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Abstract. Let H be a 4-semigroup, i.e., a numerical semigroup whose
minimum positive element is four. We denote by 4r(H) + 2 the minimum
element of H which is congruent to 2 modulo 4. If the genus g of H is
larger than 3r(H) − 1, then there is a cyclic covering π : C −→ P1 of
curves with degree 4 and its ramification point P such that the Weierstrass
semigroup H(P ) of P is H (Komeda [1]). In this paper it is showed that we
can construct a double covering of a hyperelliptic curve and its ramification
point P such that H(P ) is equal to H even if g ≤ 3r(H) − 1.
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1. Introduction. Let Z≥0 be the additive semigroup of non-negative

integers. A subsemigroup of Z≥0 is called a numerical semigroup if the comple-

ment of H in Z≥0 is finite. The cardinality of Z≥0\H is said to be the genus of

H, which is denoted by g(H). For a 4-semigroup H let S(H) = {4, s1, s2, s3}

be the standard basis for H, i.e., si = Min{h ∈ H|h ≡ i mod 4} for i = 1, 2, 3.

We set s2 = 4r(H) + 2. On the other hand, let C be a complete non-singular

irreducible curve over an algebraically closed field k of characteristic 0, which is

called a curve in this paper. For any point P of C we define the Weierstrass

semigroup H(P ) of P as follows:

H(P ) = {n ∈ Z≥0|there exists f ∈ K(C) with (f)∞ = nP}

where K(C) denotes the function field of C. It is known that H(P ) is a numerical

semigroup whose genus is equal to the genus of the curve C. In the case where

g(H) ≤ 3r(H) − 1 it was only shown that the moduli space MH of pointed

curves (C,P ) with H(P ) = H is non-empty (Komeda [1] Corollary 4.13). We

did not give a curve C and its point P with H(P ) = H. In this paper even if

g(H) ≤ 3r(H) − 1, it will be shown that we can find a double covering C of a

hyperelliptic curve with its ramification point P such that H(P ) = H. We note

that such a curve C is not a cyclic covering of P1 with degree 4.

2. On double coverings of a hyperelliptic curve. In this sec-

tion we construct a double covering of a hyperelliptic curve using the method of

Mumford [2] and investigate the Weierstrass semigroup of a ramification point of

the covering. Let C be a curve. For any even number t let P1, . . . , Pt be distinct

points of C. Let us take an invertible sheaf L and an isomorphism φ such that

φ : L⊗2 ∼= OC

(

−
t
∑

i=1

Pi

)

⊂ OC .

Let S be a sheaf of OC−algebras of the form S ∼= OC ⊕ L where multiplication

is given by

(a, l) · (b,m) = (a · b + φ(l ⊗ m), a · m + b · l).

Then the canonical morphism π : C̃ = Spec S −→ C is a double covering of

curves whose branch locus is
t
∑

i=1

Pi (Mumford [2]). Hence, if r is the genus of C,
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then by Riemann-Hurwitz formula the genus of C̃ is 2r − 1 +
t

2
. For any i let

P̃i ∈ C̃ such that π(P̃i) = Pi.

Proposition 2.1. For any i and any positive integer n we have

h0(C, π∗OC̃(2nP̃i)) = h0(C,OC (nPi)) + h0(C,L ⊗OC(nPi)).

P r o o f. First we note that π∗OC̃
∼= OC ⊕L. Hence for any point P of C

we get

π∗OC̃(nπ∗P ) ∼= π∗(OC̃ ⊗OC̃(nπ∗P )) ∼= π∗(OC̃ ⊗ π∗OC(nP ))

∼= π∗OC̃ ⊗OC(nP ) ∼= (OC ⊕ L) ⊗OC(nP ) ∼= OC(nP ) ⊕ (L ⊗OC(nP )).

Since we have π∗OC̃(nπ∗Pi) = π∗OC̃(2nP̃i), we get the desired equality. �

From now on we consider the case where C is a hyperelliptic curve of

genus r ≥ 2.

Lemma 2.2. Let Pi be a Weierstrass point on C. Then C̃ is non-

hyperelliptic. Moreover, H(P̃i) is a 4-semigroup.

