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Abstract. The paper is a survey on involutions (anti-automorphisms of or-
der two) of different kinds. Starting with the first systematic investigations
on involutions of central simple algebras due to Albert the author empha-
sizes on their basic properties, the conditions on their existence and their
correspondence with structural characteristics of the algebras.

Focusing on matrix algebras a complete description of involutions of the
first kind on Mn(F ) is given. The full correspondence between an involu-
tion of any kind for an arbitrary central simple algebra A over a field F of
characteristic 0 and an involution on Mn(A) specially defined is studied.

The research mainly in the last 40 years concerning the basic properties of
involutions applied to identities for matrix algebras is reviewed starting with
the works of Amitsur, Rowen and including the newest results on the topic.
The cocharactes, codimensions and growth of algebras with involutions are
considered as well.
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I. History and background. An involution is an anti-automorphism
of order two of an algebra. The most elementary example is the transpose for
matrix algebras. A more complicated example of an algebra over Q admitting
an involution is the multiplication algebra of a Riemann surface. The motivation
of Albert for the first systematic investigations is connected with the genus g of
such a surface and a complex g× 2g matrix of periods P for which there exists a

nonsingular alternating matrix C ∈ M2g(Q) such that PCP t = 0 and iPCP
t

is
positive definite hermitian. We will not go into details of algebraic geometry. We
only mention that the genus of a surface is a numerical birational invariant of an
algebraic variety of dimension two over an algebraically closed field. The study
of correspondences on the Riemann surface leads to considering the matrices
M ∈ M2g(Q) for which there exists a matrix K ∈ Mg(Q) such that KP = PM .
They form a subalgebra of M2g(Q) known as the multiplication algebra. As
observed by [52] and [57] this algebra admits an involution X → C−1XtC. Albert
completely determined the structure of the multiplication algebra in Annals of
Mathematics in 1934–1935, an improved version of it is [1].

The central problem completely solved by Albert is to give necessary
and sufficient conditions on a division algebra over Q to be a multiplication
algebra. To achieve this, Albert developed a theory of central simple algebras
with involution, based on the theory of simple algebras initiated a few years earlier
by Brauer, Noether, and also Albert and Hasse, and gave a complete classification
over Q.

We expose the main contributions of the theory of central simple algebras
with involution following [35], Chapter I.

1. Bilinear forms. A bilinear form b : V × V → F on a finite
dimensional vector space V over an arbitrary field F is called symmetric if
b(x, y) = b(y, x) for all x, y ∈ V , skew-symmetric if b(x, y) = −b(y, x) for all
x, y ∈ V and alternating if b(x, x) = 0 for all x ∈ V . Thus, the notion of skew-
symmetric and alternating (resp. symmetric) forms coincide if char F 6= 2 (resp.
char F = 2). Alternating forms are skew-symmetric in every characteristic.

If b is a symmetric or alternating bilinear form on a (finite dimensional)
vector space V , the induced map

b̂ : V → V ∗ = HomF (V, F )

is defined by b̂(x)(y) = b(x, y) for x, y ∈ V . The bilinear form b is nonsingular
(or regular, or nondegenerate) if b̂ is bijective. Alternately, b is nonsingular if and
only if the determinant of its Gram matrix with respect to an arbitrary basis of
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V is nonzero:
det (b(ei, ej))1≤i,j≤n 6= 0.

The square class of this determinant is called the determinant of b:

det b = det (b(ei, ej))1≤i,j≤n.F
×2 ∈ F×/F×2,

where (and up to the end) the notation F× stands for F \ {0}.
The discriminant of b is the signed determinant:

disc b = (−1)n(n−1)/2 det b ∈ F×/F×2,

where n = dimV . If b : V × V → F is a symmetric bilinear form, we denote by
qb : V → F the associated quadratic map, defined by

qb(x) = b(x, x) for x, y ∈ V.

For any f ∈ EndF (V ) we may define σb(f) ∈ EndF (V ) by

σb(f) = b̂−1 f t b̂,

where f t ∈ EndF (V ∗) is the transpose of f , defined by mapping ϕ ∈ V ∗ to ϕ f .
Alternately, σb(f) may be defined by the following property:

b(x, f(y)) = b(σb(f)(x), y) for x, y ∈ V.

The map σb : EndF (V ) → EndF (V ) is then an anti-automorphism of EndF (V )
which is known as the adjoint anti-automorphism with respect to the nonsingular
bilinear form b. The map σb is F -linear.

The basic result in [35] is the following.

Theorem 1.1. The map which associates to each nonsingular bilinear
form b on V its adjoint anti-automorphism σb induces a one-to-one correspon-
dence between equivalence classes of nonsingular bilinear forms on V modulo mul-
tiplication by a factor in F× and linear anti-automorphisms of EndF (V ). Under
this correspondence, F -linear involutions on EndF (V ) correspond to nonsingular
bilinear forms which are either symmetric or skew-symmetric.

2. Central simple algebras. For any finite-dimensional algebra A
with 1 over a field F and any field extension K/F , we write AK for the K-algebra
obtained from A by extending scalars to K:

AK = A⊗F K.
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We also define the opposite algebra Aop by

Aop = {aop | a ∈ A},

with the operations defined as follows:

aop + bop = (a+ b)op, aopbop = (ba)op, α · aop = (α · a)op

for a, b ∈ A and α ∈ F .
A central simple algebra over a field F is a (finite dimensional) algebra

A 6= {0} with centre F (= F · 1) which has no two-sided ideals except {0} and
A. An algebra A 6= {0} is a division algebra (or a skew field) if every non-zero
element in A is invertible.

The structure of these algebras is determined by the following

Theorem 1.2 (Wedderburn). For an algebra A over a field F , the fol-
lowing conditions are equivalent:
(1) A is central simple.
(2) The canonical map A ⊗F Aop → EndF (A) which associates to a ⊗ bop the
linear map x→ axb is an isomorphism.
(3) There is a field K containing F such that AK is isomorphic to a matrix al-
gebra over K, i.e. AK ≃Mn(K) for some n.
(4) If Ω is an algebraically closed field containing F ,

AΩ ≃Mn(Ω) for some n.

(5) There is a finite dimensional central division algebra D over F and an integer
r such that A ≃Mr(D).
Moreover, if these conditions hold, all the simple left (or right) A-modules are
isomorphic, and the division algebra D is uniquely determined up to an algebra
isomorphism as D = EndA(M) for any simple left A-module M .

The fields K for which condition (3) holds are called splitting fields of A.
Accordingly, the algebra A is called split if it is isomorphic to a matrix algebra
Mn(F ) (or to EndF (V ) for some vector space V over F ).

Since the dimension of an algebra does not change under an extension of
scalars, it follows from the above theorem that the dimension of every central
simple algebra is a square: dimF A = n2 if AK ≃ Mn(K) for some extension
K/F . The integer n is called the degree of A and is denoted by deg A. The
degree of the division algebra D in condition (5) is called the index of A and is
denoted by ind A. Alternately, the index of A can be defined by the relation

degA · indA = dimF M,
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where M is any simple left module over A. This relation readily follows from
the fact that if A ≃ Mr(D), then Dr is a simple left module over A (via matrix
multiplication, writing the elements of Dr as column vectors).

Let Ω denote an algebraic closure of F . Under scalar extension to Ω,
every central simple F -algebra A of degree n becomes isomorphic to Mn(Ω). We
may therefore fix an F -algebra embedding A →֒ Mn(Ω) and view every element
a ∈ A as a matrix in Mn(Ω). Its characteristic polynomial has coefficients in
F and is independent of the embedding of A in Mn(Ω). It is called the reduced
characteristic polynomial of A and is denoted

PrdA,a(X) = Xn − s1(a)X
n−1 + s2(a)X

n−2 − · · · + (−1)nsn(a).

The reduced trace and reduced norm of a are denoted TrdA(a) and NrdA(a):

TrdA(a) = s1(a), NrdA(a) = sn(a).

Proposition 1.3. The bilinear form TA : A×A→ F defined by

TA(x, y) = TrdA(xy) for x, y ∈ A

is nonsingular.

3. Involutions of the first kind. An involution on a central simple
algebra A over a field F is a map σ : A→ A subject to the following conditions:

(a) σ(x+ y) = σ(x) + σ(y) for x, y ∈ A,
(b) σ(xy) = σ(y)σ(x) for x, y ∈ A,
(c) σ2(x) = x for x ∈ A.
Though the map σ is not required to be F -linear it is easily checked that

the centre F (= F · 1) is preserved under σ. The restriction of σ to F is therefore
an automorphism which is either the identity or of order 2. Involutions which
leave the centre elementwise invariant are called involutions of the first kind.
Involutions whose restriction to the centre is an automorphism of order 2 are
called involutions of the second kind.

Proposition 1.4. Let (A,σ) be a central simple F -algebra of degree n
with involution of the first kind and let L be a splitting field of A. Let V be
an L-vector space of dimension n. There is a nonsingular symmetric or skew-
symmetric bilinear form b on V and an invertible matrix g ∈ GLn(L) such that
gt = g if b is symmetric and gt = −g if b is skew-symmetric, and

(AL, σL) ≃ (EndL(V ), σb) ≃ (Mn(L), σg).
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Corollary 1.5. For all a ∈ A, the elements a and σ(a) have the same
reduced characteristic polynomial. In particular, TrdA(σ(a)) = TrdA(a) and
NrdA(σ(a)) = Nrda(a).

Two types of involutions of the first kind can be distinguished which
correspond to symmetric and to alternating forms. This distinction is made on
the basis of properties of symmetric elements.

In a central simple F -algebra A with involution of the first kind σ, the
sets of symmetric, skew-symmetric, symmetrized and alternating elements in A
are defined as follows:

S(A,σ) = Sym(A,σ) = {a ∈ A | σ(a) = a},
K(A,σ) = Skew(A,σ) = {a ∈ A | σ(a) = −a},

Symd(A,σ) = {a+ σ(a) | a ∈ A},
Alt(A,σ) = {a− σ(a) | a ∈ A}.

If charF 6= 2, then Symd(A,σ) = Sym(A,σ), Alt(A,σ) = Skew(A,σ) and A =
Sym(A,σ) ⊕ Skew(A,σ) since every element a ∈ A decomposes as a = 1

2(a +
σ(a))+ 1

2(a−σ(a)). If charF = 2, then Symd(A,σ) = Alt(A,σ) ⊂ Skew(A,σ) =
Sym(A,σ).

Lemma 1.6. Let n = deg A, then dim Sym(A,σ) + dim Alt(A,σ) = n2.
Moreover, Alt(A,σ) is the orthogonal space of Sym(A,σ) for the bilinear form
TA on A induced by the reduced trace:

Alt(A,σ) = {a ∈ A | TrdA(as) = 0 for s ∈ Sym(A,σ)}.

Similarly, dim Skew(A,σ) + dim Symd(A,σ) = n2, and Symd(A,σ) is the or-
thogonal space of Skew(A,σ) for the bilinear form TA.

In arbitrary characteristic, the property of b being symmetric or skew-
symmetric or alternating depends only on the involution and not on the choice
of L nor of b. We may set the following definition:

Definition 1.7. An involution σ of the first kind is said to be of symplec-
tic type (or simply symplectic) if for any splitting field L and any isomorphism
(AL, σL) ≃ (EndL(V ), σb), the bilinear form b is alternating; otherwise it is called
of orthogonal type (or simply orthogonal). In the latter case, for any splitting
field L and any isomorphism (AL, σL) ≃ (EndL(V ), σb), the bilinear form b is
symmetric (and notalternating).
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Proposition 1.8. Let (A,σ) be a central simple F-algebra of degree n
with involution of the first kind.
(1) Suppose that char F 6= 2, hence Symd(A,σ) = Sym(A,σ) and Alt(A,σ) =
Skew(A,σ). If σ is of orthogonal type, then

dimF Sym(A,σ) =
n(n+ 1)

2
and dimF Skew(A,σ) =

n(n− 1)

2
.

