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APPLICATIONS OF THE FRÉCHET SUBDIFFERENTIAL

M. Durea

Communicated by R. Lucchetti

Abstract. In this paper we prove two results of nonsmooth analysis in-
volving the Fréchet subdifferential. One of these results provides a necessary
optimality condition for an optimization problem which arise naturally from
a class of wide studied problems. In the second result we establish a sufficient
condition for the metric regularity of a set-valued map without continuity
assumptions.

1. Preliminaries. Let X be a normed vector space and X∗ its topo-

logical dual; we denote by BX , UX , SX the open unit ball, the closed unit ball

and the unit sphere of X, respectively. By w and w∗ we mean the weak topol-

ogy on X and the weak star topology on X∗. If S is a subset of X we de-

note by cl S the closure of S; if x ∈ X, we denote the distance from x to S

by d(x, S) = infy∈S d(x, y) and by dS the distance function with respect to S,
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dS(x) = d(x, S) for every x ∈ X (by convention, d(x, ∅) = ∞); IS will be the

indicator function of S (IS(x) = 0 if x ∈ S and IS(x) = ∞, if x /∈ S). For r > 0

we note B(S, r) := {x ∈ X | d(x, S) < r} and D(S, r) := {x ∈ X | d(x, S) ≤ r};

of course, for an element x ∈ X, B(x, r) = B({x}, r) and D(x, r) = D({x}, r).

By Y , Z we denote another normed vector spaces and by L(X,Y ) the

space of all continuous linear operators from X into Y . On the product space

X × Y we consider the sum norm.

First, we recall the definitions of the Fréchet subdifferential. If f : X →

R ∪ {∞} is a function, we denote the domain of f by Dom f = {x ∈ X | f(x) <

∞}.

Definition 1.1. Let f : X → R ∪ {∞} be a lower semicontinuous (lsc

for short) function; we say that x∗ ∈ X∗ belongs to the Fréchet canonical subdif-

ferential of f at x ∈ Dom f (denoted ∂F f(x)) if

lim inf
t→0

(

inf
u∈UX

t−1(f(x + tu) − f(x)) − x∗(u)

)

≥ 0.

Definition 1.2. Let f : X → R ∪ {∞} be a lsc function; f is called

Fréchet smooth at x ∈ Dom f if ∇f(·) (∇f denotes the Fréchet differential)

exists on a neighbourhood U of x and is continuous on U from X with the norm

topology to X∗ with the norm topology.

Definition 1.3. Let f : X → R ∪ {∞} a lsc function; we say that

x∗ ∈ X∗ belongs to the Fréchet subdifferential of viscosity of f at x (denoted

DF f(x)) if there exists a locally Lipschitz function g such that g is Fréchet smooth

at x, ∇f(x) = x∗ and f − g attains a local minimum at x.

It is proved in [3] that ∂F f = DF f if the space X admits a C1−smooth

Lipschitz bump (i.e. with a nonempty bounded support) function. This will be

the setting of our main results and for this reason we use only the notation ∂F

called in the sequel the Fréchet subdifferential. Using the Fréchet subdifferential

we define the normal cone to a closed set S ⊂ X at a point x ∈ S in the following

way:

N∂F (S, x) := ∂F IS(x).

We also use the following notations:

1. u
f
→ x means that u → x and f(u) → f(x);
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2. x∗ ∈ ‖·‖∗ − lim sup
u→x

∂F f(u) means that for every ε > 0 there exist xε

and x∗

ε such that x∗

ε ∈ ∂F f(xε) and ‖xε − x‖ < ε, ‖x∗

ε − x∗‖ < ε; the notation

x∗ ∈ ‖·‖∗ − lim sup

u
f
→x

∂F f(u) has now a similar interpretation;

3. x∗ ∈ w∗− lim sup
u→x

∂F f(u) means that for every ε > 0 and U a weak-star

neighborhood of 0 in X∗, there exists xε,U and x∗

ε,U such that x∗

ε,U ∈ ∂F f(xε,U)

and ‖xε,U − x‖ < ε, x∗

ε,U ∈ x∗ + U .

