ξ − iδ − λ0
i(ξ − iδ)(A − (ξ − iδ)I)−1g(x)dξ+

+eitλ0 iλ0(A− λ0I)
−1g(x) =

= − 1

2πi

+∞∫

−∞

d

dt

eit(ξ−iδ)

ξ − iδ − λ0
(A− (ξ − iδ)I)−1g(x)dξ +

d

dt
eitλ0f(x).

Now we will show that the right side of (6.21) is equal to the derivative
d

dt
Ttf(x)

for each f ∈ D̂0.
Indeed we have

(6.22)

2πi

τ
(Tt+τf − Ttf)+

+

+∞∫

−∞

eit(ξ−iδ)

ξ − iδ − λ0
i(ξ − iδ)(A − (ξ − iδ)I)−1g(x)dξ − iλ0e

itλ0f(x) =

= −
+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)(A− (ξ − iδ)I)−1g(x)

ξ − iδ − λ0
dξ+

+2πi(
1

τ
(ei(t+τ)λ0 − eitλ0)f(x) − iλ0e

itλ0f(x)).

These results show that it remains to prove that the integral on the right hand
side of (6.22) tends to 0 as τ → 0. But

(6.23) lim
τ→0

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ)

)
= 0

and direct calculations show that

(6.24)

∣∣∣∣
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ)

∣∣∣∣ ≤
{
C̃1|ξ| when |τξ| ≥ δ̃,

C̃2|ξ − iδ| when |τξ| ≤ δ̃,

where δ̃ > 0 is an arbitrary fixed number, C̃1, C̃2 > 0 are suitable constant.
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From the form of g(x) = (A − µ0I)
−1h(x) (h ∈ D1) and the form (6.4)

of the resolvent of the model A we present the integral on the right hand side of
the equality (6.22) in the form
(6.25)

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)(A− (ξ − iδ)I)−1g(x)

ξ − iδ − λ0
dξ =

=

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

(A− (ξ − iδ)I)−1h(x)

ξ − iδ − µ0
dξ−

−
+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

1

ξ − iδ − µ0
dξg(x).

But direct calculations show that

(6.26)

1

2πi

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

1

ξ − iδ − µ0
dξg(x) =

=

((
1

τ
(eiτλ0 − 1) − iλ0

)
eitλ0 −

(
1

τ
(eiτµ0 − 1) − iµ0

)
eitµ0

)
g(x)

λ0 − µ0
.

For the obtaining of (6.26) we have applied the Residue theorem for the function

ϕ1(z) = ((eiτz − 1)/τ − iz)
eitz

z − λ0

1

z − µ0
and an appropriate domain.

For the first integral on the right hand side of (6.25) it follows that
(6.27)

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

(A− (ξ − iδ)I)−1h(x)

ξ − iδ − µ0
dξ =

=

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

1

ξ − iδ − µ0

h(x)

α(x) − ξ + iδ
dξ−

−
+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

1

ξ − iδ − µ0
·

·




x∫

−∞

α(η) + i

α(η) − ξ + iδ
f(η)Π(η)

x
→∫

η

e
−i

1+(ξ−iδ)α(v)
α(v)−ξ+iδ

b(v)dv
dη

Π∗(x)(α(x) − i)

α(x) − ξ + iδ


 dξ
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For the first integral on the right hand side of (6.27) applying the Residue theorem

for the function ψ(z) = ((eiτz − 1)/τ − iz)
eitz

z − λ0

1

z − µ0

1

α(x) − z
and a suitable

domain we obtain
(6.28)

−
+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0

1

ξ − iδ − µ0

1

α(x) − ξ + iδ
dξ =

= −2πi

((
1

τ
(eiτλ0 − 1) − iλ0

)
eitλ0

λ0 − µ0

1

α(x) − λ0
+

+

(
1

τ
(eiτµ0 − 1) − iµ0

)
eitµ0

µ0 − λ0

1

α(x) − µ0
−

−
(

1

τ
(eiτα(x) − 1) − iα(x)

)
eitα(x)

α(x) − λ0

1

α(x) − µ0

)
→ 0

as τ → 0.
The Lebesgue convergence theorem shows that the second integral on the

right hand side of (6.27) tends to 0 as τ → 0.
Consequently from (6.28), (6.27), (6.26), (6.25), (6.24) it follows that

1

2πi

+∞∫

−∞

(
1

τ
(eiτ(ξ−iδ) − 1) − i(ξ − iδ))

eit(ξ−iδ)

ξ − iδ − λ0
(A− (ξ − iδ)I)−1g(x)dξ

tends to 0 as τ → 0 according to the norm ‖ ‖L2 . This relation together with
(6.23), (6.22), (6.21) implies that

(6.29)
1

τ
(Tt+τf − Ttf) −→ iATtf as τ → 0 ∀f ∈ D̂0

and (6.29) implies that
d

dt
Ttf = iATtf for all f ∈ D̂0 and (6.18) is proved.

Next the equalities (6.18) and (6.20) together with the closedness of the
operator A give the equality (6.19) which proves the theorem. �

It has to mention that for the dissipative model A, defined by (1.21), the
equality (6.18) implies that {Tt}t≥0 is an uniformly bounded family of operators.
Really, from the relations

d

dt
‖Ttf‖2

L2 = − Im(ATtf, Tt) ≤ 0
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and the dissipativness of the model A it follows that

(6.30) ‖Ttf‖2
L2 ≤ ‖T0f‖2

L2 ≤ ‖f‖2
L2 ∀f ∈ D̂0,

and hence

(6.31) ‖Tt‖2
L2 ≤ 1.

Now we can extend the operator Tt by continuity on the whole space
L2(R; Cn). Then the proved properties of the operators Tt imply that the family
{Tt}t≥0 is a semigroup from the class (C0).