If σ is of symplectic type, then

dimF Sym(A,σ) =
n(n− 1)

2
and dimF Skew(A,σ) =

n(n+ 1)

2
.

Moreover, in this case n is necessarily even.
(2) Suppose that char F = 2, hence Sym(A,σ) = Skew(A,σ) and
Symd(A,σ) = Alt(A,σ). Then

dimF Sym(A,σ) =
n(n+ 1)

2
and dimF Alt(A,σ) =

n(n− 1)

2
.

The following proposition highlights a special feature of symplectic invo-
lutions.

Proposition 1.9. Let A be a central simple F -algebra with involution
σ of symplectic type. The reduced characteristic polynomial of every element in
Symd(A,σ) is a square. In particular, NrdA(s) is a square in F for all s ∈
Symd(A,σ).

4. Involutions of the second kind. In the case of involutions of the
second kind on a simple algebra B, the base field F is usually not the centre of
the algebra, but the subfield of central invariant elements which is of codimension
2 in the centre. Under scalar extension to an algebraic closure of F , the algebra
B decomposes into a direct product of two simple factors. We consider a finite
dimensional F -algebra with a centre K which is either simple (if K is a field)
or a direct product of two simple algebras (if K ≃ F × F ). We denote by ι the
nontrivial automorphism of K/F and by τ an involution of the second kind on
B, whose restriction to K is ι. A homomorphism f : (B, τ) → (B′, τ ′) is an
F -algebra homomorphism f : B → B′ such that τ ′ f = f τ .

Proposition 1.10. If K ≃ F ×F , there is a central simple F -algebra E
such that

(B, τ) ≃ (E × Eop, ε),
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where the involution ε is defined by ε(x, yop) = (y, xop). This involution is called
the exchange involution.

We may define the degree of the central simple F -algebra (B, τ) with
involution of the second kind by

deg (B, τ) = deg B if K is a field,

deg (B, τ) = deg E if K ≃ F × F and (B, τ) ≃ (E × Eop, ε).

Proposition 1.11. Suppose that the centre K of B is a field. There is a
canonical isomorphism of K-algebras with involution

ϕ : (BK , τK) → (B ×Bop, ε),

which maps b⊗ α to (bα, (τ(b)α)op) for b ∈ B and α ∈ K.

Corollary 1.12. For every b ∈ B, the reduced characteristic polynomials
of b and τ(b) are related by

PrdB,τ(b) = ι(PrdB,b) in K[X].

In particular, TrdB(τ(b)) = ι(TrdB(b)) and NrdB(τ(b)) = ι(NrdB(b)).

As for involutions of the first kind, we may define the sets of symmetric,
skew-symmetric, symmetrized and alternating elements in (B, τ). They are vector
spaces over F . In contrast with the case of involutions of the first kind, there is
a straightforward relation between symmetric, skew-symmetric and alternating
elements.

Proposition 1.13. Symd(B, τ) = Sym(B, τ) and Alt(B, τ) = Skew(B, τ)
for any α ∈ K× such that τ(α) = −α,

Skew(B, τ) = α · Sym(B, τ).

If deg (B, τ) = n, then

dimF Sym(B, τ) = dimF Skew(B, τ) = dimF Symd(B, τ) = dimF Alt(B, τ) = n2.

As for the involutions of the first kind, all the involutions of the second
kind on B which have the same restriction to K as τ are obtained by composing
τ with an inner automorphism.
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Proposition 1.14. Let (B, τ) be a central simple F -algebra with involu-
tion of the second kind, and let K denote the centre of B.
(1) For every unit u ∈ B× such that τ(u) = λu with λ ∈ K×, the map Int(u) τ
is an involution of the second kind on B.
(2) Conversely, for every involution τ ′ on B whose restriction to K is ι, there
exists some u ∈ B×, uniquely determined up to a factor in F×, such that

τ ′ = Int(u) τ and τ(u) = u.

In this case,

Sym(B, τ ′) = u · Sym(B, τ) = Sym(B, τ) · u−1.

5. Matrix algebras. The discussion before Theorem 1.1 and the
theorem itself could give much information since the choice of a basis in an n-
dimensional vector space V over F yields an isomorphism EndF (V ) ≃ Mn(F ).
However, matrix algebras are endowed with a canonical involution of the first
kind, namely the transpose involution t. Therefore a complete description of
involutions of the first kind on Mn(F ) can also be easily derived from Proposition
1.9.

Proposition 1.15. Every involution of the first kind σ on Mn(F ) is of
the form

σ = Int(u) t

for some u ∈ GLn(F ), uniquely determined up to a factor in F×, such that ut =
±u. Moreover, the involution σ is orthogonal if ut = u and u /∈ Alt(Mn(F ), t),
and it is symplectic if u ∈ Alt(Mn(F ), t).

If Mn(F ) is identified with EndF (Fn), the involution σ = Int(u) t is the
adjoint involution with respect to the nonsingular form b on Fn defined by

b(x, y) = xt · u−1 · y for x, y ∈ Fn.

Suppose now that A is an arbitrary central simple algebra over a field F
and − is an involution (of any kind) on A. We define an involution ∗ on Mn(A)
by

(aij)
∗
1≤i,j≤n = (aij)

t
1≤i,j≤n.

Proposition 1.16. The involution ∗ is of the same type as −. Moreover,
the involutions σ on Mn(A) such that σ(α) = α for all α ∈ F can be described as
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follows:
(1) If − is of the first kind, then every involution of the first kind on Mn(A)
is of the form σ = Int(u)∗ for some u ∈ GLn(A), uniquely determined up to a
factor in F×, such that u∗ = ±u. If char F 6= 2, the involution Int(u) ∗ is of the
same type as − if and only if u∗ = u. If char F = 2, the involution Int(u)∗ is
symplectic if and only if u ∈ Alt(Mn(A),∗ ).
(2) If − is of the second kind, then every involution of the second kind σ on
Mn(A) such that σ(α) = α for all α ∈ F is of the form σ = Int(u) ∗ for some
u ∈ GLn(A), uniquely determined up to a factor in F× invariant under −, such
that u∗ = u.

6. Lie and Jordan structures. Every associative algebra A over
an arbitrary field F is endowed with a Lie algebra structure for the bracket
[x, y] = xy − yx. We denote this Lie algebra by L(A). Similarly, if char F 6= 2,
a Jordan algebra can be defined on A by x ◦ y = 1

2(xy + yx). If A is viewed as a
Jordan algebra for the product ◦, we denote it by A+.

The relevance of the Lie and Jordan structures for algebras with involution
stems from the observation that for every algebra with involution (A,σ) (of any
kind), the spaces Skew (A,σ) and Alt (A,σ) are Lie subalgebras of L(A), and
the space Sym (A,σ) is a Jordan subalgebra of A+ if char F 6= 2. For x, y ∈
Skew(A,σ) we have

[x, y] = xy − σ(xy) ∈ Alt(A,σ) ⊂ Skew(A,σ),

hence Alt(A,σ) and Skew(A,σ) are Lie subalgebras of L(A). On the other hand,
for x, y ∈ Sym(A,σ)

x ◦ y =
1

2
(xy + σ(xy)) ∈ Sym(A,σ),

hence Sym(A,σ) is a Jordan subalgebra of A+. This Jordan subalgebra is usually
denoted by H(A,σ).

The algebra Skew(A,σ) is the kernel of the Lie algebra homomorphism

µ : g(A,σ) → F

defined by µ(a) = a+σ(a), for a ∈ g(A,σ). The map µ is surjective, except when
charF = 2 and σ is orthogonal, since the condition 1 ∈ Symd(A,σ) characterizes
symplectic involutions among involutions of the first kind in characteristic 2, and
Symd(A,σ) = Sym(A,σ) if σ is of the second kind. Thus, g(A,σ) = Skew(A,σ)
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if σ is orthogonal and char F = 2, and dim g(A,σ) = dim Skew(A,σ) + 1 in the
other cases.

Proposition 1.17. (1) Let (A,σ) and (A′, σ′) be central simple F -
algebras with involution of the first kind and let L/F be a field extension. Suppose
that deg A > 2 and let

f : Alt(A,σ) → Alt(A′, σ′)

be a Lie isomorphism which has the following property: there is an isomorphism
of L-algebras with involution (AL, σL) → (A′

L, σ
′
L) whose restriction to Alt(A,σ)

is f . Then f extends uniquely to an isomorphism of F -algebras with involution
(A,σ) → (A′, σ′).
(2) Let (B, τ) and (B′, τ ′) be central simple F -algebras with involution of the
second kind and let L/F be a field extension. Suppose that deg(B, τ) > 2 and let

f : Skew(B, τ)0 → Skew(B′, τ ′)0

be a Lie isomorphism which has the following property: there is an isomorphism of
L-algebras with involution (BL, τL) → (B′

L, τ
′
L) whose restriction to Skew(B, τ)0

is f . Then f extends uniquely to an isomorphism of F -algebras with involution
(B, τ) → (B′, τ ′).

Before giving necessary and sufficient conditions for existence of involu-
tions we define the norm NK/F (A) of the K-algebra A as the F -subalgebra of
ιA⊗K A elementwise invariant under the map s(ιa⊗ b) = bι ⊗a. We remind that
K/F is a quadratic extension and ι is the nontrivial automorphism of K/F .

Theorem 1.18 (Albert). (1) Let A be a central simple algebra over a
field F . There is an involution of the first kind on A if and only if A⊗F A splits.
(2) (Albert-Riehm-Scharlau) Let K/F be a separable quadratic extension of fields
and let B be a central algebra over K. There is an involution of the second kind
on B which leaves F elementwise invariant if and only if the norm NK/F (B)
splits.

Another sources investigating matrix algebras with involutions are [16,
19].

In [16] involution algebras (algebras with involution) are introduced and
C∗-algebras as a special type of them. In [19] the authors considered non-
commutative rings with an axiomatically introduced operation involution (∗-
operation). Using positive functionals the representations of these rings are in-
vestigated vice operators in a Hilbert space. The definition of a normed ring
R with involution ∗ is given. Hermitian elements are introduced (x∗ = x) and
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the presentation x = x1 + x2 for x ∈ R and x1, x2 hermitian elements is given
(x1 = x+x∗

2 , x2 = x−x∗

2i ). A typical example of a ring with involution is the ring
of all limited linear operators in a Hilbert space.

Obviously the source of all investigations is functional analysis – the the-
ory of normed rings and its applications, specially the theory of C∗-algebras. It
is a typical aparatus in quantum mechanics, field theory and statistical physics.

II. Identities for involition matrix algebres. Let F be a field of
characteristic zero and R an associative F -algebra with involution ∗. Consider
X = {x1, x2, . . .}, a countable set, and let F 〈X, ∗〉 = F 〈x1, x

∗
1, x2, x

∗
2, . . .〉 be the

free associative algebra with involution ∗ on X. An element f(x1, x
∗
1, . . . xm, x

∗
m)

of F 〈X, ∗〉 is a ∗-polynomial identity for R if f(r1, r
∗
1, . . . , rm, r

∗
m) = 0 for all

substitutions r1, . . . , rm ∈ R. The set T (R, ∗) of all ∗-polynomial identities of
R is a ∗-T-ideal of F 〈X, ∗〉, i.e. an ideal invariant under all endomorphisms of
F 〈X, ∗〉 commuting with ∗.

For i = 1, 2, . . . , we define yi =
xi + x∗i

2
and zi =

xi − x∗i
2

. Thus we have

that F 〈X, ∗〉 = F 〈Y ∪ Z〉.
We start our survey with the works of S.A. Amitsur. In [2] the notion of

a ring R with involution is considered as well as the set S = Sym(R, ∗) for its
symmetric with respect to the involution variables and the set K = Skew(R, ∗)
for its anti-(or skew-)symmetric variables. Using structure theorems concerning
the lower radical and the union of all nilpotent ideals of a ring R Amitsur proves
a general result, namely:

Theorem 2.1 [2, Theorem 6]. If R is a ring with involution such that
the set S of symmetric elements satisfies a polynomial identity of degree d, then
R satisfies an identity S2d(x)

m = 0 for some m (the same for the anti-symmetric
elements of R ). Here the notation Sn stands for the standard polynomial in n
variables.