We list below the main properties of the Fréchet subdifferential which we

shall use in the sequel (see [8], [5], [2], [10]). All the functions we consider in the

next properties are lsc unless stated otherwise.

(P1) If f attains a local minimum at x ∈ Dom f , then 0 ∈ ∂F f(x).

(P2) If f is a convex function then ∂F f is the subdifferential in the sense

of convex analysis. In particular, if S is convex and x ∈ S, then N∂F (S, x) =

N(S, x), the normal cone to S at x in the sense of convex analysis.

(P3) If X is an Asplund space, ϕ1, ϕ2, ..., ϕn : X → R is a family of convex

Lipschitz functions and x ∈ Dom f , then

∂F (f +

n
∑

i=1

ϕi)(x) ⊂ ‖·‖∗ − lim sup

y
f
→x,zi→x

(∂F f(y) +

n
∑

i=1

∂F ϕi(zi)).

(P4) If X is an Asplund space then for every family f1, f2, . . . , fn : X →

R ∪ {∞} of lsc functions, x ∈
n
⋂

i=1
Dom fi one has

∂F (

n
∑

i=1

fi)(x) ⊂ w∗ − lim sup

xi

fi
→x

n
∑

i=1

∂F fi(xi).

(P5) If X,Y are Banach spaces which admit C1−smooth Lipschitz bump

functions, ϕ : X ×Y → R ∪ {∞} a lsc, proper function, bounded from below and

f(x) := inf
y∈Y

ϕ(x, y) the marginal function associated with ϕ supposed to be lsc,

then

x∗ ∈ ∂F f(x) ⇒ (x∗, 0) ∈ ‖·‖∗ − lim sup

x′
f
→x,ϕ(x′,y′)→f(x)

∂F ϕ(x′, y′).

(P6) If X = Y × Z and f(y, z) = g(y) + h(z) then ∂F f(y, z) = ∂F g(y) ×

∂F h(z). In particular, for all closed subsets A and B of X and for all a ∈ A,
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b ∈ B one has

N∂F (A × B, (a, b)) = N∂F (A, a) × N∂F (B, b).

2. Application to an optimization problem. In the sequel we

work with a set-valued map F : X ⇉ Y and we denote the domain and the

graph of F by Dom F = {x ∈ X | F (x) 6= ∅} and Gr F = {(x, y) | y ∈ F (x)},

respectively. F−1 : Y ⇉ X is the set-valued map given by the relation (y, x) ∈

Gr F−1 if and only if (x, y) ∈ Gr F . If A ⊂ X, F (A) :=
⋃

x∈A

F (x). If the graph of

F is closed the Fréchet coderivative of F at a point (x, y) ∈ Gr F is the set-valued

map D∗

∂F F (x, y) : Y ∗ ⇉ X∗ given by:

D∗

∂F F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N∂F (Gr F, (x, y))}.

We consider Q a nonempty pointed closed convex cone in Y with nonempty

interior (denoted int Q) which introduces a partial order in Y by y1 ≤Q y2 iff

y2 − y1 ∈ Q. If A and B are subsets of X we denote d(A,B) := infa∈A d(a,B).

Let A and C be nonempty, closed subsets in X and Y , respectively. Con-

sider the function h : X → R, h(u) := d(F (u), C). This section is devoted to the

study of the optimization problem:

(Π1)

{

minimize h(u)
subject to u ∈ A

.

Besides its teoretical interest this problem is connected with some wide

studied optimization problems involving vector-valued functions g : X → Y and

set-valued maps F : X ⇉ Y , like

(Π2) minimize g(u)

and

(Π3) minimize F (u),

where the minimum notions for these problems can be defined as follows.

Definition 2.1. (a) An element x ∈ X is called Q−strong local minimum

for the problem (Π2) if there exists a neighborhood U of x such that for all x′ ∈ U ,

g(x) − g(x′) ∈ −Q; (b) an element x ∈ X is called Q−weak local minimum for
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the problem (Π2) if there exists a neighborhood U of x such that for all x′ ∈ U ,

g(x) − g(x′) /∈ int Q.