P r o o f. Since the curve C is not rational, H(P̃i) 6∋ 2 follows from Propo-

sition 2.1. Next we will show that H(P̃i) 6∋ 3. Assume that H(P̃i) ∋ 3. We know

that H(P̃i) also contains 4, because Pi is a Weierstrass point on a hyperelliptic

curve C. Hence, we obtain g(H(P̃i)) ≤ 3. But

3 ≥ g(H(P̃i)) = 2r − 1 +
t

2
≥ 2 × 2 − 1 + 1 = 4,

which is a contradiction. Therefore, H(P̃i) is a 4-semigroup. Assume that C̃

were hyperelliptic. Since H(P̃i) is a 4-semigroup, P̃i is not a Weierstrass point.

Therefore, we get

Z≥0\H(P̃i) = {1, . . . , n}

for some n. But H(P̃i) is a 4-semigroup, which implies that n+1 = 4. Hence, we

get Z≥0\H(P̃i) = {1, 2, 3}. Thus, we see that H(P̃i) is generated by 4, 5, 6 and 7,

which implies that there is f ∈ K(C̃) such that (f)∞ = 6P̃i. Let us take a local
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parameter t at P̃i such that σ∗t = −t where σ is the involution on C̃ such that

C̃/ < σ >∼= C. Then f is written by

f =
a

t6
+ (higher order)

locally at P̃i where a is a non-zero element of k. Moreover, we have

σ∗f =
a

t6
+ (higher order)

locally at P̃i. Hence f + σ∗f is a non-zero function on C̃ such that (f + σ∗f)∞ =

6P̃i on C̃, which implies that (f + σ∗f)∞ = 3Pi on C. Hence we get H(Pi) ∋ 3.

Since Pi is a Weierstrass point on a hyperelliptic curve of genus r ≥ 2, we get

H(Pi) ∋ 2. Thus, 2 ≤ r = g(H(Pi)) ≤ 1, which is a contradiction. Hence C̃ is

non-hyperelliptic. �

Lemma 2.3. Let the notation be as in Lemma 2.2. If r ≥ 3, then C̃ is

not bielliptic.

P r o o f. We note that

g(C̃) = 2r − 1 +
t

2
≥ 2 × 3 − 1 +

2

2
= 6.

If H(P̃i) ∋ 6, then H(Pi) ∋ 3, which is a contradiction. Thus, H(P̃i) 6∋ 6. Since

by Lemma 2.2 H(P̃i) is a 4-semigroup, C̃ is not bielliptic (Komeda [1] Lemma

2.8.) �

Proposition 2.4. Let Pi be a Weierstrass point on a hyperelliptic curve

C of genus r ≥ 5. There exists an odd number s with 1 ≤ s ≤ t − 1 such that

S(H(P̃i)) = {4, 2r + s, 2r + 2t − s, 4r + 2}.

P r o o f. In view of r ≥ 5 the genus of C̃ is at least 10. By Lemmas 2.2

and 2.3 we must have

S(H(P̃i)) = {4, 4r + 2, 4m + 1, 4n + 3}

(Komeda [1] Proposition 3.1). We get

Min{h ∈ H(P̃i)|h is odd} ≥ 2r + 1,
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because 4r + 2 ∈ S(H(P̃i)). We set

Min {h ∈ H(P̃i))|h is odd} = 2r + s

with odd s ≥ 1. If s > t − 1, then we obtain

2r +
t

2
− 1 = g(H(P̃i)) ≥ r +

[

2r + t + 1

4

]

+

[

2r + t + 3

4

]

= 2r +
t

2

where for any real number x the symbol [x] denotes the largest integer less than

or equal to x. This is a contradiction. Thus, s ≤ t − 1. Let S(H(P̃i)) =

{4, 2r + s, h, 4r + 2}. Then we must have

[

h

4

]

= r − 1 +
t

2
−

[

2r + s

4

]

.

Since h is an odd number such that h 6≡ 2r+s mod 4, we obtain h = 2r+2t−s. �

Example 2.5. Let the notaion be as in Proposition 2.4. If t = 2, then

S(H(P̃i)) = {4, 2r + 1, 2r + 3, 4r + 2}.