The paper [3] generalizes the above theorem:

Theorem 2.2 [3, Theorem 1]. If R satisfies a polynomial identity of
the form p[x1, . . . , xr;x

∗
1, . . . , x

∗
r] = 0 of degree d, then R satisfies an identity

S2d(x)
m = 0. If R is semi-prime, then m = 1.

We mention the classical result of S. A. Amitsur and J. Levitzki stated in
[4] that S2n is an identity for the matrix algebra Mn(F ).

We give the following definition.

Definition 2.3. Let g be a polynomial in m variables. We say that
g(k − l, l, ∗) = 0 is an identity for Mn(F ) with respect to the involution ∗ if
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g(k1, . . . , km−l, sm−l+1, . . . , sm) = 0 for all k1, . . . , km−l ∈ K = K(Mn(F ), ∗) and
for all sm−l+1, . . . , sm ∈ S = S(Mn(F ), ∗).

Using Lie group theory B. Kostant has shown in [36] that for n even
S2n−2(n− 2, 0, ∗) is an identity for Mn(F ) and ∗ being the transpose involution.
In [55] Rowen obtained the following strengthening of Kostant’s theorem.

Theorem 2.4 [48, Theorem 1]. Over a field F of characteristic zero the
following identities hold for Mn(F ), where (t) is the transpose:
(i) S2n−1(2n − 1, 0, t) = 0,
(ii) S2n−1(2n− 2, 1, t) = 0,
(iii) S2n−2(2n − 2, 0, t) = 0 for all n,
(iv) S2n−2(2n− 3, 1, t) = 0 for n odd.

The method of proof is largely graph-theoretic – exploiting certain prop-
erties of the trace of a matrix in connection with an undirected graph whose edges
correspond to elementary symmetric and anti-symmetric matrices.

The object of the paper [55] is threefold – to give an easy proof of
Kostant’s theorem, to give an analogue of it for the symplectic involution and
to show that these results follow from the same trace identity (arising from the
generic minimal polynomial for a symmetric element with respect to the sym-
plectic involution).

Working in Mn(C), up to isomorphism, there are two types of involutions
– the transpose, denoted (t), and the canonical symplectic involution (s), defined
(only when n is even) by the formula

(
A B
C D

)s

=

(
Dt −Bt

−Ct At

)
,

where the original matrix is partitioned into (n/2) × (n/2) blocks.

According to [51, Theorem 2] and [47] all trace identities for Mn follow
formally from the Cayley-Hamilton equation. Considering the set Tl of the gener-
alized multilinear polynomials of x1, . . . , xl of type (1, . . . , 1)︸ ︷︷ ︸

l times

, the algebra Tl due

to a special operation could be identified with the group algebra F [Syml+1] of
the symmatric group Syml+1. Thus the problem of finding the multilinear trace
identities of degree l is reduced to the problem of classifying the two-sided ideals
of the group algebra F [Syml+1].

The same point of view is presented in [55] relying on the following well-
known analogue to the Cayley-Hamilton theorem and Newton’s formulae.

Suppose n = 2m and x ∈ S. Then x satisfies a polynomial of the form
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p(λ)=
m∑

k=0

(−1)kµkλ
m−k, where µ0=1 and, inductively, 2kµk=

k∑
i=1

(−1)i−1µk−i tr(x
i)

for 1 ≤ k ≤ m. This is obtained by taking the pfaffian instead of the determinant
in order to halve the degree of the “characteristic polynomial”, and then obtain-
ing the above formulae in a manner analogous to the proof of Newton’s formulae.
This polynomial is called the “generic minimal equation of x”.

The following three remarks are essential in proving Theorem 2.8.
Remark 2.5. Given an involution ∗, for any k ∈ K and s ∈ S, we

have tr(ks) = 0 because tr(ks) = tr(ks)∗ = tr(s∗k∗) = tr(k∗s∗) = − tr(ks).
Consequently, the trace is a nondegenerate bilinear form both on S and K (i.e.
if k1 ∈ K and tr(kk1) = 0 for all k ∈ K then k1 = 0, the same for S).

Remark 2.6. Suppose ∗ is a given involution with k1, . . . , kl−t ∈ K and
sl−t+1, . . . , sk ∈ S, then

Sk(k1, . . . , kl−t, sl−t+1, . . . , sk)
∗ = (−1)[k/2]+k−l+tSk(k1, . . . , kl−t, sl−t+1, . . . , sk).

Remark 2.7. For all n and x1, . . . , x2k ∈Mn(C) one gets

tr(S2k(x1, . . . , x2k)) = 0 and

tr(S2k−1(x1, . . . , x2k−1)) = (2k − 1) tr(S2k−2(x1, . . . , x2k−2)x2k−1).

Multilinearizing the identity p(s) = 0 for s ∈ S, substituting s1 = [k1, s1]
for k1 ∈ K and making special substitutions for si i ≥ 2, taking into account the
above remarks, Rowen gets

Theorem 2.8 [55, Theorem 3]. Considering the symplectic involution
(s), the following identities hold for Mn(C) and n even, namely:

(i) S2n−2(0, 2n − 2, s) = 0,
(ii) S2n−2(1, 2n − 3, s) = 0,
(iii) S2n−1(0, 2n − 1, s) = 0,
(iv) S2n−1(1, 2n − 2, s) = 0.

These are identities of minimal degree.
A basic paper on algebras with involution ∗ and their relations with forms

is [47]. Given a finite-dimensional vector space V over F and a nondegenerate
ε-symmetric form

〈(v, ξ), (w, ζ)〉 =
1

2
[〈v, ξ〉 + ε〈w, ζ〉]

the algebra End(V ) is equipped with a canonical involution ∗ having the property
(a∗v,w) = (v, aw). If ε = 1 we refer to the involution as transposition, for ε = −1
– as symplectic involution, respectively.
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When the field F is C and V is equipped with a nondegenerate Hermitian
form, End(V ) is endowed with an involution called adjoint.

Given a ∗-algebra R, a ∗-representation of R in the vector space V will
be ∗-map ϕ : R → End(V ). It gives rise to an R-module structure on V and
(r∗v,w) = (v, rw) for all v,w ∈ V, r ∈ R. According to the nature of the form
we speak of orthogonal, symplectic, or unitary representation, respectively. Two
representations ϕ : R → End(V ), ψ : R → End(W ) will be called equivalent, if
there exists an isomorphism u : V →W for which u(ϕ(r)v) = ψ(r)u(v).

Let R be a free ∗-algebra. Given a set I, we construct on the category
of ∗-algebras the three set valued functors: R →֒ RI , R →֒ R+I , R →֒ R−I

(S = R+ and K = R− always denoting the sets of the symmetric, respectively,
anti-symmetric elements of R). Each of the three given functors is representable
and the representing algebras are constructed in this way:
(i) The free algebra F 〈xi, yi|i ∈ I〉 with the involution assigned by the rule x∗i = yi

– the free ∗-algebra F 〈xi, x
∗
i |i ∈ I〉.

(ii) The free algebra F 〈xi|i ∈ I〉 with the involution defined by x∗i = xi – the free
∗-algebra in the symmetric variables si.
(iii) The free algebra F 〈xi|i ∈ I〉 with the involution defined by x∗i = −xi – the
free ∗-algebra in the anti-symmetric variables ki.

The canonical decomposition R = R+ ⊕ R− gives rise to the canonical
isomorphism F 〈xi, x

∗|i ∈ I〉 ∼= F 〈yi|i ∈ I〉⊔F 〈zi|i ∈ I〉, where
⊔

denotes the

free product and yi =
xi + x∗i

2
, zi =

xi − x∗i
2

.

Let us give a vector space V , without any form, and a map ϕ : R →
End(V ), with R a ∗-algebra. We can deduce, from this map, an orthogonal and
a symplectic representation as follows:
(a) Construct the dual representation ϕ∗ : R→ End(V ∗) by the formula ϕ∗(r) =
ϕ(r∗)t.
(b) Construct the space W = V ⊕ V ∗ and the direct sum representation, R →
End(W ), of ϕ and ϕ∗.
(c) Equip W with the canonical ε-symmetric form.
In each case ϕ is a ∗-map.

Let R be a semisimple Artinian ∗-algebra R = ⊕m
i=1Ri, Ri a simple alge-

bra. The involution ∗ induces a map of order 2 on the set of simple factors Ri.
Therefore, we can subdivide this set in the factors Ri that are fixed under ∗, and
the remaining ones exchanged:

R = ⊕h
i=1Ri ⊕t

i=1 (Sj ⊕ S∗
j ), (Ri = R∗

i ).

S∗
j is isomorphic, via ∗, to Sop

j (the opposite algebra).



254 Ts. Rashkova

The ∗-algebra Sj ⊕ S∗
j is thus isomorphic to the ∗-algebra Sj ⊕ Sop

j with
the exchange involution (a, b)∗ = (b, a).

Analyzing modules over R we came to the following

Theorem 2.9 [47, Theorem 14.1]. Let R be a simple ∗-algebra, V – an
irreducible R-module and ∆ = EndR(V ), the centralizer of R.
(a) There exists an involution ∗ on ∆ and a nonzero biadditive map B : V ×V →
∆ such that:

(i) B(r∗v,w) = B(v, rw) for all v,w ∈ V , and r ∈ R.
(ii) B(dv,w) = dB(v,w); B(v, dw) = B(v,w)d∗ for v,w ∈ V, d ∈ ∆.
(iii) B(v,w) = εB(w, v)∗, ε fixed, and ε = ±1.

(b) Condition (i) implies that B is nondegenerate, i.e. B(v,w) = 0 for all v ∈ V
implies w = 0 and symmetrically for all w ∈ V implies v = 0.
(c) The involution on ∆ and the form B are unique up to the following changes.
If ∗, ♯ are two involutions on ∆ and B1, B2 the corresponding forms on V , there
is an element a ∈ ∆, a 6= 0 and a∗ = εa, (ε = ±1) such that:

(iv) b♯ = ab∗a−1, B2(v,w)a = B1(v,w) for all v,w ∈ V .
(d) If ∆ is finite dimensional over its centre F , every involution on ∆, coincid-
ing on F with the automorphism induced by the involution on R, is obtained
in the way described before. Provided that, given ε ∈ F , if εε∗ = 1, then
ε = ±(α/α∗), α ∈ F .

It is important to endow directly the vector space V with a form for
which ϕ is ∗-representation. Such a form will be called a compatible form. In
some cases, such a form may not exist at all, in other cases, many inequivalent
compatible forms may be constructed. An important special case for which one
has existence and uniqueness is the following:

Corollary 2.10 [47, Corollary 14.2]. If R is a simple ∗-algebra over an
algebraically closed field F (∗ being the identity on F ), R is isomorphic to one of
the two algebras:
(i) n× n matrices with transposition,
(ii) 2n× 2n matrices with symplectic involution.
Any irreducible module has a unique compatible form up to a scalar multiple.
In case (i), every irreducible ∗-representation of R is orthogonal, and any two
such representations are equivalent.
In case (ii), every irreducible ∗-representation of R is symplectic and any two
such representations are equivalent.

