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ABSTRACT. Let H be a 4-semigroup, i.e., a numerical semigroup whose
minimum positive element is four. We denote by 4r(H) + 2 the minimum
element of H which is congruent to 2 modulo 4. If the genus g of H is
larger than 3r(H) — 1, then there is a cyclic covering 7 : C — P! of
curves with degree 4 and its ramification point P such that the Weierstrass
semigroup H(P) of P is H (Komeda [1]). In this paper it is showed that we
can construct a double covering of a hyperelliptic curve and its ramification
point P such that H(P) is equal to H even if g < 3r(H) — 1.
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1. Introduction. Let Z>( be the additive semigroup of non-negative
integers. A subsemigroup of Zx¢ is called a numerical semigroup if the comple-
ment of H in Z>¢ is finite. The cardinality of Z>¢\H is said to be the genus of
H, which is denoted by g(H). For a 4-semigroup H let S(H) = {4,s1, s2,53}
be the standard basis for H, i.e., s; = Min{h € H|h =i mod 4} for i = 1,2,3.
We set so = 4r(H) + 2. On the other hand, let C' be a complete non-singular
irreducible curve over an algebraically closed field k of characteristic 0, which is
called a curve in this paper. For any point P of C' we define the Weierstrass
semigroup H(P) of P as follows:

H(P) = {n € Z>opl|there exists f € K(C) with (f)s = nP}

where K(C') denotes the function field of C'. It is known that H(P) is a numerical
semigroup whose genus is equal to the genus of the curve C'. In the case where
g(H) < 3r(H) — 1 it was only shown that the moduli space My of pointed
curves (C, P) with H(P) = H is non-empty (Komeda [1] Corollary 4.13). We
did not give a curve C and its point P with H(P) = H. In this paper even if
g(H) < 3r(H) — 1, it will be shown that we can find a double covering C of a
hyperelliptic curve with its ramification point P such that H(P) = H. We note
that such a curve C is not a cyclic covering of P! with degree 4.

2. On double coverings of a hyperelliptic curve. In this sec-
tion we construct a double covering of a hyperelliptic curve using the method of
Mumford [2] and investigate the Weierstrass semigroup of a ramification point of
the covering. Let C' be a curve. For any even number ¢ let P, ..., P; be distinct
points of C'. Let us take an invertible sheaf £ and an isomorphism ¢ such that

t
b: L%~ O (—ZPZ) c Oc.
=1

Let S be a sheaf of O¢—algebras of the form § = O¢ ® L where multiplication
is given by

(a,l)-(bym)=(a-b+d(l@m),a-m—+b-1).

Then the canonical morphism 7 : ' = Spec § — (' is a double covering of

t
curves whose branch locus is ) | P; (Mumford [2]). Hence, if 7 is the genus of C,
i=1
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~ t
then by Riemann-Hurwitz formula the genus of C' is 2r — 1 + 3 For any i let
P; € C such that 7(P;) = P;.

Proposition 2.1. For any ¢ and any positive integer n we have

R(C, .04 (2nP;)) = h°(C, Oc(nP;)) + h°(C, L ® Oc(nF;)).

Proof. First we note that W*Oé >~ Oc ® L. Hence for any point P of C
we get

1.Oa(nm* P) 2 1,(Op ® Op(nt* P)) = 1,(Opf @ 7 Oc (nP))

271,05 ® Oc(nP) = (Oc @ L) @ Oc(nP) = Oc(nP) & (L @ Oc(nP)).

Since we have 7,05 (nm*F;) = W*Oé(2n]5i), we get the desired equality. O
From now on we consider the case where C' is a hyperelliptic curve of
genus r > 2.

Lemma 2.2. Let P, be a Weierstrass point on C. Then C is non-

hyperelliptic. Moreover, H(P;) is a 4-semigroup.

