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THE VARIETY OF LEIBNIZ ALGEBRAS
DEFINED BY THE IDENTITY x(y(zt)) ≡ 0∗

L. E. Abanina, S. P. Mishchenko

Communicated by V. Drensky

Abstract. Let F be a field of characteristic zero. In this paper we study
the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0.
The algebras of this variety are left nilpotent of class not more than 3. We
give a complete description of the vector space of multilinear identities in
the language of representation theory of the symmetric group Sn and Young
diagrams. We also show that the variety 3N is generated by an abelian
extension of the Heisenberg Lie algebra. It has turned out that 3N has many
properties which are similar to the properties of the variety of the abelian-
by-nilpotent of class 2 Lie algebras. It has overexponential growth of the
codimension sequence and subexponential growth of the colength sequence.

1. Introduction. We study varieties of Leibniz algebras over a field F

of zero characteristic. It is well known that in characteristic zero all polynomial
identities are completely determined by the multilinear ones. One of the most
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important numerical characteristics of polynomial identities of a variety of alge-
bras are the codimension, the cocharacter and the colength sequences. There are
a lot of papers about the codimension growth of associative and Lie algebras.
Recently the systematic study of polynomial identities of Leibniz algebras has
been also started (see for example [3]).

A Leibniz algebra L over a field F is a nonassociative algebra with mul-
tiplication

(−,−) : L × L −→ L

satisfying the Leibniz identity

(x, (y, z)) = ((x, y), z) − ((x, z), y).(1)

In other words, the operator of right multiplication (−, z) is a derivation
of the algebra. Notice that this identity is equivalent to the classical Jacobi iden-
tity when (−,−) is skew-symmetric. The Leibniz identity allows us to express any
product as a linear combination of left-normed products. We will omit the Leibniz
parentheses and use the left-normed notation a1a2 · · · an = ((a1, . . . , an−1), an).
Identities of Leibniz algebras are very close to the defining identities of Lie alge-
bras. In particular, the following relations follow from (1):

x(yz) ≡ xyz − xzy, x(yy) ≡ 0, x(yz) ≡ −x(zy),

x(yzt) + x(zty) + x(tyz) ≡ 0.

In this paper we study the variety of Leibniz algebras determined by the
identity

x(y(zt)) ≡ 0.(2)

Denote this variety by 3N. Our main purpose is to give a complete description of
the space of multilinear identities of 3N in the language of representation theory
of the symmetric group Sn and Young diagrams.

We recall all essential notions. Their definitions are similar to those for
varieties of associative and Lie algebras.

Let V be a variety of Leibniz algebras over a field F . Denote by F (X,V)
the relatively free algebra of the variety V with a countable set of generators
X = {x1, x2, . . .}. Denote also by Pn = Pn(V) the set of all multilinear Leibniz
polynomials in x1, . . . , xn in F (X,V). The left action of the symmetric group
Sn defined by σ(xi) = xσ(i), σ ∈ Sn, can be naturally extended to the vector
space Pn. The structure of Pn as an Sn-module, n = 1, 2, . . ., is an important
characterization of V and gives very useful information about V.
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Denote by χλ the irreducible character of the symmetric group Sn corre-
sponding to the partition λ of n and, for a variety V, consider the decomposition
of the Sn-character χ(Pn(V)) as a sum of irreducible components

χn(V) = χ(Pn(V)) =
∑

λ⊢n

mλχλ.(3)

The character χn(V) is called the n-th cocharacter of V and the integer
cn(V) = dim Pn(V) is the n-th codimension of V. Important numerical charac-
teristics of V are also the multiplicities mλ in (3). The total number of summands

ln(V) =
∑

λ⊢n,

mλ

in the sum (3) is called the n-th colength of the variety V.
Denote by dλ the dimension of the irreducible Sn-module corresponding

to λ. The following relation

cn(V) = dim Pn(V) =
∑

λ⊢n,

mλdλ

holds for the above introduced numerical characteristics. It is well known that
for any nontrivial variety of associative algebras V, the sequence of codimensions
is exponentially bounded [7] and the colength function ln(V) is polynomially
bounded [2].

The variety 3N is similar to the variety AN2 of all abelian-by-nilpotent
of class 2 Lie algebras determined by the Lie identity (x1x2x3)(x4x5x6) ≡ 0. The
Lie variety AN2 was investigated in many papers (see for example [8], [4], [9],
[6]). Both varieties 3N and AN2 have overexponential growth of their codimen-
sion sequences and non-polynomial but subexponential growth of the colength
sequences.