Definition 2.2. a) An element x ∈ X is called Q−strong local minimum

for the problem (Π3) if there exists a neighborhood U of x and y ∈ F (x) such

that for all x′ ∈ U , F (x′) ⊂ y + Q; (b) an element x ∈ X is called Q−weak local

minimum for the problem (Π3) if there exists a neighborhood U of x and y ∈ F (x)

such that for all x′ ∈ U , F (x′) ∩ (y − int Q) = ∅.

For details on problems (Π2) and (Π3) see, e.g., [11], [13] and the refer-

ences therein.

The next two results establish the connections between the optimization

problems considered above.

Proposition 2.1. (i) If x ∈ X is a Q−strong local minimum for the

problem (Π2), then x is a local minimum for the function h1(u) = d(g(u),−Q);

(ii) if x is a local minimum for the function h1,and g(x) /∈ −Q, then x is Q−weak

local minimum for the problem (Π2).

P r o o f. (i) From Definition 2.1 there exists a neighborhood U of x such

that for all x′ ∈ U , g(x′) − g(x) ∈ Q; we can write

d(g(x′),−Q) = d(0,−g(x′) − Q) =

= d(g(x), g(x) − g(x′) − Q) ≥ d(g(x),−Q)

the last inequality being true because −Q is a convex cone and so, −Q + g(x) −

g(x′) ⊂ −Q.

(ii) Since x is a local minimum for the function h1 there exists a neigh-

borhood U of x such that for all x′ ∈ U , h1(x) ≤ h1(x
′). Suppose that there

exists x′ ∈ U such that g(x) − g(x′) ∈ int Q. There exists r > 0 such that

B(g(x) − g(x′), r) ⊂ Q and this implies that B(−Q + g(x′) − g(x), r) ⊂ −Q.

Then, as above, h1(x) = d(g(x),−Q) = d(g(x′),−Q + g(x′) − g(x)). But

h1(x
′) = d(g(x′),−Q) ≤ d(g(x′), B(−Q + g(x′) − g(x), r)) =

= max{d(g(x′),−Q + g(x′) − g(x)) − r, 0} = max{d(g(x),−Q) − r, 0} =

= max{d(g(x),−Q), r} − r < d(g(x),−Q) = h1(x)

because d(g(x),−Q) > 0 taking into account that g(x) /∈ −Q and Q is a closed

cone. So, we have that h1(x) > h1(x
′), a contradiction. The proof is complete. �
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Proposition 2.2. (i) If x ∈ X is a Q−strong local minimum for the

problem (Π3), then x is a local minimum for the function h2(u) = d(F (u),−Q);

(ii) if x is a local minimum for the function h2, and F (x) is compact and F (x)∩

−Q = ∅ then x is a Q−weak local minimum for the problem (Π3).

P r o o f. (i) From Definition 2.2 there exists a neighborhood U of x and

y ∈ F (x) such that for all x′ ∈ U , F (x′) ⊂ y + Q; in particular F (x) ⊂ y + Q ⊂

F (x) + Q, hence F (x) + Q = y + Q. Consequently,

h2(x) = d(F (x),−Q) = d(0, F (x) + Q) =

= d(0, y + Q) = d(y,−Q).

The rest of the proof is similar with the proof of (i) in the above proposition.

(ii) Since F (x) is compact, there exists y ∈ F (x) such that h2(x) =

d(y,−Q); in our assumptions, there exists a neighborhood U of x such that for

all x′ ∈ U , h2(x) ≤ h2(x
′). Suppose that there exists x′ ∈ U and y′ ∈ F (x′)

such that and y − y′ ∈ int Q. As above, d(y,−Q) > d(y′,−Q) ≥ d(F (x′),−Q), a

contradiction. �

Remark 2.1. The function h1 does not provide useful information on

the problem (Π2) if g(X) ∩ −Q 6= ∅, where g(X) = {g(x) | x ∈ X}. However,

even in this case, if g is bounded from below (i.e. there exists y ∈ Y such that

y ≤ g(x′) for every x′ ∈ X) taking q ∈ Q\{0} one can replace the function g with

g(·) = g(·) − y + q to obtain a function h1 with nonzero values: d(g(x′),−Q) =

d(0, g(x′) − y + q + Q) ≥ d(0, q + Q) > 0. A similar remark can be made on

function h2 and the problem (Π3).