Proof. Since the curve C' is not rational, H(P;) Z 2 follows from Propo-

sition 2.1. Next we will show that H(P;) Z 3. Assume that H(P;) 3 3. We know

that H(P;) also contains 4, because P; is a Weierstrass point on a hyperelliptic
curve C. Hence, we obtain g(H(FP;)) < 3. But

- t
32g(H(P))=2r—1+522x2-1+1=4,

which is a contradiction. Therefore, H(P;) is a 4-semigroup. Assume that C

were hyperelliptic. Since H(PF;) is a 4-semigroup, P; is not a Weierstrass point.
Therefore, we get

ZZO\H(PZ) = {1, e ,n}
for some n. But H (]52) is a 4-semigroup, which implies that n+1 = 4. Hence, we
get Z>o\H(P;) = {1,2,3}. Thus, we see that H(P;) is generated by 4,5,6 and 7,
which implies that there is f € K(C') such that (f). = 6F;. Let us take a local
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parameter ¢ at P; such that o*t = —t where ¢ is the involution on C such that
C/ <o >=C. Then f is written by

f= t% + (higher order)

locally at P; where a is a non-zero element of k. Moreover, we have

o' f = ;% + (higher order)

locally at P;. Hence f 4 o*f is a non-zero function on C such that (f +0* f)ee =
6P; on C, which implies that (f + 0*f)o = 3P; on C. Hence we get H(F;) > 3.
Since P; is a Weierstrass point on a hyperelliptic curve of genus r > 2, we get

H(P;) 5 2. Thus, 2 <r = g(H(P;)) < 1, which is a contradiction. Hence C' is
non-hyperelliptic. O

Lemma 2.3. Let the notation be as in Lemma 2.2. If r > 3, then C is
not bielliptic.
Proof. We note that

~ t 2
g(C):2r—1+522><3—1+§:6.

If H(P;) > 6, then H(P;) > 3, which is a contradiction. Thus, H(P;) # 6. Since
by Lemma 2.2 H(F;) is a 4-semigroup, C is not bielliptic (Komeda [1] Lemma
28) O

Proposition 2.4. Let P; be a Weierstrass point on a hyperelliptic curve
C of genus v > 5. There exists an odd number s with 1 < s <t —1 such that

S(H(P)) = {4,2r + 5,2r + 2t — s, 4r + 2}.

Proof. In view of r > 5 the genus of C is at least 10. By Lemmas 2.2
and 2.3 we must have

S(H(P;)) = {4,4r +2,4m + 1,4n + 3}
(Komeda [1] Proposition 3.1). We get

Min{h € H(PF;)|h is odd} > 2r + 1,
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because 4r + 2 € S(H(P;)). We set

Min {h € H(F;))|h is odd} = 2r + s
with odd s > 1. If s > t — 1, then we obtain

t
— o+ =
} T+2

2T+£—1:g(H(f~’i))Zr+[

2r+t—|—1] [2r+t+3
5 +

4 4

where for any real number z the symbol [z] denotes the largest integer less than
or equal to x. This is a contradiction. Thus, s < ¢t — 1. Let S(H(F;)) =
{4,2r + s, h,4r 4+ 2}. Then we must have

ﬁ B _1_1_2_ 2r+s
4| =" 2 1|

Since h is an odd number such that A # 2r+s mod 4, we obtain h = 2r+2t—s. O

Example 2.5. Let the notaion be as in Proposition 2.4. If ¢ = 2, then

S(H(P;)) = {4,2r +1,2r + 3,4r + 2}.

In this case the semigroup H(P;) is generated by 4,2r + 1 and 2r + 3.
Combining Proposition 2.4 with Proposition 2.1 we get the following:

Theorem 2.6. Let P; be a Weierstrass point on a hyperelliptic curve C
of genus r > 5. Lett < 2r and s an odd number with 1 < s <t — 1. Then the
following conditions are equivalent:

i) S(H(P,)) = {4,2r + 5,2r + 2t — 5,4r + 2}.

i) h° (C, L® Oc¢ ((’r + %) P)) =1 and h° <C, L® Oc <<’r + %) PZ»>> = 0.