As by-products of the proofs of our main results we give an explicit basis
of Pn(3N) indexed with the involutions of the symmetric group Sn−1. We also
establish that the variety 3N is generated by a Leibniz algebra which is an abelian
extension of the infinitely dimensional Heisenberg Lie algebra.

2. Main results. First we give examples of Leibniz algebras from the
variety 3N. We need these algebras in the proof of our main theorem. We will
show that they generate the variety 3N.

Let Tk = F [t1, . . . , tk] be the algebra of polynomials in k commuting vari-
ables t1, . . . , tk and let Hk be the Lie algebra with basis {a1, . . . , ak, b1, . . . , bk, c}
and multiplication table

aibj = δijc, aiaj = bibj = aic = bjc = 0,
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where δij is the Kronecker delta. The algebra Hk is called the Heisenberg algebra
and satisfies the Lie identity x1x2x3 ≡ 0. The vector space Tk becomes a right
Hk-module if we define the action of the basis elements of Hk on the polynomial
f ∈ Tk by

fc = f, fas = f ′
s, fbs = tsf,

where f ′
s is the partial derivative of f with respect to ts. We also define the trivial

left action of Hk on Tk by asf = bsf = cf = 0, f ∈ Tk.
The algebra we need is a direct sum of the vector spaces Tk and Hk with multi-
plication determined by the rule

(f + x)(g + y) = fy + xy,

where f, g are polynomials from Tk and x, y are elements from Hk. Let us denote
this algebra by Hk. It is easy to see that for any k the algebra Hk is a Leibniz
algebra.

Lemma 1. The algebra Hk satisfies the identity (2), i.e. Hk ∈ 3N for

any k = 1, 2, . . ..

P r o o f. If fi ∈ Tk and xi ∈ Hk, i = 1, 2, 3, 4, then

(f1 + x1)((f2 + x2)((f3 + x3)(f4 + x4)))

= (f1 + x1)((f2 + x2)(f3x4 + x3x4))

= (f1 + x1)(f2(x3x4) + x2(x3x4)) = 0. �

Lemma 2. The vector space Pn(3N) is spanned by the multilinear prod-

ucts

Θ(i,i1,...,im,j1,...,jm) = xi(xi1xj1)(xi2xj2) · · · (ximxjm
)xk1 · · · xkn−2m−1 ,(4)

with is < js, s = 1, . . . ,m, i1 < i2 < · · · < im, k1 < k2 < · · · < kn−2m−1.

P r o o f. Note that the identities (1) and (2) allow us to transform the
polynomial elements from Pn(3N) as follows. First,

xy2y1 = xy1y2 + x(y2y1)(5)

and we can rearrange the positions of the generators in the left-normed products
adding summands with products in parentheses. Second,

xy(zt) = x(zt)y(6)

and we can move any product (xisxjs
) if it does not stand at the most left position.

Third, we can permute two generators inside brackets, namely

x(y2y1) = −x(y1y2).(7)
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Hence we can change the position of any pair of generators yk and yk+1 using the
identity (5):

y1 · · · ykyk+1 = y1 · · · yk+1yk + y1 · · · yk−1(ykyk+1), k > 1.

Then by (7) we can rearrange the order of yk and yk+1 in the product (ykyk+1)
if necessary and move it to the appropriate position using the identity (6)

y1 · · · yk−1(ykyk+1) = y1 · · · (ykyk+1)yk−1 = · · · = y1(ykyk+1) · · · yk−1

and (6) again allows to change the places of the products (yiyj):

x(yσ(1)zσ(1)) · · · (yσ(k)zσ(k)) = x(y1z1) · · · (ykzk), σ ∈ Sk. �

The following proposition gives a set of algebras which generates the va-
riety 3N as well as a basis for the vector space Pn(3N).

Proposition 3. (i) The algebras Hk = Tk + Hk, k = 1, 2, . . ., generate

the variety 3N.

(ii) The set of all elements (4) is a linear basis of Pn(3N).

P r o o f. By Lemma 2 every element of Pn(3N) is a linear combination of
the elements of the type (4). Suppose that (4) enjoy the equality in Pn(3N)

∑

(i,i1,...,im,j1,...,jm)

α(i,i1,...,im,j1,...,jm)Θ(i,i1,...,im,j1,...,jm) = 0(8)

for some α(i,i1,...,im,j1,...,jm) ∈ F . Hence (8) is a polynomial identity for 3N and

vanishes on the algebras Hk. We will prove both parts of the proposition if
we find a k > 0 such that (8) is different from 0 for some elements in Hk. Each
element Θ(i,i1,...,im,j1,...,jm) is defined by the number m of products (xisxjs