This corollary can be read in the language of representations as well.
This extends the theory of representation of algebras relating to the problem of
equivalence of representations to the invarinat theory of matrices.
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The conclusive theorem on semisimple modules gives:

Theorem 2.11 [47, Theorem 14.7]. Let

R = (⊕s
i=1Ri) ⊕ (⊕t

j=1Sj) ⊕ (⊕u
k=1(Tk + T op

k ))

be a semisimple ∗-algebra. The terms Ri are the ones with transpose involution,
the Sj the ones with symplectic involution, and Tk is exchanged with T op

k . Let
Vi (i = 1, . . . , s); Wj (j = 1, . . . , t); Zk, Z

0
k (k = 1, . . . , u) be irreducible modules

over Ri, Sj, Tk and T 0
k , respectively. Considering an R-module M , isomorphic

to
∑
niVi +

∑
mjWj +

∑
pkZk +

∑
qkZ

0
k we have:

(i) M has a compatible symmetric form if and only if mj is even (j = 1, . . . , t),
and pk = qk for k = 1, . . . , u. Any two such forms are isomorphic over R.
(ii) M has a compatible anti-symmetric form if and only if ni is even (i =
1, . . . , s), and pk = qk for k = 1, . . . , u. Any such forms are isomorphic over
R.

Giambruno determines in [21] the structure of the ring with involution by
imposing algebraic conditions on the symmetric elements of the ring. He proved
the following

Theorem 2.12 [20, Theorem 5]. Let R be a primitive ring with involution
and a centre Z such that for all s1, . . . , sn ∈ S, there exists an integer m =
m(s1, . . . , sn) ≥ 1 with

[s1, . . . , sn]m(s1,...,sn) ∈ Z.

Then R is a simple algebra of dimension at most 16 over its centre.

In [17] Drensky and Giambruno use a generic construction considering
the 2 × 2 matrix algebra M2(F [ξ], ∗) with entries from the polynomial algebra

F [ξ] = F [ξ
(h)
ij |i, j = 1, 2, h = 1, . . . ,m] and equipped with either the transpose

or the symplectic involution. The generic matrix algebra Gm(∗) is ∗-generated

by the generic matrices Xh =

(
ξ
(h)
11 ξ

(h)
12

ξ
(h)
21 ξ

(h)
22

)
, h = 1, . . . ,m and is isomorphic

to the relatively free algebra Fm(M2(F ), ∗). Via special good working algebras
isomorphic to the generic algebra Gm(∗) with transpose involution or to the
Gm(∗) with symplectic involution Drensky and Giambruno prove the following

Theorem 2.13 [17, Theorem 3.3]. Let λ=(λ1, . . ., λp) and µ=(µ1, . . ., µq)
be partitions such that λp 6= 0, µq 6= 0 and let

fλ,µ(s1, . . . , sp, k1, . . . , kq) = fλ(s1, . . . , sp)fµ(k1, . . . , kq)
∑

γ∈Symn

ασσ, ασ ∈ F
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for symmetric si (i = 1, . . . , p) and skew-symmetric kj (j = 1, . . . , q) be a proper
polynomial generating a GLm ×GLm-submodule Nλ,µ of the space Bm(∗) of the
proper polynomials of Fm〈s1, . . . , sm, k1, . . . , km〉.
(i) Let ∗ be the transpose involution of M2(F ). If p > 2 or q > 1, then
fλ,µ(s1, s2, k1) is a polynomail identity for (M2(F ), ∗) if and only if fλ,µ(a1, a2, a3)

= 0 for the matrices a1 =

(
1 0

0 −1

)
; a2 =

(
0 1

1 0

)
and a3 =

(
0 1

−1 0

)
.

(ii) For the symplectic involution and p > 0 or q > 3, fλ,µ is a polynomial identity
for (M2(F ), ∗). If p = 0 and q ≤ 3, fλ,µ = fµ(k1, k2, k3) is a polynomial identity
for (M2(F ), ∗) if and only if fµ(a1, a2, a3) = 0.

Here the approach is based on the proper (or commutator) polynomial
identities. For Z2 = {1, ∗} being the cyclic group of order 2 the wreath product
Z2 ≀ Symn is defined. For every ∗-T-ideal T (R, ∗) the vector spaces Pn(∗) ∩
T (R, ∗) and Fm(∗) ∩ T (R, ∗) are invariant under the actions of Z2 ≀ Symn and
GLm × GLm, respectively. Drensky and Giambruno in [17] view the space of
multilinear ∗-polynomials Pn(R, ∗) and the relatively free algebra Fm(R, ∗) of
rank m respectively as Z2 ≀ Symn- and GLm × GLm-modules and their module
structure is related very closely.

Considering (M2n(F ), ∗) with symplectic involution ∗ = s over a field of
characteristic zero an important problem is to find the minimal degree of a ∗-
polynomial identity for the algebra. If x1, x2 are symmetric variables, [x1, x2] = 0
is a ∗-identity of minimal degree for (M2(F ), ∗) and [[x1, x2]

2, x3] = 0 is a ∗-
identity of minimal degree for (M4(F ), ∗).

In the general case in [22] it was shown that if f = 0 is a ∗-polynomial
identity for (M2n(F ), ∗ = s) and n > 1, then deg (f) ≥ 2n + 1. This result is
improved in [18] and if n > 2, (M2n(F ), ∗) does not satisfy identities of degree
2n+1 in symmetric variables only. Therefore the minimal degree of the identities
in symmetric variables forM2n(F, ∗) is greater than 2n+1. The authors’ approach
in [22] is based on the following idea. Every ∗-polynomial identity in symmetric
variables for (M2n(F ), ∗) is an ordinary polynomial identity for the n×n matrix
algebra Mn(F ). The ordinary polynomial identities of degree 2n + 1 for Mn(F )
for n > 2 have been described by [37]. It turns out that all they follow from
the standard identity S2n(x1, . . . , x2n) = 0. Hence it is sufficient to show that
no multilinear consequence of degree 2n + 1 of S2n(x1, . . . , xn) = 0 vanishes on
the symmetric elements from (M2n(F ), ∗). The authors apply the representation
theory of the symmetric group Symp and of the general linear group GLm.

In 1996 Rashkova [48, Theorem 3.1] made one more step in the direction
of determining the minimal degree, showing that (M6(F ), ∗ = s) has no identi-
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ties of degree 8 in symmetric variables. In 1995, it was proved by Giambruno
and Valenti [30] that if f is a ∗-polynomial identity in skew-symmetric variables
for (M2n(F ), s) then deg f > 3n. It is easy to show that S2n is a ∗-polynomial
identity for (Mn(F ), t) of minimal degree among ∗-polynomial identities in sym-
metric variables. But it was pointed in [9] that in general ∗-polynomial identities
of minimal degree for matrices with involution need not resemble standard iden-
tities. In [49, Theorem 1] it was established that if a polynomial f(x, y1, . . . , yn)
which is linear in each yi, i = 1, . . . , n, is a ∗-identity for K(M2n(F ), s) then it is
a ∗-identity for S(M2n(F ), s) as well. A description of these polynomials being
identities of minimal degree for n = 2, 3 is given in [49] as well.

In [56] Ma and Racine exploit the idea of weak identities. These are
polynomials which evaluate to zero on some fixed subspace of an algebra. For a
fixed algebra A and a subspace V of A, we denote by T (V ) the ideal of the weak
identifies of V . The authors of [56] determine the weak identities of minimal
degree for the subspace S(Mn(F ), t) of symmetric matrices of the full matrix
algebra Mn(F ).

Let

T i
k(x1, . . . , xk) =

∑

σ∈Symk

1≤i≤k,

σ−1(i)≡1,2 (mod 4)

(−1)σxσ(1) · · · xσ(k).

The notation T 1
k (y, x, . . . , xk−1) = Tk(x1, . . . , xk−1; y) will be used as

well. For [a, b] = ab − ba and {abc} = abc + cba we introduce Q(x1, . . . , x6) =∑
(123),(456){[x1, x2][x3, x4][x5, x6]}, where the commutators are the arguments of

the triple product and the sum is taken over cyclic permutations of (123) and
(456), so that Q is the sum of nine triple products.

For A a central simple associative algebra over the field F we consider an
involution ∗ ofA of the first kind. It has the property that (A⊗F , ∗) ∼= (Mn(F ), t),
where F is the algebraic closure of F and (t) – the transpose, giving it the name
of orthogonal one.

Ma and Racine prove the following:

Corollary 2.14 [56, Corollary 3]. If R is commutative ring with unit
element 1, then T2n(x1, . . . , x2n−1; y) ∈ T (S(Mn(R), t)).

If A is a central simple associative algebra of degree n over its centre and ∗
an orthogonal involution of A, then T2n(x1, . . . , x2n−1; y) ∈ T (S(A, ∗)). If n = 3,
then Q(x1, . . . , x6) ∈ T (S(A, ∗)).
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The corollary has a graph-theoretic interpretation and is equivalent to a
result on Eulerian paths on indirected graphs.

Let (V,E) be a finite graph with vertices {v1, . . ., vn} and edges {w1, . . ., wr}
in an arbitrary but fixed ordering. Eulerian paths (if they exist) correspond to
permutations σ ∈ Symr, where the path is wσ(1), . . . , wσ(r).

The following is a generalization of the above corollary.

Theorem 2.15 [56, Theorem 2]. For l(n) = 2[(n + 1)/2], char F not
dividing [l(n)]! and |F | > 2n all identities for S(Mn(F ), t) for n 6= 3 of degree 2n
are consequences of T 1

2n. If n = 3, then all identities of degree 6 for S(M3(F ), t)
are consequences of T 1

6 and Q.

For proving the above results Ma and Racine consider a symplectic in-
volution (s) of a central simple associative algebra A and use the fact that the
symmetric elements of A with respect to (s) satisfy a polynomial of degree m,
where n = 2m and (A⊗F , ∗) ∼= (Mn(F ), s). This polynomial is analogous to the
characteristic polynomial but obtained using the Pfaffian instead of the deter-
minant. Linearizing the polynomial and substituting the variables with proper
commutators of symmetric elements using the properties of the trace, Ma and
Racine get the validity of the stated results.

Considering ∗-identities for matrix algebras an important problem is to
find their bases. Levchenko [38, 39] finds an explicit finite basis of the identities
with involution for the second order matrix algebra over a field of characteristic
zero.

Theorem 2.16 [38, Theorem 1]. Let (M2(F ), ∗) be the second order
matrix algebra with symplectic involution ∗. All identities with involution for it
are consequences of the identity [x+ x∗, y] = 0.

The next theorem concerns an involution ∗ of transpose type (being a first

kind involution), namelyX∗ =

(
a α−1c
αb d

)
forX =

(
a b
c d

)
and 0 6= α ∈ F .

Theorem 2.17 [38, Theorem 2]. For (M2(F ), ∗) with an involution ∗ of
transpose type all identities with involution follow from the identities:

[(x− x∗)(y − y∗), z] = 0,

[x− x∗, y − y∗] = 0,

[x1 + x∗1, x2 + x∗2][x3 + x∗3, x4 + x∗4]

+ [x2 + x∗2, x3 + x∗3][x1 + x∗1, x4 + x∗4]

+ [x3 + x∗3, x1 + x∗1][x2 + x∗2, x4 + x∗4] = 0,
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[x− x∗, y + y∗, z − z∗, t+ t∗] = 4(x− x∗)(z − z∗)[t+ t∗, y + y∗].

The proof is done by induction on the degree of the polynomial identities
with involution and using the full description of the types of monomials in the
linear combination expressing the considered multilinear identities for (M2(F ), ∗).

The purpose of [14] is to determine the ∗-identities of minimal degree for
(Mn(F ), t) when n < 5. D’Amour and Racine start with the identities mentioned
by Rowen in [54], namely

x1 − x∗1 ∈ T (M1(R), t),

[x1 − x∗1, x2 − x∗2] ∈ T (M2(R), t),

[S3(x1 − x∗1, x2 − x∗2, x3 − x∗3), x4] ∈ T (M3(R), t),

S6(x1 − x∗1, . . . , x6 − x∗6) ∈ T (M4(R), t),

[x1 + x∗1, x2] ∈ T (M2(R), s),

[[x1 + x∗1, x2 − x∗2]
2, x3] ∈ T (M4(R), s),

where R is a unital commutative ring.
It is seen in [14] that more polynomials are required to obtain all the

identities of minimal degree, at least in the case of transpose involution. Defining
the derivation xDy,z := {xyz} − {xzy} = xyz + zyx− xzy − yzx D’Amour and
Racine prove

Proposition 2.18 [14, Proposition 2.7]. The polynomials

p(x1, x2, x3, x4) =
∑

(123)

{x1[x2, x4]x3},

q(x1, x2, x3, x4) =
∑

(123)

{x1[x2, x3]x4} +
∑

(124)

{x1[x2, x4]x3}

+ 2([x1, x3]Dx2,x4+[x1, x4]Dx2,x3−[x2, x3]Dx1,x4−[x2, x4]Dx1,x3),

r(x1, x2, x3, x4) = [S3(x1, x2, x3), x4]

are identities for Alt(Mn(F ), t).