Proof. By Proposition 2.1 we have

w0 (Cm0g (@r+s+1)R)) =n° (C,W*Oé (2 <r+ 8;”) R-))
Ay (0,00 ((r—l— 821) Pi)> RO (C,E@OC ((r—l— S"QH) Pi>> .
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Since P; is a Weierstrass point on a hyperelliptic curve and we have ¢ < 2r and
s<t—1, we get

BO(C, 1, Op((2r+5+1) ) = [#} 1R (c, L®O <<?" + %) P)) .

First we show that i) implies ii). Since 2r + s € H(P;), we have

2r+s
4

R(Oa((2r + 5)P)) = [ + 2.

Hence, we get

ho (oé ((2r+5+1)15i)) - [%} +2.

By the above formula we obtain

w(ccooc((re 5 R)) 1

ho (Oé ((27“ +s—1) 1))

o (c.cooo((r+230) ) <o

Assume that ii) holds. By Proposition 2.4 there exists an odd number s’ with
1 < s’" <t—1such that

Since we have

I

—

[\~

=

+

»

|
—_

we get

S(H(P)) ={4,2r +s',2r + 2t — s’ 4r + 2}.
If s’ < s—2, we have

h(C,04:((2r +5 +1)P))

(o ((r+28)) oo ecece (252 )
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C[2r+s+1
N 4

] +1
because of

o (c.cooo((r+230) ) <o

Hence 2r + s' ¢ H(P;), which is a contradiction. Assume that s’ > s + 2. Since
we have

ho(C, L ® Oc((r +
we know that

h(C,04((2r +s+1)P)) = [w} + 2.

4

Therefore there exists an odd number h with A < 2r + s such that h € H(P).
Then h < 2r + s/, which is a contradiction. Hence s’ =s. O

Since for a 4-semigroup H with g(H) > 3r(H) there exist a cyclic covering
of the projective line P! with degree 4 and its total ramification point P such
that H(P) = H (Komeda [1] §4), we want to investigate 4-semigroups H with
g(H) <3r(H)— 1.

r(H)—1. Then

Proposition 2.7. Let H be a 4-semigroup with g(H) < 3
s < t—1 such that

there exist 2 < t < 2r and an odd number s with 1 <
S(H)={4,2r +s,2r + 2t — s,4r + 2}.

Proof. If a 4-semigroup H satisfies g(H) < 3r(H) — 1, by Komeda [1] it
is one of the semigroups with the following standard basis:
i) {4,4n +1,4m +3,4-2n+2},1 <n<m <3n -1,
i) {4,4n +3,4m + 1,42n+ 1)+ 2},2<n+1<m <3n+1,
i) {4,4n+1,4m+2,4143},1 <n<m <2n—1,m <l < n+m—1,n+l < 2m—1,
vi) {4,4n + 1,d4m + 3,41+ 2},2<n<m<2n—-2,m+1<1<2n—1,
v){4,4n+3,4m + 1,41+ 2},2<n+1<m <2n,m <[ < 2n,
vi) {4,4n+3,4m+2,41+1},2 <n+1<m <2n,m+1 <[l < n+m,n+l < 2m—1.
In the case i) let r = 2n, s = 1 and t = 2m — 2n+ 2. Then the set {4, 2r + s, 2r +
2t—s,4r+2} coincides with the set {4,4n+1,4m+3,4-2n+2}. In the case ii) let
r=2n+1,s=1and t = 2m—2n. In the case iii) let r = m, s = 4n+1—2m and
t = 2n—2m+2l+2. In the case vi) let r = [, s = dn+1—2l and t = 2n+2m—2[+2.
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In the case v) let r =1, s =4n+3 — 2] and t = 2n + 2m — 2l + 2. In the case vi)
let r=m,s=4n+3—-2mandt=2n—-2m+2[+2. O

3. Construction of a point on a double covering of a hy-
perelliptic curve with a given semigroup. In this section we construct a
point P; satisfying the conditions in Theorem 2.6 ii). For that purpose we need
a hyperelliptic curve C which is a covering of degree n of another hyperelliptic
curve. First we build a hyperelliptic curve C’ which is the base of the covering.
For a homogeneous polynomial F' € C[z, z| of degree 2b+ 2 which has no multiple
factor we set