In this case the semigroup H(P̃i) is generated by 4, 2r + 1 and 2r + 3.

Combining Proposition 2.4 with Proposition 2.1 we get the following:

Theorem 2.6. Let Pi be a Weierstrass point on a hyperelliptic curve C

of genus r ≥ 5. Let t ≤ 2r and s an odd number with 1 ≤ s ≤ t − 1. Then the

following conditions are equivalent:

i) S(H(P̃i)) = {4, 2r + s, 2r + 2t − s, 4r + 2}.

ii) h0

(

C,L ⊗OC

((

r +
s + 1

2

)

Pi

))

= 1 and h0

(

C,L ⊗OC

((

r +
s − 1

2

)

Pi

))

= 0.

P r o o f. By Proposition 2.1 we have

h0
(

C, π∗OC̃

(

(2r + s + 1) P̃i

))

= h0

(

C, π∗OC̃

(

2

(

r +
s + 1

2

)

P̃i

))

= h0

(

C,OC

((

r +
s + 1

2

)

Pi

))

+ h0

(

C,L ⊗OC

((

r +
s + 1

2

)

Pi

))

.
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Since Pi is a Weierstrass point on a hyperelliptic curve and we have t ≤ 2r and

s ≤ t − 1, we get

h0(C, π∗OC̃((2r+s+1)P̃i)) =

[

2r + s + 1

4

]

+1+h0

(

C,L ⊗OC

((

r +
s + 1

2

)

Pi

))

.

First we show that i) implies ii). Since 2r + s ∈ H(P̃i), we have

h0(OC̃((2r + s)P̃i)) =

[

2r + s

4

]

+ 2.

Hence, we get

h0
(

OC̃

(

(2r + s + 1) P̃i

))

=

[

2r + s + 1

4

]

+ 2.

By the above formula we obtain

h0

(

C,L ⊗OC

((

r +
s + 1

2

)

Pi

))

= 1.

Since we have

h0
(

OC̃

(

(2r + s − 1) P̃i

))

=

[

2r + s − 1

4

]

+ 1,

we get

h0

(

C,L ⊗OC

((

r +
s − 1

2

)

Pi

))

= 0.

Assume that ii) holds. By Proposition 2.4 there exists an odd number s′ with

1 ≤ s′ ≤ t − 1 such that

S(H(P̃i)) = {4, 2r + s′, 2r + 2t − s′, 4r + 2}.

If s′ ≤ s − 2, we have

h0(C̃,OC̃((2r + s′ + 1)P̃i))

= h0

(

C,OC

((

r +
s′ + 1

2

)

Pi

))

+ h0

(

C,L ⊗OC

((

r +
s′ + 1

2

)

Pi

))
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=

[

2r + s′ + 1

4

]

+ 1

because of

h0

(

C,L ⊗OC

((

r +
s − 1

2

)

Pi

))

= 0.

Hence 2r + s′ 6∈ H(P̃i), which is a contradiction. Assume that s′ ≥ s + 2. Since

we have

h0(C,L ⊗OC((r +
s + 1

2
)Pi)) = 1,

we know that

h0(C̃,OC̃((2r + s + 1)P̃i)) =

[

2r + s + 1

4

]

+ 2.

Therefore there exists an odd number h with h ≤ 2r + s such that h ∈ H(P̃i).

Then h < 2r + s′, which is a contradiction. Hence s′ = s. �

Since for a 4-semigroup H with g(H) ≥ 3r(H) there exist a cyclic covering

of the projective line P1 with degree 4 and its total ramification point P such

that H(P ) = H (Komeda [1] §4), we want to investigate 4-semigroups H with

g(H) ≤ 3r(H) − 1.

Proposition 2.7. Let H be a 4-semigroup with g(H) ≤ 3r(H)−1. Then

there exist 2 ≤ t ≤ 2r and an odd number s with 1 ≤ s ≤ t − 1 such that

S(H) = {4, 2r + s, 2r + 2t − s, 4r + 2}.