Proposition 2.19 [14, Proposition 2.16]. The polynomials

g(x1, . . . , x4) =
∑

σ∈Sym2

(−1)σ({xσ(1)xσ(2)(x3 ◦ x4)} − {xσ(1)(xσ(2) ◦ x4)x3}),

r(x1, . . . , x4) = [S3(x1, x2, x3), x4]
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are (3, 1, t)-identities for M3(F ).

Let f(x1, . . . , xr, y1, . . . , ys, . . . , z1, . . . , zt) be a homogeneous polynomial
identity of type [mr, ns, . . . , ut] on some subspace V on Mn(F )
(V = Sym(Mn(F ), t) or V = Alt(Mn(F ), t)) and set m0 = max{m,n, . . . , u, r,
s, . . . , t}. The following theorem provides a relation of symmetry between vari-
ables of equal degree in f , depending on how many they are.

Theorem 2.20 [14, Theorem 3.1]. If char F does not divide m0! and
|F | ≥ 2m0 − 1, then f = f0 + f1, where the fi, i = 0, 1, are identities of the same
type as f and for each k : 0 < k ≤ m0, f0 is symmetric or skew-symmetric in
all variables of degree k, depending on whether k is even or odd, while f1 comes
from the identities of lower type.

The proof of this result starts with the case of a pair of variables x, y
of some given degree m in f . Then, by acting on all r variables of the same
degree m with the symmetric group Symr, one obtains the desired symmetry
property among those particular variables. Repeating the procedure for each
degree separately yields the general result.

The theorem can be extended to (k− l, l, t) identities by fixing the degree,
keeping the l symmetric and k − l skew-symmetric variables apart, and acting
on them via Syml × Symk−l. Thus, when considering a typical homogeneous
(k−l, l, t) identity, we may assume the symmetry properties of Theorem 2.20, and
with this, reduce the number of arbitrary coefficients involved in the calculations.

Theorem 2.21 [14, Theorem 3.2]. If |F | > 2, then any polynomial
identity of Alt(M2(F ), t) of minimal degree is a scalar multiple of S2(x1−x∗1, x2−
x∗2).

Lemma 2.22 [14, Lemma 3.4]. For n ≥ 2 and any (n+1−s, s, t)-identity
for Mn(F ) we have s ≤ 1.

Theorem 2.23 [14, Theorem 3.5]. Under the hypotheses of Theorem
2.20 on the field F , any polynomial identity for Alt(M3(F ), t) of minimal de-
gree is a consequence of the identities p(x1, . . . , x4) = 0, q(x1, . . . , x4) = 0 and
r(x1, . . . , x4) = 0 from Proposition 2.18.

Theorem 2.24 [14, Theorem 3.7]. Under the hypotheses of Theorem
2.20 on the field F , any polynomial identity for Alt(M4(F ), t) of minimal degree
is a consequence of

k(x1, x2, x3, y) := S4(x1, x2, x3, y
2) − y ◦ S4(x1, x2, x3, y) = 0,
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and any ∗-polynomial identity for (M4(F ), t) of minimal degree is a consequence
of k(x1 − x∗1, x2 − x∗2, x3 − x∗3, y − y∗) = 0.

The proof of the above four statements uses concrete special symmet-
ric or skew-symmetric matrices, calculating proper coefficients of the considered
polynomials.

Analogous investigations in the symplectic case are done in [15]. The
authors D’Amour and Racine established the minimal degree of ∗-identities for
(Mn(F ), s) when n < 5 and provide generators for the identities of minimal
degree. The paper starts with the remark that when n = 2, the 2× 2 symmetric
matrices S(M2(F ), s) = F · E, E the identity matrix, and so [x, y] := xy − yx
vanishes whenever x is replaced by any element of S(M2(F ), s) and y by any
element of (M2(F ), s). One easily checks that (M2(F ), s) has no ∗-identity of
degree 1 and that all ∗-identities of degree 2 comes from the above. The approach
for n = 4 is based on the well-known fact than an identity either for S(M4(F ), s)
or K(M4(F ), s) must be an ordinary polynomial identity for M2(F ) and the
initial source for such identities is the vector space of dimension 29 over F of the
multilinear identities of M2(F ) of degree 5 cut down considering the subspaces of
symmetric and skew-symmetric elements with respect to the reversal involution,
i.e. the unique involution of the free associative algebra fixing the generators of
dimensions 15 and 14, respectively. As Theorem 2.20 is valid for the symplectic
case as well reducing greatly the number of arbitrary coefficients involved in the
calculations, the authors prove that K(M4(F ), s) has no multilinear identity of
degree 5 and (M4(F ), s) has no multilinear identity f(x, y1, . . . , y4) of degree 5
with x ∈ S(M4(F ), s) and yi ∈ K(M4(F ), s), i = 1, . . . , 4.

The following two theorems are under the hypotheses of Theorem 2.20.

Theorem 2.25 [15, Theorem 3.4]. Any polynomial identity for
S(M4(F ), s) of minimal degree is a consequence of

p4(x1, . . . , x5) = [[x1, x2] ◦ [x3, x4] + [x1, x4] ◦ [x3, x2], x5]

and the linearization in y|x4,x5 of the polynomial

r5(x1, x2, x3; y) = S4(x1, x2, x3, y
2) − y ◦ S4(x1, x2, x3, y).

Theorem 2.26 [15, Theorem 3.5]. Any multilinear identity f(x1, x2, y1,
y2, y3) of degree 5 with xi ∈ S(M4(F ), s), i = 1, 2 and yj ∈ K(M4(F ), s),
j = 1, 2, 3, is a consequence of p2(x1, x2, y1, y2, y3) = [[x1, y1] ◦ [x2, y2], y3].
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The description of the multilinear identities of degree 5 of the form f(x1,
x2, x3, y1, y2) and f(x1, x2, x3, x4, y1) with xi∈S(M4(F ), s) and yj∈K(M4(F ), s),
i = 1, 2, 3, 4, j = 1, 2, is given as well.

Thus [14, 15] give a complete picture of the minimal degree ∗-identities
of (Mn(F ), ∗) for n < 5.

For special polynomials Rashkova [50] continues further, considering
(M2n(F ), ∗) for n ≡ 2, 3 (mod 4).

Those special polynomials are inspired by the approach of Formanek and
Bergman for investigating identities for matrix algebras via commutative algebra.

To a homogeneous polynomial in commuting variables

g(t1, . . . , tn+1) =
∑

αpt
p1
1 . . . t

pn+1

n+1 ∈ F [t1, . . . , tn+1]

we relate a polynomial v(g) from the free associative algebra F 〈x, y1, . . . , yn〉

v(g) = v(g)(x, y1, . . . , yn) =
∑

αpx
p1y1 . . . x

pnynx
pn+1.

Any homogeneous and multilinear in y1, . . . , yn polynomial f(x, y1, . . . , yn)
(we call it a Bergman type polynomial) can be written as

f(x, y1, . . . , yn) =
∑

i=(i1,...,in)∈Symn

v(gi)(x, yi1 , . . . , yin),

where gi ∈ F [t1, . . . , tn+1].
In [50] the Bergman type identity of minimal degree 14 for K(M6(F ), ∗) is

found. Necessary and sufficient conditions are given for the existence of Bergman
type identities for K(M4(F ), ∗) and of degree 15 for K(M6(F ), ∗). A class of
Bergman type identities of degree 16 + 2k is given as well. Some of the ob-
tained results are generalized for n ≡ 2, 3 (mod 4) and the next theorem gives the
generalization.

We define the commutative polynomial

g2n,0 =
∏

1≤p<q≤n+1

(p,q)6=(1,n+1)

(t2p − t2q)(t1 − tn+1).

Theorem 2.27 [50, Theorem 3]. For n ≡ 2,3 (mod 4) every Bergman
type polynomial of degree k of the form

f = α
∑

i

v(gi)(x, yi1 , . . . , yin) + β
∑

j

v(gj)(x, yj1 , . . . , yjn),
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where

(i) gi = g2n,0

k−n2−2n+1∏
l=1

n∑
m=1

a
(l)
i,mtm,

gi+ n!
2

= g2n,0

k−n2−2n+1∏
l=1

(
−

n∑
m=1

a
(l)
i,n+1−mtm

)
, i = 1, . . . ,

n!

2
,

and t1 + tn+1 is not a factor of these polynomials;

(ii) The polynomial (t1 + tn+1)g2n,0 divides gj and

(iii) The identity
∑
v(gi)(x, yi1 , . . . , yin) = 0 follows from the identity

v(g2n,0)(x, yi1 , yi2 , . . . , yin) + v(g2n,0)(x, yin , yin−1 . . . , yi1), (i1, i2, . . . , in) ∈ Symn,
is a ∗-identity in skew-symmetric variables for M2n(F, ∗).

Let F be a field of characteristic not 2 and let A be a central simple F -
algebra, σ – an involution. The pair (A,σ) is said to be hyperbolic if A contains
a right ideal I such that I = I⊥, where I⊥ = {x ∈ A : σ(x)I = 0}.

Let π(t) ∈ F [t] be monic and separable of even degree 2n and

F (π) = F [t]/π(t)F [t].

Since π(t) is separable, the ring F (π) is a direct product of separable field exten-
sions of F , F (π) = F (π1)×· · ·×πr(t). If (A,σ) is a central simple F -algebra with
involution we say that (A,σ) becomes hyperbolic over F (π) if each of the algebras
(A⊗F F (πi), σ⊗ 1) is hyperbolic. By [32] if (Q, γ) is an F -central quaternion al-
gebra with its unique symplectic involution, then (Q, γ) becomes hyperbolic over
a field extension L of F if and only if L splits Q. In Chapter 2 of [31] there are
two main results characterizing when a K-central quaternion algebra (Q,σ) with
F = Kσ becomes hyperbolic over a field extension L of F , where σ is either an
orthogonal involution or an involution of the second kind. In Chapter 3 the case
of biquaternion algebras is considered, i.e. central simple algebras A of degree 4
with an involution σ of the first kind. A criterion is given such an algebra with
orthogonal involution of nontrivial discriminant to become hyperbolic over F (π).
The proof uses essentially the invariants of the involution – the index and the
discriminant. The importance of the exposition lies in connecting the criteria of
hyperbolicity with the properties of a special Clifford algebra of a quadratic form
over a polynomial ring over F .

Another trend of investigation is the study of functional identities on
prime rings with involution [7]. They play a crucial role in the solution of number
of problems on Lie isomorphisms in prime rings.

Berhuy [11] considers the trace form of special central algebras with in-
volution over a field F of characteristic different from 2. Following strictly the
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definitions of part I. of the survey, a nondegenerate symmetric bilinear form of di-
mension n2 over F is introduced being the function (x, y) ∈ A×A→ TrdA(σ(x)y)
with Tσ the corresponding quadratic form. If σ is of the second kind, Tσ is a non-
degenerate quadratic form over the field F0 (fixed by the trivial involution σ/F )
of dimension 2n2. Berhuy in [11] computes explicitly the isomorphism class of the
trace form Tσ of the considered F -algebras with involution of any kind for some
special base fields, especially the Euclidean fields and the field of rational num-
bers. The proof uses essentially the properties of the invariants of the considered
quadratic forms.

