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ABSTRACT. In this paper we investigate the existence of a sequence (xy)
satisfying 0 € f(zy)+ V f () (@r1 — k) + 5 V2 f (@) (@h1 —2k) 2 + G(2h41)
and converging to a solution z* of the generalized equation 0 € f(z)+ G(x);
where f is a function and G is a set-valued map acting in Banach spaces. We
show that the previous sequence is locally cubic convergent to z* whenever
the set-valued map [f(z*) + Vf(z*)(- —2*) + V2 f(z*)(- —2*)2 + G()]7!
is M-pseudo-Lipschitz around (0, z*).

1. Introduction. Throughout this paper X and Y are two real or
complex Banach spaces and we consider a generalized equation of the form

(1) 0¢€ fz)+G(z)

2000 Mathematics Subject Classification: 47TH04, 65K10.
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where f is a function from X into Y an G is a set-valued map from X to the
subsets of Y.
When G = 0vy¢ is the subdifferential of the function

0 ifxeC
400 otherwise,

Yo(z) = {

(1) has been studied by Robinson [10]. The key of his idea is to associate to (1)
a linearized equation. His study concerns especially the stability of solutions of
some minimization problems.

When Vf is locally Lipschitz Dontchev [4] associates to (1) a Newton-
type method based on a partial linearization which provides a local quadratic
convergence. Following his work, Pietrus [9] obtains a Newton-type sequence
which converges whenever V f satisfies a Holder-type condition.

In this paper we associate to (1) the relation

(2) 0€ (o) + V@) ern — ) + 5 V2 @)@ — o) + Glansa),

where Vf(z) and V2f(x) denote respectivly the first and the second Fréchet
derivative of f at x. One can note that if 3, — 2, then z* is a solution of (1).
Let us mention that relation (2) derives from a second-degree Taylor polynomial
expansion of f at xj; and that such an approximation is an extension of Dontchev’s
original work [3].

The paper is organized as follows: in section 2 we recall a few preliminary
results and make some fundamental assumptions on f. Then, in section 3 we
prove the existence of a sequence (xy) satisfying (2) and we show that it is locally
cubic convergent.

2. Preliminaries and fundamental assumptions.

Definition 2.1. A set-valued map I' : X — Y is said to be M -pseudo-
lipschitz around (xg,y0) € graphT' := {(z,y) € X x Y |y € I'(z)} if there exist
neighbourhoods V' of xo and U of yo such that

(3) sup  dist(y,[(z2)) < M | #1 — z2 ||, V21,29 € V.
yel(z1)NU
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When a multiapplication I' is M-pseudo-Lipschitz, the constant M is
called the modulus of Aubin continuity.

The Aubin continuity of I' is equivalent to the openess with linear rate
of I'"! (the covering property) and to the metric regularity of I'"! (a basic well-
posedness property in optimization).

Finally, when f is a function which is strictly differentiable at some xg,
then the Aubin continuity of f~! around (f(zg),x¢) is equivalent to the surjec-
tivity of V f(zp). For more details, the reader can refer to [1, 2, 8, 11, 12].

Let A and C be two subsets of X, we recall that the excess e from the set

A to the set C is given by e(C, A) = sup dist(z, A).
zeC
Then, we have an equivalent definition of M-pseudo-Lipschitzness in terms

of excess by replacing (3) by
(4) e(T'(x1)NU,T(x2)) < M || 1 — x2 ||, V1,22 €V,

in the previous definition. In [6] the above property is called Aubin property and
in [5] it has been used to study the problem of the inverse for set-valued maps.
In the sequel, we will need the following fixed point statement which has been
proved in [5].