P r o o f. If a 4-semigroup H satisfies g(H) ≤ 3r(H)− 1, by Komeda [1] it

is one of the semigroups with the following standard basis:

i) {4, 4n + 1, 4m + 3, 4 · 2n + 2}, 1 ≤ n ≤ m ≤ 3n − 1,

ii) {4, 4n + 3, 4m + 1, 4(2n + 1) + 2}, 2 ≤ n + 1 ≤ m ≤ 3n + 1,

iii) {4, 4n+1, 4m+2, 4l+3}, 1 ≤ n ≤ m ≤ 2n−1,m ≤ l ≤ n+m−1, n+l ≤ 2m−1,

vi) {4, 4n + 1, 4m + 3, 4l + 2}, 2 ≤ n ≤ m ≤ 2n − 2,m + 1 ≤ l ≤ 2n − 1,

v) {4, 4n + 3, 4m + 1, 4l + 2}, 2 ≤ n + 1 ≤ m ≤ 2n,m ≤ l ≤ 2n,

vi) {4, 4n+3, 4m+2, 4l+1}, 2 ≤ n+1 ≤ m ≤ 2n,m+1 ≤ l ≤ n+m,n+l ≤ 2m−1.

In the case i) let r = 2n, s = 1 and t = 2m− 2n+2. Then the set {4, 2r + s, 2r +

2t−s, 4r+2} coincides with the set {4, 4n+1, 4m+3, 4·2n+2}. In the case ii) let

r = 2n+1, s = 1 and t = 2m−2n. In the case iii) let r = m, s = 4n+1−2m and

t = 2n−2m+2l+2. In the case vi) let r = l, s = 4n+1−2l and t = 2n+2m−2l+2.
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In the case v) let r = l, s = 4n + 3− 2l and t = 2n + 2m− 2l + 2. In the case vi)

let r = m, s = 4n + 3 − 2m and t = 2n − 2m + 2l + 2. �

3. Construction of a point on a double covering of a hy-

perelliptic curve with a given semigroup. In this section we construct a

point P̃i satisfying the conditions in Theorem 2.6 ii). For that purpose we need

a hyperelliptic curve C which is a covering of degree n of another hyperelliptic

curve. First we build a hyperelliptic curve C ′ which is the base of the covering.

For a homogeneous polynomial F ∈ C[x, z] of degree 2b+2 which has no multiple

factor we set

C1(F ) = {(s, x)|s2 = F (x, 1)}, (C1(F ))0 = {(s, x)|s2 = F (x, 1), x 6= 0},

C2(F ) = {(t, z)|t2 = F (1, z)}, (C2(F ))0 = {(t, z)|t2 = F (1, z), z 6= 0}.

Through the isomorphism between (C1(F ))0 and (C2(F ))0 sending (s, x) to
(

s

xb+1
,
1

x

)

we can construct the nonsingular curve C ′ = HC(F ) by patching

C1(F ) and C2(F ). We can define a morphism h : C ′ = HC(F ) −→ P1 sending an

element (s, x) of C1(F ) (resp. (t, z) of C2(F )) to (x : 1) (resp. (1 : z)). Since the

degree of h is two, HC(F ) is a hyperelliptic curve of genus b. On the other hand,

let ρ : P1 −→ P1 be the morphism defined by sending (u : v) to (x(u, v) : z(u, v))

where z(u, v) = vn and x(u, v) = uλ(u − τ1v)(u − τ2v) · · · (u − τn−λv) with dis-

tinct non-zero elements τ1, . . . , τn−λ of k. Then (0 : 1) and (1 : 0) are ramification

points with indices λ and n respectively. Let q1 = (0 : 1), q2, . . . , qα−1, qα = (1 : 0)

be the branch points of ρ. We set (ρ∗F )(u, v) = F (x(u, v), z(u, v)). We consider

the curve HC(ρ∗F ) in the following cases:

i) The case where the zeros of F (x, y) in P1 are different from q1, . . . , qα.