III. Cocharacters, Hilbert series, codimensions and growth.
We recall that F 〈X, ∗〉 = F 〈x1, x

∗
1, x2, x

∗
2, . . .〉 denotes the free associative algebra

with involution ∗ generated by X a field F of characteristic 0 and Fm(∗) =
F 〈x1, x

∗
1, . . . , xm, x

∗
m〉 denotes the free subalgebra of rank m. As in the case of

ordinary polynomial identities, in characteristic zero, the ∗-polynomial identities
of an algebra are determined by the multilinear ones. If we denote by Vk(∗) the
space of all multilinear polynomials of degree k in x1, x

∗
1, . . . , xk, x

∗
k, the study of

the ∗-T-ideal T (R, ∗) of all ∗-polynomial identities of an algebra R is equivalent
to the study of Vk(∗) ∩ T (R, ∗) for any k ≥ 1. We define the relatively free
algebra F (R, ∗) = F 〈X, ∗〉/T (R, ∗) and the relatively free algebra Fm(R, ∗) =
Fm(∗)/Fm(∗) ∩ T (R, ∗) of rank m.

Another way of writing the space Vk(∗) is

Vk(∗) = SpanF {wσ(1) · · ·wσ(k)|σ ∈ Symk,

wi = yi ∈ Y orwi = zi ∈ Z, i = 1, . . . , k}

(Y denotes the symmetric while Z stands for the skew-symmetric with respect
to the involution ∗ variables). We denote

V
(r)
k (∗) = SpanF {wσ(1) · · ·wσ(k)|σ ∈ Symk,

wi = yi ∈ Y, i = 1, . . . , r andwj = zj ∈ Z, j = r + 1, . . . , k}.

Let Vk(R, ∗) = Vk(∗)/Vk(∗)∩T (R, ∗) be the set of multilinear elements of
degree k in F (R, ∗). The n-th codimension of R is cn(R, ∗) = dimVn(R, ∗), n =

0, 1, 2, . . .. We denote c
(r)
n (R, ∗) = dimV

(r)
n (R, ∗). We have that Fm(∗) =

Fm〈y1, . . . , ym, z1, . . . , zm〉 and assume that the symmetric variables s1, . . . , sm

and the skew-symmetric variables k1, . . . , km generate the relatively free algebra
Fm(R, ∗). The vector space Fm(∗) has a natural multigrading obtained by count-
ing the degree in the symmetric and skew-symmetric variables. Since the ideal
Fm(∗) ∩ T (R, ∗) is multihomogeneous, Fm(R, ∗) inherits the multigrading.
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Let F
(a,b)
m (R, ∗), (a, b) = (a1, . . . , am, b1, . . . , bm), be the multihomoge-

neous component of degree ai in si and of degree bi in ki, i = 1, . . . ,m. The
∗-Hilbert series of Fm(R, ∗) is defined as the formal power series

H(R, ∗, y1, . . . , ym, z1, . . . , zm) =
∑

(a,b)

dimF (a,b)
m (R, ∗)ya1

1 · · · yam
m zb1

1 · · · zbm
m .

If Z2 = {1, ∗} is the cyclic group of order 2, then Bk is the wreath product
Z2 ≀ Symk = {(a1, . . . , ak;σ)|ai ∈ Z2, σ ∈ Symk} with multiplication given by

(a1, . . . , ak;σ)(b1, . . . , bk; τ) = (a1bσ−1(1), . . . , akbσ−1(k);στ).

There is one-to-one correspondence between irreducible Bk-characters and pairs
of partitions (λ, µ), where λ ⊢ r, µ ⊢ k − r, for all r = 0, 1, . . . , k. We de-
note by Mλ,µ and χλ,µ the irreducible Bk-module corresponding to (λ, µ) and its
character, respectively. The space Vk(∗) has a structure of a left Bk-module
induced by the action of h = (a1, . . . , ak;σ) ∈ Bk defined by hsi = sσ(i),

hki = k
aσ(i)

σ(i) = ±kσ(i). For every F -algebra R with involution ∗ the vector

space Vk(∗) ∩ T (R, ∗) is invariant under the above action of Bk, hence the space
Vk(R, ∗) = Vk(∗)/(Vk(∗)∩T (R, ∗)) has a structure of a left Bk-module. We write

Vk(∗) ∩ T (R, ∗) ≃
∑

λ,µ

mλ,µ(R, ∗)Mλ,µ,

χBk
(R, ∗) =

k∑

r=0

∑

λ⊢r,
µ⊢k−r

mλ,µ(R, ∗)χλ,µ,

where mλ,µ(R, ∗) ≥ 0 are the corresponding multiplicities.
The character χk(R, ∗) of Vk(R, ∗) is called the k-th ∗-cocharacter of R

and has the following decomposition

χk(R, ∗) =
k∑

r=0

∑

λ⊢r,
µ⊢k−r

mλ,µ(R, ∗)χλ,µ.(1)

Again, as in the case of ordinary polynomial identities, one of the main problems
for the ∗-polynomial identities of R is to describe the multiplicities mλ,µ(R, ∗) or,
equivalently, mλ,µ(R, ∗).

Drensky and Giambruno determined in [17] the multiplicities
mλ,µ(M2(F ), ∗) for any pair (λ, µ).
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Theorem 3.1 [17, Theorem 4.1]. The Bn-cocharacter of (M2(F ), ∗) is
χn(M2(F ), ∗) =

∑
aλ,µχλ,µ, where

(i) For the transpose involution λ = (λ1, λ2), µ = (µ1) and

aλ,µ = 1, when λ2 = µ1 = 0;

aλ,µ = (λ1 − λ2 + 1)λ2, when λ2 6= 0, λ3 = µ1 = 0;

aλ,µ = (λ1 − λ2 + 1)(λ2 − λ3 + 1), for other pairs of partitions.

(ii) For the symplectic involution λ = (λ1), µ = (µ1, µ2, µ3) and aλ,µ = 1.

For r fixed let Vr,k−r(∗) = V
(r)
k (∗) be the space of multilinear polynomi-

als in s1, . . . , sr, kr+1, . . . , kk. If Symr acts on the symmetric variables s1, . . . , sr

and Symk−r on the skew-symmetric variables kr+1, . . . , kk, then we obtain an
action of Symr × Symk−r on Vr,k−r(R, ∗). Since ∗-T-ideals are invariant un-
der permutations of symmetric and skew-symmetric variables, we obtain that
Vr,k−r(R, ∗) = Vr,k−r(∗)/Vr,k−r(∗) ∩ T (R, ∗) has the induced structure of a left
Symr × Symk−r-module. We denote by χr,k−r(R, ∗) its character. There is a one-
to-one correspondence between irreducible Symr × Symk−r-characters and pairs
of partitions (λ, µ) such that λ ⊢ r, and µ ⊢ k − r. Hence, by the complete
reducibility, we have the decomposition

χr,k−r(R, ∗) =
∑

λ⊢r,

µ⊢k−r

m̃λ,µ(R, ∗)(χλ ⊗ χµ),(2)

where χλ (resp. χµ) denotes the usual Symr-character (resp. Symk−r-character),
χλ⊗χµ is the irreducible Symr × Symk−r-character associated with the pair (λ, µ)
and µ̃λ,µ(R, ∗) ≥ 0 is the corresponding multiplicity.

The relation between the Bk-character and the Symr × Symk−r-character
is expressed in

Theorem 3.2 [17, Theorem 1.3].
(i) If the k-th ∗-character of R has the decomposition given in (1) and

the Symr × Symk−r-character of Vr,k−r(R, ∗) has the decomposition (2), then
mλ,µ(R, ∗) = m̃λ,µ(R, ∗), for all λ and µ.

(ii) The codimensions satisfy the relation

ck(R, ∗) =
k∑

r=0

(n
r

)
c
(r)
k (R, ∗).
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Let U = SpanF{s1, . . . , sm} and V = SpanF {k1, . . . , km}. The group
GL(U) × GL(V ) ≃ GLm × GLm acts from the left on the space U ⊕ V and we
can extend this action diagonally to an action on Fm(∗). For every ∗-T-ideal
T (R, ∗) the space Fm(R, ∗) = Fm(∗)/Fm(∗) ∩ T (R, ∗) is a GLm ×GLm-module.

Let F
(k)
m (R, ∗) be its homogeneous component of degree k; it is a GLm × GLm-

submodule of Fm(R, ∗) and we denote its character by ψk(R, ∗). The irreducible
polynomial GLm × GLm-characters are described by pairs of partitions (λ, µ),
where λ ⊢ r and µ ⊢ k − r for all r = 0, . . . , k.

A complete description of the representation theory of the group Bk on
Vk(∗) and of GLm ×GLm on Fm(∗) is given in [29, 21].

In [29] the representation theory of the wreath product G ≀ Symn is ap-
plied to study algebras satisfying polynomial identities that involve a group G
of (anti)-automorphisms, in the same way the representation theory of Symn

has been applied to study ordinary P.I. algebras. The basic idea of identifying
the space Vn of the multilinear polynomials in x1, . . . , xn, with the group algebra
F [Symn] is exploited for identifying the group algebra F [G≀Symn] with Vn(x|G) =
SpanF {xg1

σ(1) . . . x
gn

σ(n)|σ ∈ Symn, gi ∈ G}, the multilinear G-polynomials of degree

n of the associative ring F 〈X|G〉 of non-commutative F -polynomials in the vari-
ables 〈X|G〉 = {xg = g(x)|x ∈ X, g ∈ G}.

Let R be an F -algebra and Aut∗(R) be the group of automorhisms and
anti-automorphisms of the algebra R. For G ⊆ Aut∗(R) and the G-identities
P ⊆ F 〈X|G〉 of R one defines χn(R|G) to be the G≀Symn-character of the module
Vn(x|G)/Pn, where Pn = Vn(x|G| ∩ P ), and call χn(R|G) “the G-cocharacters
of R”. The “G-codimensions” of R are defined as cn(R|G) = dim(Vn(X|G)/Pn)
being the degrees of the G-cocharacters.

In the paper [29] it was proved that cn(R|G) ≤ |G|ncn(R) and as a corol-
lary the following

Theorem 3.3 [29, Theorem 4.8]. Let G ⊆ Aut∗(R) be a finite subgroup,
and let R be a G-P.I. algebra. Then R satisfies an ordinary identity if and only
if cn(R|G) is exponentially bounded (i.e. there exists 0 < a such that for all n,
cn(R|G) ≤ an).

Thus Amitsur’s theorem (Theorem 2.2) is translated to the language of
codimensions, namely

Theorem 2.2′ [3, Theorem 1]. A ring R with involution ∗ that is ∗-P.I.
is also (ordinary) P.I. ring.

Equivalently, such R is ∗-P.I. if and only if cn(R, ∗) is exponentially
bounded.

The following theorem was proved as well.
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Theorem 3.4 [29, Theorem 6.2]. Let χn(Mk(F ), t) be the ∗-cocharacter
of the matrix algebra Mk(F ), u = 1

2k(k + 1) and v = 1
2k(k − 1). Then

χn(Fk|∗) =
∑

|λ|+|µ|=n

λ′

1≤u,µ′

1≤v

mλ,µχλ,µ,

where λ′1 = h(λ) is the height of λ, etc. Moreover, there exist n = n(k) and
partitions λ, µ, |λ| + |µ| = n, satisfying λ′1 = u and µ′1 = v, for which the
corresponding multiplicity mλ,µ = mλ,µ(Fk, ∗) is non-zero.

If we denote by ψλ,µ the irreducible GLm ×GLm-character associated to
the pair (λ, µ), then we have the following decomposition

ψk(R, ∗) =

k∑

r=0

∑

λ⊢r,
µ⊢k−r

m̂λ,µ(R, ∗)ψλ,µ.(3)

The Bk-module structure of Vk(R, ∗) and the GLm × GLm-module structure of

F
(k)
m (R, ∗) are closely related.