The proved properties of the family {Tt}t≥0 given by Theorem 6.2 and
Theorem 6.3 allow us to define the dissipative curves generated by the unbounded
operator A with the form (1.21) by Ttf for each f ∈ D̂0 and Tt are defined by
(1.22), (6.17).

Before continuing with the asymptotics of these curves generated from A
it has to mention that in the case when α : R −→ R satisfies the conditions:

(i) α(x) is continuous unbounded strictly increasing in R;
(ii) the inverse function σ(u) of α(x) is absolutely continuous on R;
(iii) σ′(u) is a bounded function on R,

the model A, defined by (1.21), after the change of the variable x = σ(u) can be
written in the form

(6.32) Ag(u) = ug(u) + i

u∫

−∞

(η + i)g(η)Π̂(η)

u
→∫

η

eiv
eB(v)dvΠ̂∗(u)(u − i)dη

(where g ∈ L2(R; Cn;σ(u)), ‖Π̂(u)‖ ∈ L2(R;σ(u)) when the function f(σ(u)) ∈
L2(R; Cn;σ(u)), ‖Π(σ(u))‖ ∈ L2(R)).

To avoid complications of the writing we can consider (as in the case of

the operators from Λ̃R – part 4) the model

(6.33) Af(x) = xf(x) + i

x∫

−∞

(ξ + i)f(ξ)Π(ξ)

x
→∫

ξ

eivB(v)dvΠ∗(x)(x − i)dξ

(i.e. α(x) = x) with a domain DA which is dense in L2(R; Cn).
It has to mention that the asymptotics of the curves generated by the

model (6.32) can be obtained analogously to the asymptotics of the curves gener-
ated by the model (6.33) if we suppose additional conditions for σ(u) (for example,
σ′(u) ∈ Cα2(R), 0 < α2 ≤ 1).
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Let the model A be defined by (6.33) and Π(x), B(x) be stated as above
in this part. Let us denote

(6.34) D1 = {f ∈ L2(R; Cn) : xf(x) ∈ L2(R; Cn)}.

Next we need some appropriate denotations similar to the denotations, introduced
in part 2 and part 4 for the models from Ω̃R and Λ̃R and some preliminary
properties, concerning the multiplicative integrals, describing the characteristic
function of the operator A from the form (6.33).

Theorem 6.4. Let the matrix function B(x) is nonnegative and inte-
grable on R. Then for almost all x ∈ [a; b] there exist the limit values of the
multiplicative integral (τ > 0)

(6.35)

s− lim
τ→0

b
→∫

a

e−i
1+(x±iτ)v

v−x∓iτ
B(v)dv =

= s− lim
ε→0

x−ε
→∫

a

e−i 1+vx
v−x

B(v)dve±π(1+x2)B(x)

b
→∫

x+ε

e−i 1+vx
v−x

B(v)dv ,

where −∞ ≤ a < b ≤ +∞.

The existence and the form of the limits (6.35) we have proved, using the
ideas of the obtaining of the limits (2.13) in [27].

Let us denote the next operators

(6.36) B̃(x) = (1 + x2)B(x),

(6.37) Fw(x− iδ, u) =

u
→∫

w

e−i
1+v(x−iδ)

v−x+iδ
B(v)dv ,

(6.38) F−w (x, u) = s− lim
δ→0

u
→∫

w

e−i 1+v(x−iδ)
v−x+iδ

B(v)dv ,

for all w, u, x ∈ R such that −∞ ≤ w < u ≤ +∞ and

(6.39) F−w (x, u) = s− lim
δ→0

x−δ
→∫

w

e−i 1+vx
v−x

B(v)dve−π eB(x)

u
→∫

x+δ

e−i 1+vx
v−x

B(v)dv ,
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(6.40) Rw(x) = s− lim
δ→0

x−δ
→∫

w

e−i 1+vx
v−x

B(v)dveπ
eB(x)




x−δ
→∫

w

e−i 1+vx
v−x

B(v)dv




−1

,

(6.41) U2w(x) = s− lim
δ→0

x−δ
→∫

w

e−i 1+vx
v−x

B(v)dve
iB(x)

x−δR
w

1+vx
v−x

dv
e−iB(x)x(x−δ−w),

(6.42) P−2w(x, u) = R−1
w (x)U2w(x)ei

eB(x) ln x−w
u−x ,

(6.43) U3(x, u) = lim
δ→0

e−iB(x)x(u−x−δ)e
iB(x)

uR
x+δ

1+vx
v−x

dv

u
→∫

x+δ

e−i 1+vx
v−x

B(v)dv ,

(6.44) Q−w(x, u) = P−2w(x, u)ei
eB(x) ln(u−x)e−i eB(u) ln(u−x),

(6.45) V−∞(x) = lim
δ→0

x−δ
→∫

−∞

e−i 1+vx
v−x

B(v)dvei
eB(x) ln δ

for all w, u, x such that −∞ ≤ w < x < u ≤ +∞.
The existence of these limits follows from the limit values of the considered

multiplicative integrals, given by Theorem 6.4.
The next representation presents the resolvent (A − λI)−1 in a suitable

form which we will use in the representation of the family {Tt}t≥0.
Let Q(x) be a measurable matrix function which satisfies the condition

Π(x)Q(x) = I,

Q∗(x) is a smooth matrix function with ‖Q∗′(x)‖ ∈ L2(R). Then for each f from
the set

(6.46)
H0 = {f ∈ L2(R; Cn) : f ′ ∈ L2(R; Cn), ‖f(x)‖ ≤Mf ,

‖f ′(x)‖ ≤Mf , lim
x→±∞

f(x)Q∗(x) = 0}
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and λ : Imλ 6= 0 the resolvent (A− λI)−1 has the representation

(6.47) (A− λI)−1f(x) =

x∫

−∞

f̃(w)

x
→∫

w

e−i 1+λv
v−λ

B(v)dvdwΠ∗(x)
x− i

x− λ
,

where

(6.48) f̃(w) = −i w

w − i
f(w)Π(w) +

(
1

w − i
f(w)Q∗(w)

)′
.