Then HC(ρ∗F ) is a non-singular curve of genus nb + n − 1.

ii) The case where one of the zeros of F (x, y) is equal to q1 and the other

zeros are different from q2, . . . , qα. Then HC(ρ∗F ) is a singular curve with only

one singular point. The singular point is analytically isomorphic to the point

(0, 0) on the curve defined by the equation y2 = uλ. Since the singularity is

resolved by

[

λ

2

]

blowing-ups where [x] means the largest integer less than or

equal to x, the genus of HC(ρ∗F ) is nb + n − 1 −

[

λ

2

]

.
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iii) The case where q1 and qα are zeros of F (x, y) and the other zeros of

F (x, y) are different from q2, . . . , qα−1. By the similar method to the case ii) the

genus of of HC(ρ∗F ) is nb + n − 1 −

[

λ

2

]

−
[n

2

]

.

Let η : C −→ HC(ρ∗F ) be the normalization. Then we get a commutative

diagram

C = ˜HC(ρ∗F )
η
→ HC(ρ∗F )

φ
→ HC(F )

↓ ↓

P1 ρ
→ P1

Thus C is a hyperelliptic curve whose genus takes any value of nb, nb+1, . . . , nb+

n − 1. Moreover, the morphism φ̃ = φ ◦ η : C −→ HC(F ) is of degree n, which

implies that

φ̃∗g1
2(HC(F )) = φ̃∗h∗OP1(1) = h∗

Cρ∗OP1(1) = h∗
COP1(n) = ng1

2(C),

where hC is the composite map of η and the morphism HC(ρ∗F ) −→ P1 of degree

2.

Lemma 3.1. Let the notation be as in the above. We denote the genus

of C by r. We set t = 2n with a positive integer n ≤ r. Let s be an odd integer

with 1 ≤ s ≤ t−1. Then there exist points P1, . . . , Pt, Q1, . . . , Q s+1−t

2
+r of C such

that

P1 + P2 + · · · + Pt + (r − t +
s + 1

2
)g1

2(C) ∼ 2(Q1 + · · · + Q s+1−t

2
+r)

where P1, . . . , Pn are Weierstrass points and Q1, . . . , Q s+1−t

2
+r are different from

P1. Moreover, we get h0(OC(Q1 + · · · + Q s+1−t

2
+r)) = 1.

P r o o f. Let p be a point on C ′ = HC(F ). First we show that there are

points q, q1, . . . , qb−1 of C ′ such that

p + q + (b − 2)g1
2(C ′) ∼ 2(q1 + · · · + qb−1).

Let 2A : Picb−1(C ′) −→ Pic2b−2(C ′) be the morphism defined by 2A(L) = 2L.

We set

Θ = {O(T1 + · · · + Tb−1)|T1, . . . , Tb−1 ∈ C ′},

which is a theta divisor on the abelian variety Pic b−1(C ′). Hence Θ is an ample

divisor, which implies that the divisor 2A(Θ) ⊂ Pic2b−2(C ′) is ample. By Nakai’s
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criterion for any 1-dimensional subvariety Σ ⊂ Pic2b−2(C ′) we have (Σ.2A(Θ)) >

0, that is to say, Σ ∩ 2A(Θ) 6= ∅. Now we set

Σ = {p + q + (b − 2)g1
2(C

′)|q ∈ C ′},

which is a 1-dimensional locus in Pic2b−2(C ′). Therefore we get Σ ∩ 2A(Θ) 6= ∅,

which implies that

p + q + (b − 2)g1
2(C ′) ∼ 2(q1 + · · · + qb−1)

for some points q, q1, . . . , qb−1 of C ′. Here let p be a Weierstrass point on the

hyperelliptic curve C ′. We may assume that q1, . . . , qb−1 are distinct from p. In

fact, let q1 = · · · = ql = p and let ql+1, . . . , qb−1 be distinct from p. Then we get

p + q + (b − 2 − l)g1
2(C

′) ∼ 2(ql+1 + · · · + qb−1)

because of 2p ∼ g1
2(C

′). Take Weierstrass points q′1, . . . , q
′
l on C ′ which are distinct

from p. Then we obtain

p + q + (b − 2)g1
2(C

′) ∼ 2(q′1 + · · · + q′l + ql+1 + · · · + qb−1).