We are now able to prove a necessary optimality result for (Π1). By PrY
we denote the projection operator.

Theorem 2.1. Let X,Y be Banach spaces, which admit C1−smooth

Lipschitz bump functions. Suppose, with the above notations, that F has closed

graph and is upper semicontinuous (usc for short). If x ∈ A is a local minimimum

for problem (Π1), then for every ε > 0, U∗ and V ∗ weak-star neighbourhoods of 0

in X∗ and Y ∗, there exist uε ∈ A ∩ B(x, ε), xε ∈ B(x, ε), yε ∈ F (xε), zε ∈ C s.t.

0 ∈ D∗

∂F F (xε, yε)(N∂F (C, zε) + V ∗) + N∂F (A,uε) + U∗.

Moreover, d(yε, C) < h(x) + ε and d(zε,PrY (Gr F ∩ (B(x, ε)× Y ))) < h(x) + ε.

P r o o f. Consider the function h : X → R ∪ {∞}, h(u) := d(F (u), C).

Using that, F is usc it can be proved that h is lsc. Indeed, consider u ∈ X, and
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0 < λ < h(u) = d(F (u), C); there is θ > 0 such that F (u) ∩ D(C, λ + θ) = ∅. As

F is usc at u we can find (see [9]) a neighborhood U of u such that for all u′ ∈ U

the relation F (u′) ∩ D(C, λ + θ) = ∅ is true. It implies d(F (u′), C) ≥ λ + θ > λ,

for all u′ ∈ U , so h is lsc. As x is a local minimum for the scalar problem:

(Π1)

{

minimize h(x)
subject to x ∈ A

,

it follows that that x is a local minimum for the function h + IA. So, using

propety (P1),

0 ∈ ∂F (h + IA)(x).

But ∂F satisfies property (P4) on X because every Banach space which admits

a C1−smooth Lipschitz bump function is Asplund, hence

0 ∈ w∗ − lim sup{∂F h(z) + ∂F IA(u); z
h
→ x, u

A
→ x},

i.e.,

(1) 0 ∈ w∗ − lim sup{∂F h(z) + N∂F (A,u); z
h
→ x, u

A
→ x}.

The key of the proof is to express ∂F h(z). We can write h(z) = inf{‖v − s‖ +

IGr F×Y (z, v, s) + IX×Y ×C(z, v, s); v ∈ Y, s ∈ Y }. Consider

ϕ1(z, v, s) := ‖v − s‖ , ϕ2(z, v, s) := IGr F×Y (z, v, s),

ϕ3(z, v, s) := IX×Y ×C(z, v, s).

Let x∗ ∈ ∂F h(z); applying property (P5) (in our setting its assumptions are

verified), we have that

(x∗, 0, 0) ∈ ‖·‖∗ − lim sup{∂F (ϕ1 + ϕ2 + ϕ3)(z
′, v′, s′);

z′ → z, (z′, v′) ∈ Gr F, s′ ∈ C,
∥

∥v′ − s′
∥

∥ → h(z)} ⊂

⊂ w∗ − lim sup{∂F (ϕ1 + ϕ2 + ϕ3)(z
′, v′, s′);

z′ → z, (z′, v′) ∈ Gr F, s′ ∈ C,
∥

∥v′ − s′
∥

∥ → h(z)}.