Let the matrix function B(x) satisfies the conditions:
1) ‖B(x)‖ ≤ C, ‖xB(x)‖ ≤ C ∀x ∈ R;
2) B(x) ∈ Cα1(R), xB(x) ∈ Cα2(R) (0 < α1 ≤ 1, 0 < α2 ≤ 1) (i.e.

‖B(x1) −B(x2)‖ ≤ C|x1 − x2|α1 , ‖x1B(x1) − x2B(x2)‖ ≤ C|x1 − x2|α2).
Let α = min{α1, α2}. Then the next inequalities hold:

Lemma 6.5.

(6.49) ‖eiB(x)(1+x2) ln(x−ξ) − eiB(ξ)(1+ξ2) ln(x−ξ)‖ ≤ C̃(1 + |x|)|x− ξ|α′

for some constant C̃ > 0, for all α′ : 0 < α′ < α and for x, ξ such that 0 <
x− ξ < 1.

Lemma 6.6 For each α′ : 0 < α′ < α there exists a constant C̃ > 0 such
that

(6.50) ‖eiB(ξ)(1+ξ2) ln(ξ−w) − eiB(x)(1+x2) ln(x−w)‖ ≤ C̃(1 + |x|)
(
x− ξ

ξ − w

)α′

for all w, ξ, x : w < ξ < x, 0 < x− w < 1.

Lemma 6.7.

(6.51) ‖F−w (ξ;x) −Q−w(ξ;x)‖ ≤ C̃(1 + |x|)(x− ξ)α
′

for some constant C̃ > 0, for all w, ξ, x : w < ξ < x, 0 < x − w < 1 and
∀α′ : 0 < α′ < α.

Lemma 6.8.

(6.52) ‖U2w(x) − U2w(ξ)‖ ≤ C̃(1 + |x|)
(
x− ξ

ξ − w

)α′
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for some constant C̃ > 0, for all w, ξ, x : w < ξ < x, 0 < x − w < 1 and
α′ = α/(1 + α).

Lemma 6.9.

(6.53) ‖R−1
w (ξ) −R−1

w (x)‖ ≤ C̃(1 + |x|)
(
x− ξ

ξ − w

)α′

for some constant C̃ > 0, for all w, ξ, x : w < ξ < x, 0 < x − w < 1 and
α′ = α/(1 + α).

Lemma 6.10.

(6.54) ‖Q−w(x) −Q−w(ξ)‖ ≤ C̃(1 + |x|)
(
x− ξ

ξ − w

)α′

for some constant C̃ > 0, for all w, ξ, x : w < ξ < x, 0 < x − w < 1 and
α′ = α/(1 + α).

Lemma 6.11.

(6.55)

∥∥∥∥∥∥∥

x
→∫

w

e
−i 1+vξ

v−ξ
B(v)dv − U2w(ξ)e

−iB(ξ)(1+ξ2) ln ξ−x
ξ−w

∥∥∥∥∥∥∥
≤ C̃(1 + |x|)(ξ − x)α

′

for some constant C̃ > 0, for all w, ξ, x : w < x < ξ < x+β, β < 1, and for each
α′ : 0 < α′ ≤ α ≤ 1.

Lemma 6.12.

(6.56) ‖U3(x, u) − U3(ξ, u)‖ ≤ C̃(1 + |x|)
(
x− ξ

u− x

)α′

for some constant C̃ > 0, for all ξ, x, u : ξ < x < u, 0 < u − ξ < 1, and
α′ = α/(1 + α).

Lemma 6.13.

(6.57) ‖F−w (ξ, u) − F−w (x, u)‖ ≤ C̃(1 + |x|)
((

x− ξ

ξ − w

)α′

+

(
x− ξ

u− x

)α′
)
,

(6.58) ‖Uw(x, u) − Uw(ξ, u)‖ ≤ C̃(1 + |x|)
((

x− ξ

ξ − w

)α′

+

(
x− ξ

u− x

)α′
)
,
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for some constant C̃ > 0, for all w, ξ, x, u : w < ξ < x < u, 0 < u − w < 1,
α′ = α/(1 + α), where Uw(x, u) is defined by the equality

(6.59) Uw(x, u) = Rw(x)F−w (x, u).

All of these inequalities follow from the properties of the multiplicative
integrals using the ideas of proving of similar inequalities, proved in [27] and [12].

The next lemma presents a suitable representation of the curve Ttf which
allows to obtain the asymptotics of the curve Ttf as t→ +∞ when f belongs to
a suitable subset of L2(R; Cn).

Lemma 6.14. The operator Tt, defined by (1.22), possesses the next
representation
(6.60)

Ttf(x) = Tt(A− λ0I)
−1(A− µ0I)

−1h(x) =

= − 1

2πi

∫

R\∆

eitξ

ξ − λ0

1

ξ − µ0

x− i

x− ξ




x∫

−∞

h̃(η)F−η (ξ, x)dη


 dξΠ∗(x)−

− 1

2πi
lim
ε→0

∫

∆

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(η)F−η (ξ, x)dη


 dξΠ∗(x)+

+
eitλ0 − eitµ0

λ0 − µ0
g(x) + eitλ0f(x),

where f(x) = (A − λ0I)
−1(A − µ0I)

−1h(x), h ∈ D1 ∩H0, ∆ = [x − β;x + β], β

is an arbitrary fixed number: 0 < β < 1, λ0 6= µ0, Imλ0, Imµ0 > 0 and h̃(x) is
defined by

(6.61) h̃(x) =
−ix
x− i

h(x)Π(x) +

(
1

x− i
h(x)Q∗(x)

)′
.