Theorem 3.5 [21, Theorem 3]. If the k-th ∗-cocharacter of R has the

decomposition given in (1) and the GLm ×GLm-character of F
(k)
m (R, ∗) has the

decomposition (3) then mλ,µ(R, ∗) = m̂λ,µ(R, ∗), for all λ, µ.

For (M2(F ), ∗) the Hilbert and codimension series, as well as the codi-
mension sequences are computed in the next two theorems.

Theorem 3.6 [17, Theorem 4.2]. (i) For the transpose involution ∗

H(M2(F ), ∗, y1, . . . , ym, z1, . . . , zm)

=

m∏

i=1

1

1 − yi

m∏

i=1

1

1 − zi

∑

(λ1,λ2)

S(λ1,λ2)(y1, . . . , ym)

−
m∏

i=1

1

(1 − yi)2
+

m∏

i=1

1

1 − yi

=
m∏

i=1

1

1 − yi

m∏

i=1

1

1 − zi

∑

k≥0

(h2
k(y1, . . . , ym)

+ hk(y1, . . . , ym)hk+1(y1, . . . , ym)) −
m∏

i=1

1

(1 − yi)2
+

m∏

i=1

1

1 − yi
,
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where S(λ1,λ2)(y1, . . . , ym) is the Schur function corresponding to the partition
λ = (λ1, λ2) and hk(y1, . . . , ym) = S(k)(y1, . . . , ym) denotes the k-th complete
symmetric function;

H(M2(F ), ∗ , y1, y2, y3, z1, z2, z3)

=(1 − y1y2y3)
3∏

i=1

1

(1 − yi)2

∏

i<j

1

1 − yiyj

3∏

i=1

1

1 − zi

−
3∏

i=1

1

(1 − yi)2
+

3∏

i=1

1

1 − yi
.

(ii) For the symplectic involution

H(M2(F ), ∗, y1, . . . , ym, z1, . . . , zm) =
m∏

i=1

1

1 − yi

∑

µ

S(µ1,µ2,µ3)(z1, . . . , zm)

=

m∏

i=1

1

1 − yi

m∏

i=1

1

1 − zi

∑

µ1≥0

S(µ1,µ1)(z1, . . . , zm),

H(M2(F ), ∗, y1, y2, y3, z1, z2, z3) =

3∏

i=1

1

1 − yi

3∏

i=1

1

1 − zi

∏

i<j

1

1 − zizj
.

Theorem 3.7 [17, Theorem 4.3]. (i) For the transpose involution the
codimension series and the codimension sequence are equal respectively to

c(M2(F ), ∗, t0) =
1

2t0

(
−1 +

√
1

1 − 4t0

)
− 1

1 − 2t0
+

1

1 − t0
,

cn(M2(F ), ∗) =
1

2

(
2n+ 2

n+ 1

)
− 2n + 1.

(ii) For the symplectic involution involution

c(M2(F ), ∗, t0) =
1

t20

(
1 − 2t0 −

√
1 − 4t0

)
,

cn(M2(F ), ∗) =
1

n+ 2

(
2n+ 2

n+ 1

)
.

Let M3(F ) be the algebra of 3 × 3 matrices with involution ∗. In [8]
Benanti and Campanela study the ∗-polynomial identities of (M3(F ), t) through
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the representation theory of the hyperoctahedral group Bn. After decomposing
the space of multilinear ∗-polynomial identities of degree n under the Bn-action,
they determine which irreducible Bn-modules appear with non-zero multiplicity.
The main result in [8] is

Theorem 3.8 [8, Theorem 7]. The n-th ∗-cocharacter of M3(F ) is

χn(M3(F ), t) =
n∑

r=0

∑

λ⊢r,h(λ)≤6

µ⊢n−r,h(µ)≤3

mλ,µχλ,µ,

where mλ,µ 6= 0 if and only if (λ, µ) 6= ((1)6, ∅).
The proof uses essentially the technique of “gluing” Young tableaux.

The symmetric group Symn lies naturally inside the group Bn. Hence, for any
associative algebra R, the Bn-module Vn(R, ∗) may be regarded as an Symn-
module and for the induced Symn-character χSymn

(R) we have the decomposition
χSymn

(R) =
∑
ν⊢n

mνχν , where χν is the irreducible Symn-character associated to

the partition ν and mν is the corresponding multiplicity.

An easy corollary of the above theorem using [12] is

Corollary 3.9 [8, Corollary 9]. The multiplicities mν in χSymn
(M3(F ), t)

are always non-zero for all partitions ν of n.

The natural definition of a free algebra with trace and involution and
of ∗-trace polynomial identity for an algebra R given in [40] extends the above
results including the trace map. Using the notations Vn(∗) for the space of all
multilinear mixed ∗-trace polynomials of degree n, T (R, ∗) for the corresponding
∗-T-ideal and χn(R, ∗) for the ∗-trace cocharacter of R, we write

χn(R, ∗) =

n∑

r=0

∑

λ⊢r

µ⊢n−r

m′
λ,µχλ,µ,

where m′
λ,µ ≥ 0 is the multiplicity of the irreducible Bn-character χλ,µ.

Another consequence of Theorem 3.8 is

Corollary 3.10 [8, Corollary 11]. The multiplicites m′
λ,µ in χn(M3(F ), t)

are always non-zero for any λ ⊢ r and µ ⊢ n−r such that h(λ) ≤ 6 and h(µ) ≤ 3.
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The idea of [29] is used in [12] as well, where the main goal is to calcu-
late the asymptotic behaviour of the multilinear ∗-codimensions of p×p matrices
with or without trace, over a field of characteristic zero. The theory of ∗-trace
identities is used to calculate the asymptotic growth of the ∗-codimensions with
trace tn(Mp(F ), ∗) and to show that tn(Mp(F ), ∗) ≈ cn(Mp(F ), ∗). The inves-
tigations parallel the case of the ordinary cocharacter of p × p matrices. In it
the identification of the space of multilinear polynomials with F [Symn] is an
Symn-isomorphism, taking the Symn-action on F [Symn] to be left multiplica-
tion. In the case of multilinear ∗-polynomials there is a similar Bn-isomorphism
with the regular representation F [Bn]. Specially σ ∈ Bn may be identified with
the ∗-monomial σ(x1)σ(x2) . . . σ(xn).

For trace polynomials without involution ∗, there is an identification of
pure trace polynomials with F [Symn]. To make the identification an Symn-
isomorphism, one uses the conjugation action of Symn on F [Symn]. In the
case of polynomials with involution ∗ and trace according to [40] there is a Bn-
isomorphism between F [Sym2n /Bn] and the space of pure trace ∗-polynomials,
modulo the relation tr(a∗) = tr(a), for all a of the considered algebra. One gets

Theorem 3.11 [12, Theorem]. Let A be a p× p matrix with involution.
Then the trace ∗-cocharacters tn(A) and the ∗-cocharacters cn(A) are asymptoti-
cally equal.

Loday and Procesi consider in [40] the infinite Lie algebra of orthogonal
and symplectic matrices over an associative ring with involution over a charac-
teristic zero field. They give a comprehensive and detailed review of invariant
theory for these types of matrices. The authors in [40] make explicit the relations
between the hyperoctahedral group, the trace identities for matrices and the in-
variant space of the tensor algebra of matrices. Introducing the universal space
for trace formulas Loday and Procesi study the module structure of this space
over the hyperoctahedral group and compare it to some spaces of invariants, the
stability range and the existence of a stabilization homomorphism.

For a finite dimensional algebra with involution ∗ over F Giambruno and
Zaicev study in [28] the asymptotic behaviour of the sequence of ∗-codimensions
cn(A, ∗) of A and show that Exp(A, ∗) = limn→∞

n
√
cn(A, ∗) exists and is an

integer. They give an explicit way of computing the ∗-P.I. exponent Exp(A, ∗)
and as a consequence obtain the following characterization of ∗-simple algebras:
A is ∗-simple if and only if Exp(A, ∗) = dimF A. The authors investigate in [28]
algebras A for which Exp(A, ∗) ≤ 1.

In [46] Pipitone considers the case Exp(A, ∗) = 2. The author gives a list
of four finite dimensional algebras A1, A2, A3 and A4 with involution satisfying
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the following property: A finite dimensional algebra A with involution has ∗-
P.I. exponent greater than 2 if and only if T (A, ∗) ⊆ T (Ai, ∗) for some i =
1, . . . , 4. Two of the algebras Ai are the 2×2 matrix algebras with the transpose
and the symplectic involutions and the other two are a subalgebra and a factor
algebra of algebras of upper triangular matrices UT6(F ) and UT3(F ), respectively,
with involution which transposes the matrices with respect to the other diagonal.
Combining this description with the results in [41], Pipitone characterizes in
Corollary 3.24 the finite dimensional algebras A with ∗-P.I. exponent 2 as well.

More details about Exp(A, ∗) are given in [23].

Giambruno and Regev [29] definedG-polynomials andG-polynomial iden-
tities for G a finite group of automorphisms and anti-automorphisms on an al-
gebra R over a field F . In [6] Bahturin, Giambruno and Zaicev introduce es-
sential G-polynomial identities. They characterize the G-codimensions of R and
the polynomial identities for R when R satisfies an essential identity. In case
G = {1, ∗} where ∗ is an involution, we get ∗-polynomials, ∗-identities and ∗-
codimensions. Thus it becomes possible to characterize the ∗-codimensions of an
algebra with involution and to sharpen the results of Amitsur (Theorem 2.1 and
Theorem 2.2) giving an upper bound on the degree of the polynomial identity.

We need the following definition:

Let k = 2d+ 1, N = 2k2k+1
and denote by pj , j ≥ 3, an integer for which

logN · · · logN︸ ︷︷ ︸
j−2

pj = p2 for p2 = 2k2k

. Then we set f(2d, 2) := log2 p2d.

Corollary 3.12 [6, Corollary 1]. Let R be an algebra with involution ∗
over a field F of characteristic zero satisfying a non-trivial ∗-identity of degree d.
Then for n sufficiently large we have cn(R, ∗) ≤ 2n(f(2d, 2)−1)2n and R satisfies
a non-trivial polynomial identity whose degree is bounded by the function f(2d, 2).

The ∗-codimension sequence affords a kind of measure on how “big” the
variety is – the greater cn(U, ∗) is, where U is a variety of algebras with involution,
the greater U is itself as T (U, ∗) becomes smaller with respect to this “measure”.
The smallest varieties from this point of view are the varieties with polynomial
growth of ∗-codimensions. These are the varieties U for which there exist constants
α, k with cn(U, ∗) ≤ αnk for all n ∈ N. They are characterized in [25] and [27].

Algebras with polynomial growth of the codimensions are characterized
in [27] as well.

Theorem 3.13 [27, Theorem 4]. Let A be a finite dimensional algebra
with involution ∗ over a field of characteristic 0 and J its Jacobson radical. Then
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J∗ = J and there exists a maximal semisimple subalgebra B such that B = B∗

and A = B + J .

The proof starts with the case J2 = 0 using Wedderburn-Malcev theorem
and then continues by induction on the degree of nilpotency of J . The theorem
is issential in proving the main result in the paper, namely

Theorem 3.14 [27, Theorem 6]. Let A be a finite dimensional algebra
with involution over an algebraically closed field F of characteristic 0. Then the
sequence of ∗-codimensions {cn(A, ∗)}n≥1 is polynomially bounded if and only if
(i) The sequence of codimensions {cn(A)}n≥1 is polynomially bounded and
(ii) A = B+ J , where B is a maximal semisimple subalgebra of A and b = b∗ for
all b ∈ B.

Exploiting the representation theory of the hyperoctahedral group one
gets

Theorem 3.15 [27, Theorem 7]. Let A be a finite dimensional algebra
with involution over a field F . Then the sequence of ∗-codimensions {cn(A, ∗)}n≥1

is polynomially bounded if and only if

χn(A, ∗) =
∑

|λ|+|µ|=n
n−λ1<q

mλ,µχλ,µ,

where J(A)q = 0.