But, taking into account again property (P4) we have

∂F (ϕ1 + ϕ2 + ϕ3)(z
′, v′, s′) ⊂ w∗ − lim sup{∂F ϕ1(z1, v1, s1)+

+ ∂F ϕ2(z2, v2, s2) + ∂F ϕ3(z3, v3, s3);

(zi, vi, si)
ϕi
→ (z′, v′, s′), i = 1, 3}.
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From the relations above we have that

(x∗, 0, 0) ∈ w∗ − lim sup{∂F ϕ1(z1, v1, s1) + ∂F ϕ2(z2, v2, s2) + ∂F ϕ3(z3, v3, s3);

(zi, vi) ∈ Gr F, si ∈ C, zi → z, ‖vi − si‖ → h(z), i = 1, 3}.

It is clear that ϕ1 is a convex function and using property (P2),

∂F ϕ1(z1, v1, s1) ⊂ {0} × {(y∗,−y∗), ‖y∗‖ ≤ 1}.

On the other hand, from the property (P6),

∂F ϕ2(z2, v2, s2) = Gr D∗

∂F F (z2, v2) × {0}

and

∂F ϕ3(z3, v3, s3) = {0} × {0} × N∂F (C, s3).

Consider now ε > 0, U∗ and V ∗ weak-star neighbourhoods of 0 in X∗ and Y ∗

(arbitrary, but fixed). Take U∗

1 and V ∗

1 symetric weak-star neighbourhoods of 0

in X∗ and Y ∗ respectively with U∗

1 +U∗

1 ⊂ U∗ and −V ∗

1 −V ∗

1 ⊂ V ∗. From relation

(1) there exist sε ∈ B(x, ε/2), uε ∈ A ∩ B(x, ε) such that |h(sε) − h(x)| < ε/2

and

0 ∈ ∂F h(sε) + N∂F (A,uε) + U∗

1 .

Take s∗ε ∈ ∂F h(sε); then there exist (xε, yε) ∈ Gr F with xε ∈ B(sε, ε/2),

(x∗

ε, y
∗

ε) ∈ Gr D∗

∂F F (xε, yε), zε ∈ C with

|‖yε − zε‖ − h(sε)| < ε/2

and (x′

ε, y
′

ε) ∈ Gr F with x′

ε ∈ B(sε, ε/2), z
′

ε ∈ C, |‖y′ε − z′ε‖ − h(sε)| < ε/2, z∗ε ∈

N∂F (C, z′ε), y∗ ∈ UY ∗ such that

(s∗ε, 0, 0) ∈ (0, y∗,−y∗) + (x∗

ε, y
∗

ε , 0) + (0, 0, z∗ε ) + U∗

1 × V ∗

1 × V ∗

1 .

Consequently,

s∗ε ∈ D∗

∂F F (xε, yε)(−y∗ε) + U∗

1 ⊂

⊂ D∗

∂F F (xε, yε)(y
∗ − V ∗

1 ) + U∗

1 ⊂

⊂ D∗

∂F F (xε, yε)(z
∗

ε − V ∗

1 − V ∗

1 ) + U∗

1 ⊂

⊂ D∗

∂F F (xε, yε)(N∂F (C, z′ε) + V ∗) + U∗

1 .
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We can write now

0 ∈ D∗

∂F F (xε, yε)(N
1
∂F (C, z′ε) + V ∗) + U∗

1 + N1
∂F (A,uε) + U∗

1 ,

and the announced relations for uε, xε, yε, z
′

ε, are also true, hence the conclu-

sion. �

Remark 2.2. If X and Y are finite dimensional and C is bounded

the upper semicontinuity of F is not needed. In this case h is lsc: let 0 <

λ < h(u); then F (u) ∩ D(C, λ) = ∅, hence Gr F ∩ ({u} × D(C, λ)) = ∅. Since

Gr F is closed and ({u} × D(C, λ)) is compact, there exists ε > 0 such that

Gr F ∩ (B(u, ε) × B(C, λ + ε)) = ∅. Then for all u′ ∈ B(u, ε), d(F (u′), C) > λ.

3. Application to metric regularity. The aim of this section is to

give verifiable conditions in terms of Fréchet coderivative of a multifunction for

satisfying a certain metric regularity property.