), a fixed
generator xi and the 2m-tuple (i1, . . . , im, j1, . . . , jm) (satisfying i1 < i2 < . . . <

im, i1 < j1, . . . , im < jm). Pick the element ΘI , I = (i, i1, . . . , im, j1, . . . , jm) with
nonzero coefficient αI which contains the least number m of products. Replace
the variables xs, s = 1, 2, . . . , n, with the following elements of the algebra Hm:
xi = f , xis = as, xjs

= bs, s = 1, . . . ,m, (the rest of the elements xα are replaced
by c). Let us check that the value of all other ΘJ , J 6= I, of the type (4) after
this substitution is zero. Recall that xf = 0 for any x from Hk. Hence any
element ΘJ will be zero, if its left factor is not equal to xi. If ΘJ has more than
m products of degree 2 then it will be 0 since the element c from the center of
algebra Hm will be placed into some (xisxjs

). The multiplication rules imply that
ΘJ takes zero value as soon as J 6= I.

So, the result of the substitution is equal to αI · fcn−m−1 = αI · f 6= 0
and all elements (4) are linearly independent. This completes the proof of the
proposition. �
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The following theorem describes the codimension sequence of 3N.

Theorem 4. The codimension sequence of 3N satisfies

cn(3N) = n · inv(n − 1) = n ·
∑

λ⊢(n−1)

dλ,

where inv(m) is the number of involutions (permutations of order two) in Sm.

P r o o f. There exists an obvious one-to-one correspondence between the
elements (4) and the ordered pairs

(i, {(i1, j1), (i2, j2), . . . , (im, jm)})
involving 2m+1 pairwise different elements i, i1, . . . , im, j1, . . . , jm such that i1 <

j1, i2 < j2, . . . , im < jm. We may identify the sets {(i1, j1), (i2, j2), . . . , (im, jm)}
with the involutions of the symmetric group Sn−1 acting on {1, . . . , i − 1, i +
1, . . . , n} because any permutation σ ∈ Sn−1 of order two can be written as a
product of independent transpositions σ = τ1 · · · τm, where any transposition τs

has the form (is, js), s = 1, . . . ,m.
Hence by Proposition 3 we conclude that

cn(3N) = dim Pn(3N) = n · inv(n − 1),

where inv(n− 1) is the number of involutions in the symmetric group Sn−1. The
second equality

n · inv(n − 1) = n ·
∑

λ⊢(n−1)

dλ

follows from the well known equality inv(m) =
∑

λ⊢m dλ (which can be found e.g.
as Proposition 2 from [8]). �

Now we will show that the equality cn(3N) = n ·∑λ⊢(n−1) dλ reflects the

structure of some Sn−1-submodules of Pn(3N). We consider the subspace Q
(i)
n of

Pn(3N) spanned by all monomials starting with xi:

Q(i)
n = span{xixj1 . . . xj(n−1)

| {j1, . . . , jn−1} = Nn \ {i}},
where i = 1, . . . , n and Nn = {1, 2, . . . , n}.

All subspaces Q
(i)
n , i = 1, . . . , n, have the same Sn−1-module structure,

where Sn−1 acts on Nn\{i}. For convenience we will investigate the Sn−1-module

Q
(n)
n .

Proposition 5. The character χ(Q
(n)
n ) of the Sn−1-module Q

(n)
n is

χ(Q(n)
n ) =

∑

λ⊢(n−1)

χλ,
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i.e. it is a sum of all irreducible Sn−1-characters, all participating with multiplic-

ity 1.

P r o o f. Denote by λ′
i the i-th column of the Young diagram correspond-

ing to the partition λ = (λ1, λ2, . . . , λm).

Consider the associative polynomial

Sλ′

i
= Sλ′

i
(X1, . . . ,Xλ′

i
) =

∑

σ∈S
λ
′

i

(−1)σXσ(1) · · ·Xσ(λ′

i
)

where Xi is the operator of right multiplication by xi, i = 1, . . . , n, i.e. wXi = wxi

and w(XiXj) = ((wxi)xj). We relate with the partition λ the multihomogeneous
element

xnSλ′

1
Sλ′

2
· · ·Sλ′

m
.(9)

If the polynomial (9) is a non-zero element of the free algebra of the variety

3N, then its complete linearization generates an irreducible Sn−1-module of Q
(n)
n

corresponding to λ. We will prove that for any partition λ ⊢ (n−1) the polynomial
(9) is not an identity for some algebra Hk.

We start with the case when the diagram of λ has only one column. Using
the properties of our variety and the identity (1), we obtain

xnSn−1(X1, . . . ,Xn−1) =
1

2k

∑

σ∈Sn−1

(−1)σxn(xσ(1)xσ(2)) . . . (xσ(2k−1)xσ(2k))

for odd n = 2k + 1 and

xnSn−1(X1, . . . ,Xn−1) =
1

2k

∑

σ∈Sn−1

(−1)σxn(xσ(1)xσ(2)) · · · (xσ(2k−1)xσ(2k))xσ(n−1)

for even n = 2k + 2.