Cu(F) = {(s,2)[s* = F(z,1)}, (C1(F))o = {(s,2)|s* = F(x,1),2 # 0},

Co(F) = {(t, 2)|t* = F(L,2)}, (Ca(F))o = {(t, 2)|t* = F(L, 2), 2 # 0}.
Through the isomorphism between (Cy(F))o and (Cs(F))g sending (s,x) to

1
(%, —> we can construct the nonsingular curve C' = HC(F') by patching
x x

C1(F) and Co(F). We can define a morphism h : ¢’ = HC(F) — P! sending an
element (s,z) of C1(F) (resp. (t,z) of Co(F)) to (x : 1) (resp. (1: z)). Since the
degree of h is two, HC(F') is a hyperelliptic curve of genus b. On the other hand,
let p: P! — P! be the morphism defined by sending (u : v) to (z(u,v) : z(u,v))
where z(u,v) = v" and z(u,v) = v (u — 710)(u — T2v) - - (U — Tp_y\v) with dis-
tinct non-zero elements 7, ...,7,_ of k. Then (0: 1) and (1 : 0) are ramification
points with indices A and n respectively. Let g1 = (0:1),¢2,...,¢a—1,qa = (1 :0)
be the branch points of p. We set (p*F)(u,v) = F(z(u,v), z(u,v)). We consider
the curve HC(p*F) in the following cases:

i) The case where the zeros of F(x,y) in P! are different from g, ..., qq.
Then HC(p*F) is a non-singular curve of genus nb+n — 1.

ii) The case where one of the zeros of F(z,y) is equal to ¢; and the other
zeros are different from ¢o,...,q,. Then HC(p*F) is a singular curve with only
one singular point. The singular point is analytically isomorphic to the point

(0,0) on the curve defined by the equation y? = u*. Since the singularity is

resolved by [5] blowing-ups where [x] means the largest integer less than or

A
equal to x, the genus of HC(p*F) isnb+n —1— [5]
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iii) The case where ¢; and ¢, are zeros of F(x,y) and the other zeros of
F(z,y) are different from g9, ..., qs—1. By the similar method to the case ii) the

genus of of HC(p*F)isnb+mn —1— % - [g]

Let n: C — HC(p*F) be the normalization. Then we get a commutative

diagram
C=HCWF) % HC\WF) & HCWF)
! !
P! N P!
Thus C is a hyperelliptic curve whose genus takes any value of nb, nb+1,...,nb+

n — 1. Moreover, the morphism ¢ = ¢on: C — HC(F) is of degree n, which
implies that

0" g3 (HC(F)) = "h*Op1 (1) = hi:p* Opa (1) = hi;Opi (n) = ngy(C),

where h¢ is the composite map of i and the morphism HC(p*F) — P! of degree
2.

Lemma 3.1. Let the notation be as in the above. We denote the genus
of C by r. We set t = 2n with a positive integer n < r. Let s be an odd integer
with 1 < s <t—1. Then there exist points Pr,..., P, Q1,...,Qst1-¢ . of C such

2
that

s+1
P1+P2+---+Pt+(r—t+T)g§(C) ~ 2@+t Qurrmty,)
where Py, ..., P, are Weierstrass points and Q1,...,Qs+1-+ . are different from
2

Py. Moreover, we get h®(Oc(Q1 + - - + QS“_t—H)) = 1.
2

Proof. Let p be a point on C' = HC(F). First we show that there are
points ¢, q1,...,q_1 of C' such that

p+q+(b—2)g3(C") ~2(q + -+ qp1).