Now we are in a position to give the asymptotics of the dissipative curve
Ttf(x) and these asymptotics are presented by Theorem 1.7.

P r o o f o f T h e o r em 1.7. Let h ∈ D1 ∩H0 and f = (A− λ0I)
−1(A−

µ0I)
−1h (Imλ0 > 0, Imµ0 > 0). The representation (6.60) of the curve Ttf(x)

shows that its asymptotic behaviour as t → +∞ depends only on the behaviour
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of

(6.62) lim
ε→0

∫

∆

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x)

where ∆ = [x − β;x + β], β is a fixed number: 0 < β < 1. The other addends
in (6.60) tend to 0 as t → +∞ which follows directly. Next we use the methods
and ideas as in [12, 13], but using suitable inequalities, concerning multiplicative
integrals, presented in the previous lemmas of this part.

Direct calculations show that (as t→ +∞):

lim
ε→0

∫

∆

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x) =

= lim
ε→0

x∫

−∞

h̃(w)




x+β∫

x−β

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0
F−w (ξ, x)dξ


 dwΠ∗(x) ∼

∼ lim
ε→0

x∫

−∞

h̃(w)




x+β∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw

x− i

x− λ0

1

x− µ0
Π∗(x) =

(6.63)

= lim
ε→0

x∫

−∞

h̃(w)




x∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ +

+

x+β∫

x

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw

x− i

x− λ0

1

x− µ0
Π∗(x) =

= lim
ε→0




x∫

−∞

h̃(w)




x∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw +

+

x∫

x−β

h̃(w)




w∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw +
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+

x∫

x−β

h̃(w)




x∫

w

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw +

+

x∫

−∞

h̃(w)




x+β∫

x

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw


Π∗(x)

x− i

x− λ0

1

x− µ0
.

Now we will obtain separately the asymptotic behaviour as t → +∞ of
the four integrals on the right hand side of the last equality in (6.63). At first for
the second integral straightforward calculations show that
(6.64)

lim
ε→0

x∫

x−β

h̃(w)




w∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
=

= lim
ε→0

x∫

x−β

h̃(w)




w∫

x−β

eitξ

(x− ξ)1−ε

x
→∫

w

e−i 1+ξv
v−ξ

B(v)dvdξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
=

=

x∫

x−β

h̃(w)




w∫

x−β

eitξ

x− ξ

x
→∫

w

e
−i 1+ξv

v−ξ
B(v)dv

dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
→ 0

as t→ +∞ (using the Lebesgue lemma for the Fourier transform).
For the first integral in (6.63) we obtain consecutively

lim
ε→0

x∫

−∞

h̃(w)




x∫

x−β

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dwΠ∗(x)

x− i

x− λ0

1

x− µ0
=

= lim
ε→0

x∫

−∞

h̃(w)




x∫

x−β

eitξ

(x− ξ)1−ε

x−β
→∫

w

e
−i 1+ξv

v−ξ
B(v)dv

F−x−β(ξ, x)dξ


 dw·

·Π∗(x) x− i

x− λ0

1

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)

x−β
→∫

w

e−i 1+vx
v−x

B(v)dv




x∫

x−β

eitξ

(x− ξ)1−ε
F−x−β(ξ, x)dξ


 dw·
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·Π∗(x) x− i

x− λ0

1

x− µ0
∼

(6.65) ∼ lim
ε→0

x∫

−∞

h̃(w)

x−β
→∫

w

e−i 1+vx
v−x

B(v)dv




x∫

x−β

eitξ

(x− ξ)1−ε
Q−x−β(ξ, x)dξ


 dw·

·Π∗(x) x− i

x− λ0

1

x− µ0
=

= lim
ε→0

x∫

−∞

h̃(w)

x−β
→∫

w

e−i 1+vx
v−x

B(v)dv ·

·




x∫

x−β

eitξ

(x− ξ)1−ε
Q−x−β(ξ)e−i eB(x) ln(x−ξ)dξ


 dwΠ∗(x)

x− i

x− λ0

1

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)

x−β
→∫

w

e−i 1+vx
v−x

B(v)dvQ−x−β(x)·

·




x∫

x−β

eitξ

(x− ξ)1−ε
e−i eB(x) ln(x−ξ)dξ


 dwΠ∗(x)

x− i

x− λ0

1

x− µ0
,

as t→ +∞. In (6.65) we have used the inequality

∥∥∥∥∥∥∥∥

x−β
→∫

w

e−i 1+vx
v−x

B(v)dv −

x−β
→∫

w

e
−i 1+vξ

v−ξ
B(v)dv

∥∥∥∥∥∥∥∥
≤ C1

β
|x− ξ|(1 + β + |x|)

x−β∫

w

1

ξ − v
dv ≤

≤ C1

β
|x− ξ|(1 + β + |x|)β

ε

δ
(x− β − w)1−δβδ

(C1 > 0 is a suitable constant, δ : 0 < δ < 1 is an arbitrary fixed sufficiently
small number), Lemma 6.7, Lemma 6.10, the Lebesgue convergence theorem and
the form of Q−w(ξ, x):

(6.66) Q−w(ξ, x) = Q−w(ξ)e−i eB(x) ln(x−ξ).
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For the third integral in (6.63) from Lemma 6.7, Lemma 6.10 and the form (6.66)
of Q−w(ξ, x) applying the Lebesgue convergence theorem and the Lebesgue lemma
for the Fourier transform it follows that
(6.67)

lim
ε→0

x∫

−∞

h̃(w)




x∫

w

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dwΠ∗(x)

x− i

x− λ0

1

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)Q−w(x)




x∫

w

eitξ

(x− ξ)1−ε
e−i eB(x) ln(x−ξ)dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0

as t→ +∞.
For the last integral in (6.63) we have

(6.68)

lim
ε→0

x∫

−∞

h̃(w)




x+β∫

x

eitξ

(x− ξ)1−ε
F−w (ξ, x)dξ


 dwΠ∗(x)

x− i

x− λ0

1

x− µ0
=

= lim
ε→0

x∫

−∞

h̃(w)




x+β∫

x

eitξ

(x− ξ)1−ε

x
→∫

w

e−i 1+vξ
v−ξ

B(v)dvdξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)




x+β∫

x

eitξU2w(ξ)