The series of papers on growth of algebras includes [41], where Mishchenko
and Valenti introduce a new finite dimensional algebra with involution, denoted
M , and give a complete description of the ideal of ∗-identities of M through the
representation theory of the hyperoctahedral group.

Let A = F (e11 + e33) ⊕ Fe12 ⊕ Fe13 ⊕ Fe22 ⊕ Fe23 and consider the
involution ∗ obtained by reflecting a matrix along its secondary diagonal, namely




u r t
0 v s
0 0 u




∗

=




u s t
0 v r
0 0 u


 .

Clearly dimSym(A, ∗) = 4, dim Skew(A, ∗) = 1. The set I = Fe13 is a
two-sided ideal of A invariant under ∗ and let M := A/I. If we denote e11 +e33 +
I = a, e22 + I = b, e12 + I = c, e23 + I = c∗, then M = SpanF{a, b, c, c∗} with
the following multiplication table

aa = a, bb = b, ac = c, bc∗ = c∗, cb = c, c∗a = c∗,
ab = ba = ac∗ = bc = ca = cc = cc∗ = c∗b = c∗c = c∗c∗ = 0.
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Obviously Sym(M, ∗) = Span{a, b, c+c∗} and Skew(M, ∗) = Span{c−c∗}.
The following result describes the Bn-cocharacters of T (M, ∗).

Theorem 3.16 [41, Theorem 1]. Let χn(M, ∗) =
n∑

r=0

∑
λ⊢r,µ⊢n−r

µλ,µχλ,µ

be the n-th ∗-cocharacter of M . Then µλ,µ = q + 1 if either
(i) λ = (p+ q, p), µ = (1) for all p ≥ 0, q ≥ 0, or
(ii) λ = (p + q, p), µ = ∅ for all p ≥ 1, q ≥ 0, or
(iii) λ = (p + q, p, 1), µ = ∅ for all p ≥ 1, q ≥ 0.
In all other cases µλ,µ = 0 except the case m(n),∅ = 1.

An immediate corollary is that Exp(M, ∗) = 2. An alternative proof of
this fact can be found in [44]q where the description of the proper subvarieties of
the variety generated by M is given.

The decomposition of the GLr ×GLr-module of the proper polynomials
Br(M, ∗) is the following.

Theorem 3.17 [43, Theorem 6]. For n ≥ 2, the n-th homogeneous
component of Br(M, ∗) = Br(∗)/(T (M) ∩Br(∗) is

B(n)
r (M, ∗) = (Wr((n− 1), 1)) ⊗Wr(0)) ⊕ (Wr((n − 1)) ⊗Wr((1))).

Corollary 3.18 [43, Corollary 2]. The n-th ∗-codimension of the variety
generated by M , denoted var (M, ∗), n ∈ N, is

cn(var(M), ∗) = 1 +

n∑

k=1

(
n

k

)
k ≥ 2n.

Therefore var (M, ∗) does not have polynomial growth.

Corollary 3.19 [43, Corollary 3]. Every proper ∗-subvariety of the ∗-
variety generated by M has polynomial growth.

Let G2 = F ⊕ F be the algebra with exchange involution (a, b)∗ = (b, a).
In [25] it was proved that var(G2, ∗) has almost polynomial growth. In [41] it
is shown that var(G2, ∗) and var(M, ∗) are the only two varieties with almost
polynomial growth.

Theorem 3.20 [41, Theorem 4]. Let A be a finite dimensional algebra
with involution over an algebraically closed field of characteristic zero. Then
var(A, ∗) does not have polynomial growth if and only if either G2 ∈ var(A, ∗) or
M ∈ var(A, ∗).
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Corollary 3.21 [41, Corollary 2]. Let A be a finite dimensional algebra.
Then the sequence of ∗-codimensions {cn(A, ∗)}n≥1 either has polynomial growth
or exponential growth.

Giambruno and Mishchenko [25] determine the ∗-cocharacters of the al-
gebra G2 getting that χn(G2, ∗) = 2n. They prove

Theorem 3.22 [25, Theorem 3]. Let A be an algebra with involution.
Then cn(A, ∗) ≤ αnk for some α, k if and only if there exists a constant β such
that

χn(A, ∗) =
∑

|λ|+|µ|=n

mλ,µχλ,µ

and mλ,µ = 0 whenever either |λ| > β or |µ| > β.

Theorem 3.23 [25, Theorem 4]. Let A be an algebra with involution
such that

T (A, ∗) ⊃ T (G2, ∗).
Then {cn(A, ∗)}n≥1 is polynomially bounded.

The case Exp(A, ∗) = 2 is fully characterized in

Corollary 3.24 [46, Corollary]. 5 Let A be a finite dimensional algebra
over a field of characteristic zero. Then Exp(A, ∗) = 2 if and only if either
T (A, ∗) ⊆ T (G2, ∗) or T (A, ∗) ⊆ T (M, ∗).

The case when the multiplicities of the ∗-cocharacters are bounded by a
constant is considered by Otera in [45].

Theorem 3.25 [45, Theorem 3.3.3]. Let A be a finite dimensional al-
gebra with involution over a field F of characteristic 0 such that its ∗-T-ideal is
not contained in the ∗-T-ideal of (M2(F ), s). Then the following conditions are
equivalent:

(i) There exists a constant k such that for any n ≥ 1 and |λ| + |µ| = n
one has mλ,µ ≤ k.

(ii) The ∗-T-ideal of A is not contained in the ∗-T-ideal of the algebra M
and in the ∗-T-ideal of (M2(F ), t).

(iii) mλ,µ = 0 whenever (|λ| − λ1) + (|µ| − µ1) ≥ q, where q is the index
of nilpotency of the Jacobson radical of A.

Now we pay attention to the varieties with exponential growth such
that every proper subvariety has polynomial growth. Following Giambruno and
MIshchenko [26] we call them varieties with almost polynomial growth. The paper
[26] gives a complete description of the varieties V with involution for which the
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sequence cn(V, ∗) is polynomially bounded. They prove that V is such a variety if
and only if G2,M 6∈ V. It follows that G2 and M generate the only two varieties
with involution with almost polynomial growth and that there is no variety with
intermediate growth.

More details on algebras with involution and growth are given in [24].
The codimensions of a concrete algebra are found by Anisimov in [5].

He considers the Grassmann algebra G (we need only characteristic 0). The
algebra G is generated by {e1, e2, . . .} with defining relations eiej + ejei = 0
and has a simply constructed involution. In [5] the author computes exactly the
codimensions of G.

Theorem 3.26 [5, Theorem]. Let G be a Grassmann algebra, ϕid -

involution in G such that ϕid(ei) = ei. Then cn(G,ϕid) = 4n− 1
2 .

The main idea of the proof uses the calculation of cn(G) done by Kra-
kowski and Regev and an estimation of cn(G) mentioned before Theorem 3.3.

We end the survey with an application of the considered notions to the
variety generated by (M2(F ), t) done in [10].

The purpose of [10] is to describe the ∗-subvarieties of the variety
var(M2(F ), t) or, equivalently, the ∗-T-ideals properly containing T (M2(F ), ∗)
by using the method due to Drensky in case of ordinary T -ideals. The authors
construct two sequences of finite dimensional algebras with involution essential
for this description.

We define Y -proper ∗-polynomials in F 〈Y,Z〉 as such in which the y’s
occur in commutators only. They are elements of the vector subspace B(m)(∗) of
Fm(∗) spanned by

{zr1
1 · · · zrm

m ut1
1 · · · utn

n |ri, tj ≥ 0},
where u1, u2, . . . are higher commutators.

Considering Wλ,µ as a representative of the corresponding isomorphism
class of GLm ×GLm-modules it is generated by a non-zero element

wλ,µ := wλ(y1, . . . , yp)wµ(z1, . . . , zq)
∑

σ∈Symn

ασσ (ασ ∈ F ),

where wλ(x1, . . . , xp) :=
λ1∏

j=1
Spj

(x1, . . . , xpj
), pj is the height of the j-th column of

the corresponding Young diagram, p = p1 and the Spj
is the standard polynomial

of degree pj.
The polynomial wλ,µ is the so-called highest weight vector of the module

Wλ,µ.
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Let k ≥ 1 and Ck = K[u]/(tu) be the polynomial algebra modulo the
ideal generated by uk.

We define the following algebras with involution

Rp = Cpe+ uCpa+ uCpb+ Cpc

Sq = Cqe+ Cqa+ uCqb+ uCqc,

where e, a, b, c are the matrices e = e11 + e22, a :=

(
1 0
0 −1

)
, b :=

(
0 1
1 0

)
,

c :=

(
0 1

−1 0

)
.

Lemma 3.27 [10, Lemma 4.2]. (i) The following relations hold

a2 = b2 = −c2 = e

ab = c = −ba, ac = b = −ca, cb = a = −bc.

(ii) The previous relations yield

[a, b] = 2c, [a, c] = 2b, [c, b] = 2a.

(iii) For higher commutators, the following relations hold

[c, a, . . . , a︸ ︷︷ ︸
p

] = 2pcap; [b, a, . . . , a︸ ︷︷ ︸
p

] = 2pbap.

Since the algebras M2(Cp) and M2(Cq) have the same ∗-polynomial iden-
tities as M2(F ), and Rp and Sq are subalgebras of M2(Cp) and M2(Cq), re-
spectively, we obtain that the GLm ×GLm modules B(m)(Rp, ∗) and B(m)(Sq, ∗)
are homomorphic images of B(m)(M2(F ), ∗). According to [17, Theorem 3.4]
for finding the irreducible submodules in the decompositions of B(m)(Rp, ∗) and
B(m)(Sq, ∗) it will suffice to work in B(2)(∗) and consider Y -proper polynomials
in which just one z occurs, i.e. Y -proper polynomials in y1, y2, z1.

Lemma 3.28 [10, Lemma 4.3]. Let W be the irreducible component of
B(2)(M2(F ), ∗) associated to the pair ((λ1, λ2), k). Then

w = [z, y1, . . . , y1︸ ︷︷ ︸
λ1−λ2

][y2, y1]
λ2zk−1, if k > 0,

w = [[y2, y1], y1, . . . , y1︸ ︷︷ ︸
λ1−λ2

][y2, y1]
λ2−1, if k = 0
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is the highest weight vector.

Lemma 3.29 [10, Lemma 4.4, Lemma 4.5]. Let k ≥ 0. Considering
Lemma 3.28

(i) w is a ∗-polynomial identity for Rp if and only if λ1 + λ2 ≥ p,
(ii) w is a ∗-polynomial identity for Sq if and only if λ2 + k ≥ q.

Taking into account the consequences of the highest weight vectors the
authors of [10] come to the following description of the ∗-T-ideals properly con-
taining T (M2(F ), ∗).

Definition 3.30 [10]. Let B(n)(∗) be the space of all Y -proper poly-
nomials of degree n in F 〈Y,Z〉. The ∗-T-ideals of F 〈Y,Z〉, U1 and U2, are
∗-asymptotically equivalent if there exists ν ∈ N such that for all n ≥ ν0 we have
U1 ∩B(n)(∗) = U2 ∩B(n)(∗), writing U1 ≈∗ U2.

The main result is

Theorem 3.31 [10, Theorem 6.1]. Let ∗ = t be the transpose invo-
lution. If U is the ∗-T-ideal of F 〈Y,Z〉 of a proper subvariety of the variety
var(M2(F ), ∗), then U ≈∗ T (Rp, ∗) ∩ T (Sq, ∗) for suitable p and q.

The two main branches of investigations: giving a better description of
involution algebras via their ∗-identities and finding the codimension series and
estimating the algebras’ growth, show the ways for further investigations con-
sidering algebras with involutions (of both types) using the rich background of
ordinary P.I. algebras and methods applied to them.
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