Let us replace xn with some f ∈ Tn and substitute a1, b1, a2, b2, . . . from
Hn instead of x1, x2, x3, x4, . . . , xn−1 respectively. The result of the substitution
is equal to α · (fck) = α · f when n = 2k + 1 or α · (fckak+1) = α · f ′

k+1 where

α = k!
2k

and f ′
k+1 is the partial derivative with respect to tk+1. All terms in the

sum will equal zero except the case when for every s = 1, 2, . . . , k the pair as, bs

is within the same parentheses (asbs). Thus, for a suitable f , we have a non-zero
result of the substitution.

Clearly, similar reasons work in the general situation.

So, for any partition λ ⊢ (n − 1) the element (9) is not equal to zero in

Pn(3N). In this way, the decomposition of the character χ(Q
(n)
n ) as a sum of
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irreducible characters of the symmetric group Sn−1 has the form

χ(Q(i)
n ) =

∑

λ⊢(n−1),

pλχλ,

where pλ ≥ 1 for all λ ⊢ n − 1. This implies that

dimQ(i)
n =

∑

λ⊢(n−1)

pλdλ ≥
∑

λ⊢(n−1)

dλ, i = 1, . . . , n.

Since the vector space Pn(3N) is the direct sum of the subspaces Q
(i)
n for i =

1, 2, . . . , n, we have

cn(3N) = dimPn(3N) =
n∑

i=1

dim Q(i)
n ≥ n ·

∑

λ⊢(n−1)

dλ.

Hence, by Theorem 4, pλ = 1 for all λ ⊢ n − 1 and this completes the proof. �

Now we will investigate the multiplicities of the variety 3N.
The box of a Young diagram is called an “inner corner” if after removing

this box, we also get a Young diagram. For example, the number of inner corners
for the diagram of the partition (3, 2, 2, 1) equals to 3 and the diagram of the
partition (4,2,2) has two inner corners.

Denote by r(λ) the number of inner corners of the diagram of the partition
λ ⊢ n. Clearly, r(λ) is equal to the number of distinct lengths of the rows of the
Young diagram. Hence we have the restriction 1 + 2 + . . . + r(λ) ≤ n.

The following observation is obvious.
Remark 6. r(λ) <

√
2n.

Theorem 7. The n-th cocharacter of the variety 3N has the form

χn(3N) = χ(Pn(3N)) =
∑

λ⊢n

r(λ)χλ,

i.e. the multiplicity mλ is equal to the number r(λ) of the inner corners of the

diagram of λ.

P r o o f. Fix some partition λ ⊢ n. Recall (see for example [5]) that the
G-module V is induced from the H-module W , where H is a subgroup G, (and
the representation of G in V is induced by the representation of H in W ) if W

is a subspace of V and the following conditions hold:
1) W is a submodule of V considered as an H-module;
2) V =

⊕
s∈G/H sW .

So, from the definition of induced module we have that, as an Sn-module,

Pn(3N) is induced by the Sn−1-module Q
(n)
n . Since, by Proposition 5, the charac-

ter of Q
(n)
n is the sum of all irreducible Sn−1-characters, by the branching rule for
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representations of symmetric groups we have that the multiplicity mλ in χn(3N)
equals the number of inner corners of the diagram of the partition λ ⊢ n. The
proof of Theorem 7 is completed. �

By Remark 6 and Theorem 7 the multiplicities mλ of the variety 3N,
λ ⊢ n, are bounded by

√
2n. On the other hand, by the well known result

about the number of different partitions, the colength of the variety 3N cannot
be restricted by any polynomial function and has intermediate growth. We will
obtain more precise asymptotics of the colength of 3N. Recall the asymptotic
formula for the number p(n) of partitions of n (see [1]):

p(n) ∼ 1

4n
√

3
· eπ
q

2n

3 .

Corollary 8. The colength ln(3N) satisfies the following inequalities

p(n) ≤ ln(3N) <
√

2n · p(n),

where p(n) is the number of partitions of n.

P r o o f. From Theorem 7 we have

ln(3N) =
∑

λ⊢n

mλ =
∑

λ⊢n

r(λ).

Using Remark 6 we obtain 1 ≤ mλ <
√

2n. Hence we have the inequalities

p(n) ≤ ln(3N) <
√

2n · p(n).

The equality p(n) = ln(3N) holds if and only if r(λ) = 1 for all λ ⊢ n, i.e. for
n = 1, 2. �
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