(x− ξ)1−ε
e−i eB(ξ) ln ξ−x

ξ−w dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)U2w(x)




x+β∫

x

eitξe−i eB(ξ) ln ξ−x
ξ−w

(x− ξ)1−ε
dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)·

·




x+β∫

x

eitξ

(x− ξ)1−ε
e−i eB(ξ) ln(ξ−x)dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
∼

∼ lim
ε→0

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)·

·




x+β∫

x

eitξ

(x− ξ)1−ε
e−i eB(x) ln(ξ−x)dξ


 dw

x− i

x− λ0

Π∗(x)

x− µ0
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as t→ +∞.

In the course of obtaining of the relations (6.68) we have applied consec-
utively Lemma 6.11, Lemma 6.8, Lemma 6.6, Lemma 6.5.

Now from (6.63), (6.64), (6.65), (6.67) and (6.68) it follows that
(6.69)

lim
ε→0

x+β∫

x−β

eitξ

(x− ξ)1−ε
· x− i

ξ − λ0
· 1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x) ∼

∼ lim
ε→0




x−β∫

−∞

h̃(w)Q−w(x)




x∫

x−β

eitξ

(x− ξ)1−ε
e−i eB(x) ln(x−ξ)dξ


 dw +

+

x∫

x−β

h̃(w)Q−w(x)




x∫

x−β

eitξ

(x− ξ)1−ε
e−i eB(x) ln(x−ξ)dξ


 dw +

+

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w) ·

·




x+β∫

x

eitξ

(x− ξ)1−ε
e−i eB(x) ln(ξ−x)dξ


 dw


 x− i

x− λ0

Π∗(x)

x− µ0

as t→ +∞, where Q−w(x) =

x−β
→∫

w

e−i 1+vx
v−x

B(v)dvQ−x−β(x).

Next we consider the inner integrals on the right hand side of the relations
(6.69) and after a suitable change of the variables we obtain

(6.70)

x∫

w

eitξ(x− ξ)ε−1e−i eB(x) ln(x−ξ)dξ =

= t−ε(−i)εeitxei eB(x) ln te−
π
2
eB(x)

i(x−w)t∫

0

e−θθε−1e−i eB(x) ln θdθ,
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(6.71)

x∫

x−β

eitξ(x− ξ)ε−1e−i eB(x) ln(x−ξ)dξ =

= t−ε(−i)εeitxei eB(x) ln te−
π
2
eB(x)

itβ∫

0

e−θθε−1e−i eB(x) ln θdθ,

(6.72)

x+β∫

x

eitξ(x− ξ)ε−1e−i eB(x) ln(ξ−x)dξ =

= t−ε(−1)ε−1eitxt−εiεei
eB(x) ln te

π
2
eB(x)

−itβ∫

0

e−θθε−1e−i eB(x) ln θdθ.

The relation (6.69), the equalities (6.70), (6.71), (6.72) and the equality

(6.73) Q−w(x)e−i eB(x) ln(x−ξ) = U2w(x)ei
eB(x) ln(x−w)e−i eB(x) ln(x−ξ)e−π eB(x)

imply that the next relations hold as t → +∞

lim
ε→0

1

2πi

x+β∫

x−β

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x) ∼

∼ lim
ε→0

1

2πi




x−β∫

−∞

h̃(w)Q−w(x)t−ε(−i)εeitxei eB(x) ln te−
π
2
eB(x) ·

·




itβ∫

0

e−θθε−1e−i eB(x) ln θdθ


 dw +

+

x∫

x−β

h̃(w)Q−w(x)t−ε(−i)εeitxei eB(x) ln te−
π
2
eB(x) ·

(6.74)




itβ∫

0

e−θθε−1e−i eB(x) ln θdθ −
itβ∫

i(x−w)t

e−θθε−1e−i eB(x) ln θdθ


 dw +

+

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)(−1)ε−1t−εiεeitxei

eB(x) ln te
π
2
eB(x) ·
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·



−itβ∫

0

e−θθε−1e−i eB(x) ln θdθ


 dw


Π∗(x)

x− i

x− λ0
· 1

x− µ0
=

=
eitx

2πi

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)dwei

eB(x) ln t·

· lim
ε→0


e− 3π

2
eB(x)

itβ∫

0

e−θθε−1e−i eB(x) ln θdθ −

− e
π
2
eB(x)

−itβ∫

0

e−θθε−1e−i eB(x) ln θdθ


Π∗(x)

x− i

x− λ0
· 1

x− µ0
.