Lemma 2.1. Let (X, p) be a complete metric space, let ¢ a map from X
into the closed subsets of X, let ng € X and let r and X\ be such that 0 < A < 1
and
a) dist (1o, #(mo)) < r(1—A),
b) e(d(x1) N Br(no), d(w2)) < A p(z1,72) V1,22 € Br(10),
then ¢ has a fized point in By(ng). That is, there exists © € B,(ny) such that
x € ¢(x). If ¢ is single-valued, then x is the unique fixed point of ¢ in By.(no).
The previous lemma is a generalization of a fixed-point theorem in [7],
where in (b) the excess e is replaced by the Haussdorff distance.
We suppose that z* € X is a solution of equation (1). Before studying our
problem, we make the following assumptions:

(HO) G has closed graph;
(H1) f is Fréchet differentiable on some neighborhood V' of x*;
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(H2) V?2f is Lipschitz on V with constant L;
(H3) For ally € V, the application

[f(@™) + V) —2%) + %VQf(ﬂﬁ*)(' —2")? + GO,

is M -pseudo-Lipschitz around (0, x).

3. Convergence analysis.The main theorem of this study reads as
follows:

Theorem 3.1. Let z* be a solution of (1), if we suppose that assumptions

ML
(HO)-(H3) are satisfied, then for every C > —g One can find 6 > 0 such that

for every starting point xoy € Bs(x*), there exists a sequence (xy) for (1), defined
by (2), which satisfies

() lzppr =2 < C | ap—a" |

In other words, (2) generates (xy) with cubic order.

Before proving Theorem 3.1, we need to introduce a few notation. First,
for k € N and z; € X we define the set-valued map @ from X to the subsets of
Y by

Qz) = f(&%) + Vf(=")(z —2") + %VQf(fC*)(w — ") + G(a).
Then we set .
Zp(x):= f(@") + V(") (@ —2") + §V2f(fv*)(93 —a*)?
)~ VS ()@ — i) — VP ) — )%
Finally, we define the set-valued map ¢r: X — X by
op(z) = Q7 [Zk()).

One can note that x; is a fixed point of ¢g if and only if the following
holds:

P+ Vi) — o) + 5V ) (o — o)

= (o) = VI (@0) (1 — 20) = 5V F @)1 — w0)? € Qa).
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Thus, it is easy to see that the previous assertion is equivalent to

6)  0€f(w0) + V(o)1 —w0) + 5V (w0)(w1 — 20 + Glar).

Once xy, is computed, we show that the function ¢ has a fixed point x4 in X.
This process allows us to prove the existence of a sequence (xy) satisfying (2).

Now, we state a result which is the starting point of our algorithm. It
will be very usefull to prove Theorem 3.1 and reads as follows:

Proposition 3.1. Under the hypotheses of Theorem 3.1, there exists
d > 0 such that for all xg € Bs(x*) (xg # x*), the map ¢o has a fized point x1 in
By(a*) satisfying a1 — a*]| < Cllzo — *|F°.

Proof. By hypothesis (H3) there exist positive numbers a and b such
that

(M @MW) N Ba(z"), Q7 (y") < M |1y =" II, Vy',y" € By(0).
Fix 0 > 0 such that
2\3 1
(8) (5<min{a, (3_L> ,ﬁ}
To prove Proposition 3.1 we intend to show that both assertions (a) and

(b) of Lemma 2.1 hold; where 79: = z*, ¢ is the function ¢y defined at the very
begining of this section and where r and A\ are numbers to be set.

According to the definition of the excess e, we have
) dist (5" n(a") < (@O N Bila) ) ).
Moreover, for all zg € Bs(z*) such that z¢ # z* we have
1Z0(2")|| = [1f («") = f(x0) = V f(x0) (z" — z0) — %VZf(ﬂﬁo)(ﬂf* — 20)*], s0

* L *
1Zo(27)II < 5 [l — .
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Then (8) yields, ||Zy(z*)|| < b. Hence from (7) one has

(@ 0N ula) ) = e QM ONBs(a). @ 2" ) < S el

By (9), we get

(10) dist (27, go(z7)) < lz* = @ol®.