Let φ̃∗p = P1 + · · · + Pn and φ̃∗q = Pn+1 + · · · + P2n. Since p is a Weierstrass

point on C ′, P1, · · · , Pn are also Weierstrass points on C. We obtain

P1 + · · · + Pt +

(

r − t +
s + 1

2

)

g1
2(C) ∼

φ̃∗(p + q + (b − 2)g1
2(C ′)) +

((

r − t +
s + 1

2

)

− (nb − 2n)

)

g1
2(C)

because of φ̃∗g1
2(C

′) = ng1
2(C). Since r − t +

s + 1

2
≥ nb − 2n, we get

P1 + · · · + Pt +

(

r − t +
s + 1

2

)

g1
2(C) ∼ 2

(

Q1 + · · · + Q s+1−t

2
+r

)

for some points Q1, . . . , Q s+1−t

2
+r of C distinct from P1. Lastly we may assume

that h0

(

OC

(

Q1 + · · · + Q s+1−t

2
+r

))

= 1. In fact, if h0

(

OC

(

Q1 + · · · + Q s+1−t

2
+r

))

≥ 2, then we must have (upon renumbering of the points Qi)

Q1 + · · · + Q s+1−t

2
+r ∼ lg1

2(C) + Q1 + · · · + Q s+1−t

2
+r−2l.
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Hence we get

P1 + · · · + Pt +

(

r − t +
s + 1

2
− 2l

)

g1
2(C) ∼ 2

(

Q1 + · · · + Q s+1−t

2
+r−2l

)

.

Let us take distinct Weierstrass points Q s+1−t

2
+r−2l+1

, . . . , Q s+1−t

2
+r on C which

are different from P1, Q1, . . . , Q s+1−t

2
+r−2l. Then we get

P1 + · · · + Pt +

(

r − t +
s + 1

2

)

g1
2(C) ∼ 2

(

Q1 + · · · + Q s+1−t

2
+r

)

again where h0

(

OC

(

Q1 + · · · + Q s+1−t

2
+r

))

= 1 and Q1, . . . , Q s+1−r

2
+r are dif-

ferent from P1. �

We set

L = OC

(

Q1 + · · · + Q s+1−t

2
+r −

(

r +
s + 1

2

)

P1

)

.

Then by Lemma 3.1 we get

L⊗2 ∼= OC(P1 + P2 + · · · + Pt − tg1
2(C)) ∼= OC(−ι(P1) − · · · − ι(Pt))

where ι is the hyperelliptic involution on C.

Theorem 3.2. Let the notation be as in the above. Let π : C̃ =

Spec(OC ⊕ L) −→ C be the canonical morphism. We set π−1(P1) = {P̃1}. If

r ≥ 5, then we get

S(H(P̃1)) = {4, 2r + s, 2r + 2t − s, 4r + 2}

P r o o f. By Lemma 3.1 we get

h0

(

C,L ⊗OC

((

r +
s + 1

2

)

P1

))

= h0
(

OC

(

Q1 + · · · + Q s+1−t

2
+r

))

= 1

and

h0

(

C,L ⊗OC

((

r +
s − 1

2

)

P1

))

= h0
(

OC

(

Q1 + · · · + Q s+1−t

2
+r

)

− P1

)

= 0

By Theorem 2.6 we get our desired result. �

Combining Theorem 3.2 with Proposition 2.7 we get the following:
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Main Theorem 3.3. Let H be a 4-semigroup of genus g(H) ≥ 10 with

S(H) = {4, 4r1 + 1, 4r2 + 2, 4r3 + 3}.

Assume that g(H) ≤ 3r2 − 1. Then there exist a double covering π : C̃ −→ C of

a hyperelliptic curve and its ramification point P̃ ∈ C̃ such that H(P̃ ) = H.

Considering the result of the case where H is a 4-semigroup with 4r2+2 ∈

S(H) and g(H) ≥ 3r2, the following statement holds:

Corollary 3.4. Let H be a 4-semigroup of genus ≥ 10. Then there exist

a double covering of a hyperelliptic curve and its ramification point P̃ such that

H(P̃ ) = H.
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