Now straightforward calculations with the help of the properties of of the
gamma-function Γ(εI − iB̃(x)), presented in Lemma 2.1, Lemma 2.2, show that

(6.75)

∥∥∥∥∥∥
lim
ε→0


e− 3π

2
eB(x)

itβ∫

0

e−θθε−1e−i eB(x) ln θdθ −

− e
π
2
eB(x)

−itβ∫

0

e−θθε−1e−i eB(x) ln θdθ +

+ 2e−
π
2
eB(x) sinh(πB̃(x))Γ(εI − iB̃(x))

)∥∥∥ ≤ C

for all x ∈ R, ∀t > 0 sufficiently large, where C > 0 is a suitable constant.
On the other side direct calculations give the relations

(6.76)

eitx

2πi

x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)dwei

eB(x) ln t·

· lim
ε→0


e− 3π

2
eB(x)

itβ∫

0

e−θθε−1e−i eB(x) ln θdθ −

− e
π
2
eB(x)

−itβ∫

0

e−θθε−1e−i eB(x) ln θdθ +

+ 2e−
π
2
eB(x) sinh(πB̃(x))Γ(εI − iB̃(x))

)
Π∗(x)

x− i

x− λ0
· 1

x− µ0
−→ 0
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as t→ +∞ by the norm ‖ ‖.
Consequently the relations (6.74), (6.75), (6.76) together with the equality

(see Lemma 2.2)

lim
ε→0

Γ(εI − iB̃(x)) sinhπB̃(x) = πiΓ−1(I + iB̃(x))

imply that

(6.77)

lim
ε→0

1

2πi

x+β∫

x−β

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x) ∼

∼ −eitx
x∫

−∞

h̃(w)U2w(x)ei
eB(x) ln(x−w)dwei

eB(x) ln te−
π
2
eB(x)·

·Γ−1(I + iB̃(x))Π∗(x)
x− i

x− λ0
· 1

x− µ0

as t→ +∞. Now using the next representation of U2w(x)

U2w(x) =

w
←∫

−∞

ei
1+vx
v−x

B(v)dvV−∞(x)(x− w)−i eB(x),

where V−∞(x) is defined by (6.45), we obtain
(6.78)

lim
ε→0

1

2πi

x+β∫

x−β

eitξ

(x− ξ)1−ε

x− i

ξ − λ0

1

ξ − µ0




x∫

−∞

h̃(w)F−w (ξ, x)dw


 dξΠ∗(x) ∼

∼ eitx
x∫

−∞

h̃(w)

w
←∫

−∞

ei
1+vx
v−x

B(v)dvdwV−∞(x)ti
eB(x)e−

π
2
eB(x)·

·Γ−1(I + iB̃(x))Π∗(x)
x− i

x− λ0
· 1

x− µ0

as t→ +∞, which finishes the proof of the theorem. �

For the simplification of the writing let us denote the next operators:

(6.79) Ŝf(x) =

x∫

−∞

h̃(w)

w
←∫

−∞

ei
1+vx
v−x

B(v)dvdw
x− i

x− λ0
· 1

x− µ0
,
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where f(x) = (A − λ0I)
−1(A − µ0I)

−1h(x), h(x) ∈ D1 ∩ H0 ∩ S(R,Cn), h̃ is
defined by (6.61),

(6.80) T+p = pV−∞(x)e−
π
2
eB(x)Γ−1(I + iB̃(x))Π∗(x), ∀p ∈ C

m,

(6.81) Ẑ(t, x) = Π(x)ti
eB(x)Q(x),

(6.82) S̃+f(x) = T+Ŝf(x).

Using these denotations (6.79), (6.80), (6.81) the operator S+, describing
the asymptotics (1.23), takes the form

(6.83) S+f(x) = Ẑ(t, x)T+Ŝf(x) = Ẑ(t, x)S̃+f(x).

In the viewpoint of the next considerations it is suitable to consider the
case when λ0 = i. Let us denote also the subspace

(6.84)
D̃0 = {f ∈ L2(R; Cn) : f = (A− iI)−1(A− µ0I)

−1h,

h ∈ D1 ∩H0 ∩ S(R,Cn)}

The next theorem proves the boundedness of the operators
1

x− i
Ŝ and

S+, describing the asymptotics (1.23).

Theorem 6.15. If ‖e−2π eB(x)‖L2 < 1 then the operators
1

x− i
Ŝ and S+

defined by (6.79) and (6.83) are bounded operators in the subspace D̃0.

P r o o f. From the form (6.83) of S+, (6.80), (6.81) and the properties of
the gamma-function (Lemma 2) it follows that

(6.85)

‖S+f(x)‖2
L2 = ‖Ẑ(t, x)T+Ŝf(x)‖2

L2 =

= ‖( 1

x− i
Ŝf(x))T+(x− i)‖2

L2 =

= ((
1

x− i
Ŝf(x))V−∞(x)(I − e−2π eB(x))

1

2π
, (

1

x− i
Ŝf(x))V−∞(x)) =

= ‖ 1√
2π

(
1

x− i
Ŝf(x))V−∞(x)

√
I − e−2π eB(x)‖2

L2
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for each f ∈ D̃0.

On the other hand from (6.30), the asymptotics (1.23) and the equality
(6.85) we obtain

∥∥∥∥
1√
2π

(
1

x− i
Ŝf(x)

)
V−∞(x)

√
I − e−2π eB(x)

∥∥∥∥
L2

≤ ‖f‖L2 .

The last inequality together with the existence of the bounded inverse operator

of
√
I − e−2π eB(x) implies that 1

x−i Ŝf(x) is a bounded operator on the subspace

D̃0.

Hence from (6.85) it follows that S+ is a bounded operator on D̃0 and the
proof is complete. �

The boundedness of the operators from the semigroup {Tt}t≥0 in the

subspace D̃0, defined by (6.84), and Theorem 6.15 allow to extend Tt and S+ by
continuity onto L2(R; Cn). In this way using the properties of {Tt}t≥0 we can
define an exponential function eitA for t ≥ 0 by the equality eitA = Tt and
consider the dissipative continuous curves

eitAf = Ttf, t ≥ 0, ∀f ∈ L2(R; Cn).

Now Theorem 1.7 and Theorem 6.15 imply that the next relation holds

‖eitAf(x) − eitxS+f(x)‖L2 −→ 0 as t→ +∞

for each f ∈ L2(R; Cn), where S+ is defined by (6.83) (or (1.24)) for λ0 = i.