Let f : X × Y → R ∪ {∞}. If the function g(·) = f(·, y) : X → R ∪ {∞}

with a fixed y ∈ Y is lsc then we denote ∂F
x f(x, y) := ∂F g(x). We also use

the notations: f+(x, y) := max(f(x, y), 0) and S(y) := {x ∈ X; f(x, y) ≤ 0}.

First, we observe that Theorem 2.4 from [6] remains true also if the abstract

subdifferential considered satisfies a weaker sum principle. We work in the sequel

with the Fréchet subdifferential but the next two results are true for an abstract

subdifferential which satisfies certain properties. See also [1], [12], [14].

Theorem 3.1. Let X be an Asplund space and f : X × Y → R ∪ {∞}

an extended real-valued function such that for each y ∈ Y , f(·, y) is lsc. If there

exists a > 0 such that for each x ∈ X and y /∈ S−1(x), d(0, ∂F
x f(x, y)) ≥ a−1,

then for every x ∈ X and y ∈ Y , d(x, S(y)) ≤ af+(x, y).

For the convenience of the reader we present the proof for the next local

version of the previous result which we shall use in the sequel. A similar proof

can be given for the above result.

Theorem 3.2. Let X be an Asplund space and f : X × Y → R ∪ {∞}

an extended real-valued function such that for each y ∈ Y , f(·, y) is lsc and let

x ∈ S(y). Suppose that there exists a > 0, r > 0 such that

(2) ∀u ∈ D(x, r),∀v ∈ D(y, r)\S−1(u), d(0, ∂F
x f(u, v)) ≥ a−1.

Then for every u ∈ D(x, r/2) and v ∈ D(y, r), d(u, S(v)) ≤ af+(u, v).
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P r o o f. Suppose, by contradiction, that there exist u ∈ D(x, r/2) and

v ∈ D(y, r) such that d(u, S(v)) > af+(u, v). As d(u, S(v)) > 0, we have u /∈

S(v). Take ε = f+(u, v), λ = (a + α)ε with α > 0 such that λ < d(u, S(v)).

It is clear that f+(u, v) ≤ inf
u′∈D(x,r/2)

f+(u′, v) + ε, hence in our assumptions we

can apply Ekeland’s variational principle for the function f+(·, v). Consequently,

there exists u′ ∈ D(x, r/2) satisfying
∥

∥u′ − u
∥

∥ ≤ λ

and

f+(u′, v) ≤ f+(x′, v) + ελ−1
∥

∥x′ − u′
∥

∥ ,∀x′ ∈ D(x, r/2).

First, we have ‖u′ − u‖ ≤ λ < d(u, S(v)). If u′ ∈ S(v) then S(v) is nonempty,

hence

d(u, S(v)) =
∣

∣d(u′, S(v)) − d(u, S(v))
∣

∣ ≤
∥

∥u′ − u
∥

∥ < d(u, S(v))

and this is a contradiction. So, u′ /∈ S(v). Applying (P1) and (P3) to the function

f+(·, v) + ελ−1 ‖· − u′‖ we have that

0 ∈ ‖·‖∗− lim sup{∂F
x f(u′

1, y)+∂F (ελ−1
∥

∥· − u′
∥

∥)(u′

2); (u
′

1, v)
f
→ (u′, v), u′

2 → u′}.

