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ABSTRACT. We establish variational principles for monotone and maximal
bifunctions of Brgndsted-Rockafellar type by using our characterization of
bifunction’s maximality in reflexive Banach spaces. As applications, we give
an existence result of saddle point for convex-concave function and solve an
approximate inclusion governed by a maximal monotone operator.

1. Introduction. Given X a real Banach space with topological dual
X*, the Brondsted-Rockafellar’s principle ([2] and [5]) states that if ¢ is an ex-
tended proper convex lower semicontinuous function defined on X, with domain
dom¢ and subdifferential 0¢, if x € X, z* € X*, o, 8 > 0, and

(1.1) inf {p(u) — ¢(x) + (z*, 2 —u)} > —af,

u€ dome
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then there exists (y, y*) in the graph of 0¢ (i.e. y* € 9¢p(y)) such that ||z—y| < «
and [z —y*|| < 6.

Torralba [8] generalized, in reflexive Banach space, this principle to the family
of maximal monotone operators by stating that if 7 : X — 2% is a maximal
monotone operator with graph G(T), if x € X, z* € X*, a, f > 0, and

1.2 inf u —z"u—2x)} > —af,
(1) Lt )2 —ap

then there exists (y,y*) € G(T) (i.e. y* € T(y)) such that ||z — y| < « and
Jo* — 7l < 8.
Note that in general Banach space, this result was established by Revalsky and
Théra [6] for maximal monotone operators of type (D). By modifying the ques-
tion slightly, Simons [7] obtains his statement for maximal monotone operators
of type (ED).

In this paper, we establish the following variational principle of Brgndsted-
Rockafellar type for monotone and maximal bifunctions:

Theorem 1.1. Let X be a reflerive Banach space, X* its topological
dual, K be a closed convexr subset of X and f : K x K — R be a monotone
and mazimal bifunction such that f(x,.) is conver and lower semicontinuous and
flx,z) = 0 Ve € K. Then f satisfies the Brondsted-Rockafellar’s property (BR
in brief) on K, i.e. for any x € K,z* € X* and a, 8 > 0 the following inequality

(1.3) nf {f(z,u) + (27,2 —u)} 2 —af,

implies that there exists (y,y*) € X x X* such that
infuex {f(y,w) + (¥, y —w)} 20, and ||y — z[| < «a, [ly" — 27| < B.

As corollary, we obtain a result (Corollary 2.3) of existence for a perturbed
equilibrium problem without any hypothesis of compactness. By taken then
particular bifunctions, we find Brgndsted-Rockafellar’s principle for convex lower
semicontinuous function, we give a result of existence of saddle point for perturbed
convex-concave function (Remark 2.2) and we solve an approximate inclusion

governed by a maximal monotone operator (see Remark 2.3).
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2. Variational principles. We will need the following definition and
two lemmas.

Definition 2.1. Let f: K x K — R be a real bifunction.

(i) f is said to be monotone if f(x,y) + f(y,z) <0, for each x,y € K.

(73) f is said to be maximal if (x,{) € K x X* and f(z,u) < (—(,u —x)
YV u e K imply that f(xz,u) + (—C,u—z) > 0Vu € K.

We have to mention here that by taking f(z,u) = supgca)(§u — ),

Oettli-Riahi in [4] have established the relation between monotonicity and max-
imality of an operator A and those of the corresponding bifunction f.

Lemma 2.1 (Extended Ky Fan’s Minimax inequality, see [3]). Let X be
a topological vector space, K a closed convexr subset of X and p,v : K x K — R.
Suppose that

(a) for each x,u € K if Y(x,u) <0 then p(z,u) <0;
(b) for each x € K ¢(z,.) is lower semicontinuous on any compact subset of K ;

(¢) for every finite subset A of K and every u € conv A one has mi}41 Y(x,u) <0;
re

(d) (coercivity hypothesis) there exist a conver compact C C K and xg € C such

that Vu € K\C,¢(zg,u) > 0.
Then, there exists u € C' such that p(z,u) <0 for all x € K.

In the sequel, without restriction, we suppose that the reflexive Banach
space X with its dual are strictly convex. This implies that the duality mapping
from X into X* which is defined by

H(w) = {a* € X*/ 2" = al| and (2,a") = |lo|*|

is one to one and strictly monotone, see Zeidler [9].

Lemma 2.2. Suppose that K is closed conver and f : K x K — R is
monotone and convex lower semicontinuous with respect to the second argument
and f(z,x) =0 Va € K. Then the following assertions are equivalent:

(i) f is mazimal;
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(i) Yo € X,VA > 0, there exists a unique solution z = J)]f(:v) € K to the
problem P(x,\):

Mzu)+ (H(x —2),z —u) >0, Vu e K.

Proof. (i) = (i) Let (z,{) € K x X* be such that Vu € K f(u,z) <
(—C,u—x). Setting u = Jlf(a: + x0), with zg = H1(¢), in the equation above

and u = z in (i), we have

(2.1) FH @+ 30),2) < (~¢, H (@ + 20) — 2)

and

(22) FU (@ +20),2) + (H (w420 = I (@ +20) ) . J{ (3 + 20) — ) > 0.

Adding (2.1) to (2.2), it follows that
<H@—Jﬂx+mﬁ+mn—H@@(x—Jﬂx+an+m>—m>ga

From the strict monotonicity of H we deduce that z — Jlf (x +z0) + 29 = 0, and
thus z = Jlf(l‘-i-xo). Using (ii) we deduce that f(z,u)+(—C,u—z) >0 Yu e K,
which means that f is maximal.