The next theorem presents the behaviour of the corresponding correlation
function V (t + τ, s + τ) = (ei(t+τ)Af, ei(s+τ)Af) (t > 0, s > 0) of the dissipative
curve eitAf as τ → +∞.

Theorem 6.16. Let for the model A, defined by (6.33), the next condi-
tions hold:

1) ‖B(x)‖ ≤ C, ‖xB(x)‖ ≤ C ∀x ∈ R;

2) B(x) ∈ Cα1(R), xB(x) ∈ Cα2(R) (0 < α1 ≤ 1, 0 < α2 ≤ 1);

3) ‖B(x)‖ ∈ L(R), ‖xB(x)‖ ∈ L(R), ‖e−2π eB(x)‖L2 < 1;

4) Q∗(x) is a smooth matrix function on R and ‖Q∗′(x)‖ ∈ L2(R).
Then there exists the limit of the correlation function lim

τ→+∞
V (t+ τ, s+ τ) of the
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dissipative curve eitAf for each f ∈ L2(R; Cn) and

(6.86)

lim
τ→+∞

V (t+ τ, s+ τ) =

+∞∫

−∞

ei(t−s)x(Ŝf(x)T+)(Ŝf(x)T+)∗dx =

=

+∞∫

−∞

ei(t−s)x

∥∥∥∥
1√
2π

(
1

x− i
Ŝf(x)

)
V−∞(x)

√
I − e−2π eB(x)

∥∥∥∥
2

dx

for all f ∈ D̃0 (t, s > 0), where V (t, s) = (eitAf, eisAf) is the correlation function

of the curve eitAf and the operators Ŝ, T+, V−∞(x) are defined by (6.79), (6.80),
(6.45) correspondingly.

The proof of this theorem follows as in the bounded case from the obtained
asymptotics (1.23) and straightforward calculations.

One of the other applications of the asymptotics (1.23) of the curve eitAf
for the model A, defined by (6.33), is a constructing of the scattering theory for
the couple (A∗, A) as in the bounded case and in the unbounded case with equal
dense domains of the model and its adjoint.

Now Theorem 1.8 gives the form of the wave operator as a weak limit.
P r o o f o f Th e o r e m 1.8. The equality (1.25) follows from (6.86). The

equality (1.26) can be obtained following the ideas of the proof of Theorem 1.3
and Theorem 1.5 and using the equality

lim
y→t

ei(y−t)A − I

y − t
f = itAf

which follows from the properties of the semigroup {Tt}t≥0 (Theorem 6.3) and
the equality

(S̃∗+S̃+Af, f) = (S̃∗+QS̃+f, f)

for each f ∈ D̃0. The proof is complete. �

The equality (1.25) implies the existence of the wave operator W− of the
couple (A∗, A), defined by

(W−(A∗, A)f, g) = lim
t→−∞

(eitA
∗

e−itAf, g)

and

W−(A∗, A) = S̃∗+S̃+

as a weak limit.
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We will prove the existence of the wave operator W−(A∗, A) as a strong
limit. For this proof we need the form of Φe−itAg(x) (t < 0, (A − iI)−1g(x) ∈
D̃0). The definition (1.22) of the operators e−itA (t < 0) from the considered
semigroup, the form (6.7) of the operator Φ and straightforward calculations
show that Φe−itAg(x) has the representation

(6.87) Φe−itAg(x) =
1√
2π

+∞∫

−∞

e−itξG̃f(ξ)dξ (t < 0),

where

(6.88)

G̃f(ξ) = − 1√
2π

1

µ0 − i




1

ξ − i

+∞∫

−∞

h̃(w)

+∞
→∫

w

eB(v)dvdw −

− 1

ξ − µ0

+∞∫

−∞

h̃(w)

+∞
→∫

w

e
−i

1+µ0v

v−µ0
B(v)dv

dw +

+

(
1

ξ − µ0
− 1

ξ − i

) +∞∫

−∞

h̃(w)F−w (ξ,+∞)dw


 .

Now Theorem 1.9 presents the existence of the wave operator W−(A∗, A)
as a strong limit.

P r o o f o f Th e o r e m 1.9. Let us denote

W (t) = eitA
∗

e−itA = T ∗−tT−t

when t < 0. Let f ∈ D̃0 (i.e. f = (A − iI)−1g = (A − iI)−1(A − µ0I)
−1h,

h ∈ D1 ∩H0 ∩ S(R,Cn)). From the properties of the semigroup {Tt}t≥0 we have

− d

dt
T ∗t Ttf =

= (A∗ + iI)T ∗t (i(A − iI)−1 − i(A∗ + iI)−1 + 2(A∗ + iI)−1(A− iI)−1)Ttg =

= (A∗ + iI)T ∗t BiTtg = (A∗ + iI)T ∗t Φ∗ΦTtg,

(g = (A − µ0)
−1h) where we have used the equalities (6.6), (6.9) and the form

(6.7) of the operator Φ.
For arbitrary numbers t1, t2 > 0 we obtain
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(6.89) ‖T ∗t2Tt2f(x) − T ∗t1Tt1f(x)‖2
L2 =

∥∥∥∥∥∥

t2∫

t1

(A∗ + iI)T ∗τ Φ∗ΦTτg(x)dτ

∥∥∥∥∥∥

2

L2

.