Consider a positive real number θ with θ < f(u′, v), θ < r/2 and θ < a−1(a +

α)−1α. There exist u′

1, u′

2, x∗

1, x∗

2 such that ‖u′

1 − u′‖ < θ, ‖u′

2 − u′‖ < θ,

|f+(u′

1, v) − f+(u′, v)| < θ, x∗

1 ∈ ∂F
x f+(u′

1, v), x∗

2 ∈ X∗, ‖x∗

2‖ ≤ (a + α)−1,

‖x∗

1 + x∗

2‖ < θ. Clearly f+(u′

1, v) > 0, hence u′

1 /∈ S(v). Since f(·, v) is lsc, it

coincides with f+(·, v) on a neighborhood of u′

1 and then we have, ∂F
x f+(u′

1, v) =

∂F
x f(u′

1, y). We also have ‖x∗

1‖ < ‖x∗

2‖ + θ < (a + α)−1 + θ < a−1, and

‖u′

1 − x‖ < ‖u′

1 − u′‖ + ‖u′ − x‖ < θ + r/2 < r, in contradiction with hypothe-

sis. �

In the sequel for a set A ⊂ X and x ∈ X we denote prθ(x,A) := {u ∈ A |

‖x − u‖ < d(x,A) + θ}. We give now our main result of this section.

Theorem 3.3. Let X and Y Banach spaces which admit a C1−smooth

Lipschitz bump function. Let F : X ⇉ Y be a multifunction with closed graph

and (x, y) ∈ Gr F ; if there exist α > 0, r > 0, such that for every u ∈ D(x, r),

v ∈ D(y, r)\F (u) there exists θ ∈ (0, 1), with

inf{‖x∗‖ ;x∗ ∈ D∗

∂F F (u′, v′)(y∗), ‖y∗‖ = 1,

(u′, v′) ∈ pr
θ
((u, v),Gr F )} > α(3)
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then there exists a > 0 such that d(u, F−1(v)) ≤ ad((u, v),Gr F ), for every u ∈

D(x, r/2) and v ∈ D(y, r).

P r o o f. There exists a > 1 such that α > a−1. It is enough to prove that

our relation implies relation (2), for such an a, for the function f : X × Y → R,

f(x, y) := d((x, y),Gr F ) in terms of ∂F subdifferential and to use Theorem 3.2

to have the conclusion.

Consider u ∈ D(x, r), v ∈ D(y, r), v /∈ F (u) (which, for f as above

is equivalent with v /∈ S−1(u)) and x∗ ∈ ∂F
x f(u, v). Take γ > 0 and smaller

than the difference between the inf from (3) and a−1. If we take h : X → R,

h(·) = f(·, v) we have x∗ ∈ ∂F h(u). But

h(u) = inf{
∥

∥u − x′
∥

∥ +
∥

∥v − y′
∥

∥ + IGr F (x′, y′); (x′, y′) ∈ X × Y },

so,

(x∗, 0, 0) ∈ ‖·‖∗ − lim sup{∂F (ϕ1 + ϕ2 + ϕ3)(x, x′, y′);

x → u, h(x) → h(u), (ϕ1 + ϕ2 + ϕ3)(x, x′, y′) → h(u)}

where

ϕ1(x, x′, y′) :=
∥

∥x − x′
∥

∥ , ϕ2(x, x′, y′) :=
∥

∥v − y′
∥

∥ , ϕ3(x, x′, y′) := IGr F (x′, y′).

Consider ε1 > 0 and smaller than

λ := min(γ/(2 + a−1 + γ), θ/4, d((u, v),Gr F ), 1 − a−1).

For this ε1 thre exist x, x′, y′ and u∗, u′∗, v′∗ such that (u∗, u′∗, v′∗) ∈ ∂F (ϕ1 +

ϕ2 + ϕ3)(x, x′, y′), ‖x − u‖ < ε1, (x
′, y′) ∈ Gr F ,

∣

∣

∥

∥x − x′
∥

∥ +
∥

∥v − y′
∥

∥ − d((u, v),Gr F )
∣

∣ < ε1

and ‖(u∗, u′∗, v′∗) − (x∗, 0, 0)‖ < ε1. Is implies that (x′, y′) ∈ prθ/2((u, v),Gr F )

and also ‖x − x′‖ + ‖v − y′‖ > 0 i.e. x 6= x′ or y′ 6= v. From property (P3),

∂F (ϕ1 + ϕ2 + ϕ3)(x, x′, y′) ⊂ ‖·‖∗ − lim sup{∂F ϕ1(x1, x
′

1, y
′

1) + ∂F ϕ2(x2, x
′

2, y
′

2) +

∂F ϕ3(x3, x
′

3, y
′

3); (xi, x
′

i, y
′

i)
ϕi
→ (x, x′, y′), i = 1, 3}. Using properties (P2) and

(P6),

(4) ∂F ϕ1(x1, x
′

1, y
′

1) ⊂ {(x∗

1,−x∗

1); ‖x
∗

1‖ ≤ 1} × {0}
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(5) ∂F ϕ2(x2, x
′