(1) = (4i) Fix A > 0 and z € K. We shall verify the assumptions of
Lemma 2.1 for p(z,u) = Af(z,u) — (H(u — x),z — u) and ¥(z,u) = —Af(u,z) —
(H(u — x),z — u), when X is endowed with the weak topology.

Assumptions (a) and (b) are immediate, and (¢) comes from the convexity of the
set {x € K : ¢(z,u) > 0}, which follows from the convexity of f(u,.).

For (d), let us consider B = {v € K : |[v — z|| < R1} where R; is a sufficiently
large positive real number for which B is nonempty. As f (z,.) is convex lower
semicontinuous and B is weakly compact, there exists oy € R such that f (z,u) >
aq for all u € B.

Let u € K\B, since f (z,z) =0 and f(z,.) is convex, it follows that

ao<f(x, LB >m)< B o),

[ = ull l = ull™) = = ull
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Using f monotone we conclude that f(u,z) < —(ag/R1) ||z — ul|, and thus
Qg
V(@ u) 2 Ap-llz —ull + |z — ull .
1

Then for some Ry > R, the assumption (d) is satisfied by taking C' = {u € K :
o ull < Ra).

According to Lemma 2.1, there exists ) := J{(m) such that ¢(u,z)) < 0Vu € K.
By maximality of f, J )Jf x becomes a solution of (EP),. The uniqueness of J )Jf x
comes from the strict monotonicity of H. O

Let us now prove Theorem 1.1.

Proof. For (z,2*) € K x X* satisfying relation (1.3), we set g(x,u) =
flz,u)+(z*,x — u) for u € K. According to Lemma 2.2 applied to g for A = /3,
there exists y € K such that Vu € K

Ag(y,u) + (H(x —y),y —u) > 0.

Taking v = = we have

1
23) F)+ (3" = FHO =0y =) 20
On the other hand, according to (1.3), one has

(2.4) fla,y) + (&2 —y) = —ap.

Summing (2.3) and (2.4) and using monotonicity of f, it follows

1 1
Sl =l = (~3H - 2y -2} > ~as
which implies that ||y — z|| < a. Setting y* = 2* — +H(y — z), we conclude
ly* —a*|| = 3| H(y — )| = gHy —z|| < B, and thus (y,y*) is the desired pair in
KxX*. 0O

Corollary 2.3. Under the hypotheses of Theorem 1.1, for each € > 0 and
x € K such that f(z,u) > —e Yu € K, there exists y € K such that ||y — x| < /e
and f(y,u) +elly —ul| > 0Vu € K.
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Proof. Since the pair (z,0) € K x X* is assumed to verify (1.3) with
a = (3 = /e, Theorem 1.1 asserts the existence of (y,y*) € K x X* such that
ly — 2l < V&, Iyl < V& and f(y,u) + (y%>y —u) > 0 Yu € K, which means
that

fly,u) +Velly—ul| >0  Vue K. 0

Remark 2.1. Let ¢ : X — RU{+00} be a convex lower semicontinuous
function which domain contains K and let o, 3 > 0, x € K and z* € X*. If we
suppose that

o(u) — () + (¥, 2 —u) > —af Yu € K (in other words 2* € 0up3 (¢ + dk) (),

there exist y € K, y* € X* such that ||y — z|| < «, ||y*— 2| < 5 and y* €
9 (¢ +dK) (y)-

To prove this assertion it suffices to apply Theorem 1.1 to f(x,u) = p(u)—
o(z). Note that this result is precisely the variational principle of Brgndsted-
Rockafellar for convex lower semicontinuous functions, see [2] and [5].

Remark 2.2. Let X1, X2 be reflexive Banach spaces, K; a closed
convex subset of X; for i = 1,2 and ¢ : K x Ko — R be such that ¢(x1,.)
is concave upper semicontinuous for each fixed z; € Kj and (., z2) is convex
lower semicontinuous for each fixed xo € Ks. Setting X = X; X X5, endowed
with the norm |[|(z1,x2)|| = ||z1]| + ||x2||, and K = K; x Ko, and consider € > 0
and (z1,x2) € K such that ¥(uy,x9) —¢(x1,us) > —e for all (ug,uz) € K. Then
there exists (y1,y2) € K such that ||y1 — x1|| + ||y2 — 22| < e and (y1,y2) is a
saddle point of the function ¥ (uy,u2) = ¥ (uy, uz)+ve [|ly1 — ur|| —ve ly2 — uz||.
It suffices to apply Corollary 2.3 to f((x1,x2), (u1,u2)) == ¥(u1,x2) — Y(z1, uz).
One then obtain that

Ye(ut,y2) > Ye(y1,y2) = VY1, y2) = Ye(y1,u2)  Y(ug,ug) € K.

Remark 2.3. Let T : X — X* be a maximal monotone operator and
K C domT be a closed convex subset of X. If we suppose that, for some ¢ > 0
and z € K, we have (T'z,u —z) > —e Vu € K, then there exists y € K such
that |ly — z|| < v/ and

0€Ty+VeB" + Nk(y),
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where B* is the unit ball of X* and Nk (y) :={y* € X*: (y*,u—y) <0Vu e K}
is the normal cone to K.

Indeed, if we apply Corollary 2.3 to f(z,u) = (T'r,u — ), we obtain the

existence of y € K such that

(Ty,u—y)+Vely—ul| >0 Yue K

which is equivalent to

—Ty e d(Vely— -l +dx) (v).

The result follows by remarking that 0 (v/e ||y — || + 0x) (v) = vVeB* + Nk (y).
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