But the auxiliary selfadjoint operator Bi, defined by (6.5) for the dissipa-
tive operator A , takes the form (see [18])

(6.90) Bif =

m∑

α=1

(f, gα)gα =

m∑

α=1

(f,Φ∗eα)Φ∗eα,

where {eα}m
1 is an orthonormal basis in C

m and gα = Φ∗eα. Then from (6.90)
and from the equality (6.89) after straightforward calculations we obtain the next
relations

(6.91)

‖T ∗t2Tt2f(x) − T ∗t1Tt1f(x)‖2
L2 =

=

+∞∫

−∞

‖
m∑

α=1

t2∫

t1

(ΦTτg(x), eα)(A∗ + iI)T ∗τ Φ∗eαdτ‖2dx ≤

≤M
m∑

α=1

t2∫

t1

|(ΦTτg(x), eα)|2dτ
t2∫

t1

‖(A∗ + iI)T ∗τ Φ∗eα‖2
L2dτ

(where M > 0 is a suitable constant).
In the case when t1, t2 < 0, τ < 0 (t1 < t2) the inequality (6.91) has the

form

(6.92)

‖W (t2)f(x) −W (t1)f(x)‖2
L2 ≤

≤M

m∑

α=1

t2∫

t1

|(Φe−iτAg(x), eα)|2dτ
t2∫

t1

‖(A∗ + iI)eiτA∗

Φ∗eα‖2
L2dτ.

Now the form (6.88) of G̃f(ξ) shows that ‖G̃f(ξ)‖ ∈ L2(R) and conse-
quently the function
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(6.93) Ĝ(τ) =
1√
2π

+∞∫

−∞

e−iτξG̃f(ξ)dξ (τ ∈ R)

belongs to L2(R; Cm) as a Fourier transform of the function G̃f(ξ). This implies

that Φe−iτAg(x) = Ĝ(τ)χ(−∞,0)(τ) ∈ L2(R; Cm) and ‖Φe−iτAg(x)‖ ∈ L2((−∞; 0]).
Hence

(6.94) |(Φe−iτAg(x), eα)| ∈ L2((−∞; 0]).

The relation (6.94) implies that there exists the limit

(6.95) lim
t1→−∞

t2∫

t1

|(Φe−iτAg(x), eα)|2dτ.

Now on the one hand we have

‖(A∗ + iI)eiτA∗

Φ∗eα‖L2 ≤ ‖Φe−iτA(A− iI)‖L2 (τ ≤ 0).

For the function

ψ(τ) = ‖Φe−iτA(A− iI)‖L2 = sup
‖f‖

L2=1
‖Φe−iτA(A− iI)f‖

in (−∞; 0] there exists a sequence

(6.96) ψn(τ) = ‖Φe−iτA(A− iI)fn‖, fn ∈ D̃0, ‖fn‖L2 = 1,

(τ ∈ (−∞; 0]) such that

(6.97) ψn(τ) → ψ(τ) as n→ +∞, ∀τ ∈ (−∞; 0]

and ψn(τ) ∈ L2((−∞; 0]).

On the other hand for the function ‖Ttf‖2
L2 (f ∈ D̃0 and t ≥ 0) from

(6.18) after straightforward calculations we obtain
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(6.98)

d

dt
‖Ttf‖2

L2 = −((iRi − iR∗i + 2R∗iRi)Ttg, Ttg) =

= −(BiTtg, Ttg) = −(Φ∗ΦTtg, Ttg) = −‖ΦTtf‖2
L2 ,

where Ri = (A− iI)−1, Bi is defined by (6.5) and (6.9) and Φ is defined by (6.7).
Then from (6.98) it follows that

(6.99)

t∫

0

‖ΦTτg(x)‖2dτ = ‖f‖2
L2 − ‖Ttf‖2

L2.

From (6.98) for the nonnegative decreasing function ‖Ttf‖2
L2 (f ∈ D̃0, t ≥

0) it follows that there exists the limit lim
t→−∞

‖e−itAf(x)‖2
L2 . From the exis-

tence of this limits and from (6.99) it follows that there exists the integral
0∫

−∞

‖Φe−iτAg(x)‖2dτ = ‖f‖2
L2 − lim

τ→−∞
‖e−iτAf(x)‖2

L2 and the next inequality

holds

(6.100)

0∫

−∞

‖Φe−iτAg(x)‖2dτ ≤ 2‖f‖2
L2 .

From the inequality (6.100) and the form (6.96) of ψn(τ) we have

(6.101)

0∫

−∞

ψ2
n(τ)dτ =

0∫

−∞

‖Φe−iτA(A− iI)fn‖2 ≤ 2‖fn‖2
L2 = 2

for all n ∈ N. The last inequality (6.101) together with (6.97) implies that
ψ2(τ) ∈ L((−∞; 0]). Then the inequalities

‖(A∗ + iI)eiτA∗
Φ∗eα‖2

L2 ≤ ‖(A∗ + iI)eiτA∗
Φ∗‖2.‖eα‖2 =

= ‖Φe−iτA(A− iI)‖2
L2 = ψ2(τ)
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show that

(6.102) ‖(A∗ + iI)eiτA∗

Φ∗eα‖2
L2 ∈ L((−∞; 0]).

From (6.95) and (6.102) we obtain

‖W (t2)f(x) −W (t1)f(x)‖2
L2 → 0 as t1, t2 → −∞

for all f ∈ D̃0. Consequently, there exists the limit

lim
t→−∞

W (t)f = lim
t→−∞

eitA
∗

e−itAf ∀f ∈ D̃0.

But D̃0 is dense in L2(R; Cn) and eitA
∗
e−itA is an uniformly bounded family of

operators and hence there exists the limit

lim
t→−∞

eitA
∗

e−itAf ∀f ∈ L2(R; Cn)

(see, for example, Lemma III 3.5 [10]) and the proof is complete. �

In order to conclude this paper it has to mention that presented results
in this paper consider the class of operators with an absolutely continuous real
spectrum. In the general case of the operators from the considered classes with an
arbitrary real spectrum these results can be extended using the decomposition of
the spectrum of an absolutely continuous spectrum and a singular spectrum. We
can presume that the existence of the singular component of the spectrum does
not change the asymptotics of the corresponding continuous curves. Probably
the extension will have effect on the subspaces of the initial conditions. The
considerations of these questions is forthcoming.
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