Let 24 : Pic>™1(C") — Pic®®*~2(C") be the morphism defined by 24(L) = 2L.
We set

0={0(T+ - +Ty_1)T1,.... T € C'},

which is a theta divisor on the abelian variety Pic ®~1(C’). Hence © is an ample
divisor, which implies that the divisor 24(©) C Pic?*~2(C") is ample. By Nakai’s
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criterion for any 1-dimensional subvariety ¥ C Pic?*~2(C”) we have (£.24(0)) >
0, that is to say, XN 24(0) # 0. Now we set

S={p+aq+(b-2)g(C)geC'},

which is a I-dimensional locus in Pic?*=2(C”). Therefore we get ¥ N 24(0) # 0,
which implies that

p+a+(b—2)g(C") ~2(q 4+ qp-1)

for some points ¢,q1,...,q,—1 of C’. Here let p be a Weierstrass point on the
hyperelliptic curve C’. We may assume that ¢p,...,¢q_1 are distinct from p. In
fact, let ¢ =--- = ¢ = p and let 11, ...,qp—1 be distinct from p. Then we get

p+q+(b—2-0g(C") ~2(q1+ -+ @-1)

because of 2p ~ g3(C"). Take Weierstrass points ¢f, . . ., ¢, on C’ which are distinct
from p. Then we obtain

p+aq+(b—-2)g(C") ~2(di+ g+t am -+ @)

Let (B*p =P+ -4+ PF, and (B*q = P41+ -+ Pa,. Since p is a Weierstrass
point on C’, Py,--- , P, are also Weierstrass points on C'. We obtain

+1
P1+---+Pt+<r—t+8T>g%(C)~

s+1

5w+ at 0-2@)+ ((r-t+251) - o -2m) ghe)

- 1
because of ¢*g3(C") = ngd(C). Since r — t + % > nb— 2n, we get

s+ 1
P1+---+B+(r—HT)g%(C)~2(Q1+---+Qs+;t+r)

for some points Q1,...,Qs+1-¢ . of C distinct from P;. Lastly we may assume
2

that h° (Oc (Ql +---+ Qs+1—t+r)> = 1. In fact, if Ko (OC (Q1 +---+ Qs+l—t+r)>
2 2
> 2, then we must have (upon renumbering of the points ;)

Q1+...+Q%H+r~lg%(C)+Q1+---+Q%H+T_2l'
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Hence we get

s+1
P1++Pt+ <T—t+T—2l> g%(C) N2<Q1+“'+Qs+é7t+r72l) .
Let us take distinct Weierstrass points Qs+1-t . o 5.+, Qs+1-¢ . on C' which
2
are different from Py, Q1,...,Qs+1-¢ 5. Then we get
2

s+ 1
P1+"’+Pt+(T—t—l-T)g%(C)N2<Q1+"’+Qs+;—t+r)

again where h° (Oc <Q1 + e+ Qs+1—t+r>> =1land Q1,...,Qss1-r . are dif-
2 2
ferent from P;. O
We set

1
L=0c <Q1+---+Qs+1t+r—<r+8+ >P1>.
2 2

Then by Lemma 3.1 we get
L2 2Oc(PL+ P+ 4+ P —tga(C) =2 Oc(—u(Py) — - — u(P))

where ¢ is the hyperelliptic involution on C.

Theorem 3.2. Let the notation be as in the above. Let m : C =
Spec(O¢ ® L) — C be the canonical morphism. We set m=Y(P)) = {P}. If
r > b, then we get

S(H(Py)) = {4,2r + s,2r 4+ 2t — s,4r + 2}

Proof. By Lemma 3.1 we get

hO (C,£®00<<r+8";1)131)> — 0 (oC (Q1+...+Q%H+r)) 1

and

Ko (C,ﬁ@@%(%%) P1>) =1 (Oc (@14 + Quareey, ) = P1) =0

By Theorem 2.6 we get our desired result. O
Combining Theorem 3.2 with Proposition 2.7 we get the following:
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Main Theorem 3.3. Let H be a 4-semigroup of genus g(H) > 10 with
S(H) = {4,47“1 + 1,4r9 + 2,4r3 + 3}

Assume that g(H) < 3ry — 1. Then there exist a double covering 7 : C — C' of
a hyperelliptic curve and its ramification point P € C' such that H(P) = H.

Considering the result of the case where H is a 4-semigroup with 4ro+2 €
S(H) and g(H) > 3ra, the following statement holds:

Corollary 3.4. Let H be a 4-semigroup of genus > 10. Then there exist
a double covering of a hyperelliptic curve and its ramification point P such that

H(P)=H.
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