2, y
′

2) ⊂ {0} × {0} × {y∗2; ‖y
∗

2‖ ≤ 1}

(6) ∂F ϕ3(x3, x
′

3, y
′

3) = {0} × N∂F ((x′

3, y
′

3);Gr F ).

First we consider the case x 6= x′; in this case we take ε2 > 0 such that ε2 <

‖x − x′‖ /2 and ε1 + ε2 < λ; there exist x1, x
′

1, ‖x1 − x‖ < ε2, ‖x
′

1 − x′‖ < ε2 and,

from the choice of ε2, we have x1 6= x′

1; it means that in relation (4) we can take

”= 1” instead of ”≤ 1”. Hence, there exists x∗

1 ∈ UX∗ with ‖u∗ − x∗

1‖ < ε2. We

can write

‖x∗‖ > ‖u∗‖ − ε1 > ‖x∗

1‖ − ‖u∗ − x∗

1‖ − ε1 > 1 − ε2 − ε1 > 1 − (1 − a−1) = a−1.

Consider now that y′ 6= v; in this case we take ε2 > 0 such that ε2 < ‖y′ − v‖ and

ε1 + ε2 < λ; there exist x∗

1, x
∗

3, y
∗

2, y
∗

3 , (x
′

3, y
′

3) ∈ Gr F such that ‖x∗

1 − u∗‖ < ε2,

‖−x∗

1 + x∗

3 − u′∗‖ < ε2, ‖y
∗

2 + y∗3 − v′∗‖ < ε2, x∗

3 ∈ D∗

∂F F (x′

3, y
′

3)(−y∗3), ‖y
∗

2‖ = 1

(in the relation (5) we can take ”= 1” instead of ”≤ 1” because ‖y′2 − y′‖ < ε2

implies that y′2 6= v) and ‖(x′

3, y
′

3) − (x′, y′)‖ < ε2. Hence, as above,

‖x∗‖ > ‖x∗

1‖ − ε2 − ε1 >
∥

∥x∗

3 − u′∗
∥

∥ − 2ε2 − ε1 > ‖x∗

3‖ − 2(ε1 + ε2).

We also have,

‖y∗3‖ >
∥

∥y∗2 − v′∗
∥

∥ − ε2 > 1 − ε1 − ε2.

Clearly, (x′

3, y
′

3) ∈ prθ((u, v),Gr F ). But we have

x∗

3/ ‖y
∗

3‖ ∈ D∗

∂F F (x′

3, y
′

3)(−y∗3/ ‖y
∗

3‖)

and from hypothesis we obtain ‖x∗

3‖ / ‖y∗3‖ > a−1 +γ, hence ‖x∗

3‖ > (a−1 +γ)(1−

ε1 − ε2) and this ensures that ‖x∗‖ > (a−1 + γ)(1 − ε1 − ε2) − 2(ε1 + ε2), i.e.

‖x∗‖ > a−1. The proof is complete. �

Remark 3.1. Taking into account that d((x, y),Gr F ) ≤ d(y, F (x)),

the preceding result contains Theorem 4.5. from [10] in two ways: the inequality

of the conclusion is stronger and we did not suppose that F is usc as the quoted

result did.

Let us to compare the above results with Theorems 1 and 1a from [4,

Chapter 3]. In our results the hypotheses are stronger but we obtain a more
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accurate conclusion by means of the exact description of the neighborhoods in-

volved: in this result it is indicated where the condition on the coderivative should

take place and where the openess (regularity) holds. Taking into account these

considerations, the results we mention are independent.
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