ML ML
Since C' > o there exists A €]0,1[ such that C(1 — \) > - Hence,

(11) dist (2, do(z")) < C(1 = N}z — 2o
By setting 1 := 2" andr := 79 = C||lz* — 2¢|> we can deduce from the
last inequalities that assertion (a) in Lemma 2.1 is satisfied.
1
Now, we show that condition (b) of lemma 2.1 is satisfied. Since — > ¢

75 2

and ||z* — x|| < 0, we have rg < 6 < a.

Moreover for x € Bs(x*),

1Zo()|| < 1f(z%) = f(z) = V(") (z — ") — %Wf(fc‘*)(w —z")?|

1) = Fw0) = V(o) = 20) = 5 V2 (w0) (& — w0

Then by (8) we deduce that for all € Bs(x*), Zy(x) € By(0). Then it
follows that for all 2/, 2" € B,,(z*), we have

e(60(a’) N Bry(a), dofa”)) < elbo(a’) N Bs(a*), bo(a")), which yields by
(7):

e(@o(x') N Bry(27), go (")) < M||Zo(2") — Zo(z")||

< M|V ()@’ — ") = Vf(x0) (& — ")
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T 1 Gy e (e (O
SV (@)@ — w0)? - 593w’ = w0)?]
< M|V (™)@' —a") = Vf(zo) (2" — 2")
+%V2f(:1:*)(a:’ — a2’ " — 2% - %VQf(x*)(:z:” —z*)?
5V (@)@ — a0 — 593 wo)@’ — 2" + 2 — o).

Assumption (H2) ensures the existence of Ly > 0 such that ||V2f| < L;
on Bs(z*). Then an easy computation yields:

(12) €(60(2') N Bry (), 60(a")) < 5M Ly’ — 2"

Without loss of generality we may assume that 6 < thus condition

SM Ly
(b) of Lemma 2.1 is satisfied. Since both conditions of Lemma 2.1 are fulfilled,

we can deduce the existence of a fixed point z1 € B,,(z*) for the map ¢¢. Then
the proof of Proposition 3.1 is complete. O

Now that we proved Proposition 3.1, the proof of Theorem 3.1 is straight-
forward as it is shown below.

Proof of Theorem 3.1. Proceeding by induction, keeping ng = =*
and setting rp = C/||x;, — 2*||?, the application of proposition 3.1 to the map ¢,
gives the existence of a fixed point x4 for ¢y, which is an element of B, (z*).
This last fact implies that :

(13) l2ppr =2 < C | ap—a” |

In others words, (2) generates a sequence (z3) with cubic order and the proof of
theorem 3.1 is complete. O

Corollary 3.1. Let z* be an isolated solution of (1), if assumptions

ML
(HO)-(H3) are satisfied, then for every C > —— one can find § > 0 such that
any sequence (xy) generated by (2) with x), € Bs(x*) satisfies (5).
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Proof. As we recalled it in the proof of Proposition 3.1, there exists
Ly > 0 such that |[V2f(z)|| < Li. Then, we fix § satisfying both relation (8) and
the following:

(14) (5<min{ ! GC_ML}.

3ML;" 18CM L,y

Without loss of generality we may assume that the solution of (1) is unique
in Bys(z*). Let (zx) be a sequence generated by (2) with z; € Bs(x*), then z* is
the only point in Bys(x*) satisfying (1), i.e., z* = Q71(0) N Bys(z*). Moreover,
for all £k € N, by Theorem 3.1 we have:

Thi1 € Q[ Zk(whs1)].
Hence,

fegar — 2| = dist (251, @ (0)) then,

o = ol < e @ 2ol 0 Ba(a).Q0)).

i — 2l < M| Ze(ars)

ks — o7l < MIS@) + V@) s = 2) + 5920 (s —a°)?
~f(er) = V@) s — ) — 5V F @) rn — 2|

Then, an easy computation shows that

* L *
s =o'l < 31 (Gl = ol + 3Ll — '] ).

Thus,
* ML |3
[@p1 — 2] < 6(1—3ML;0) [l — &*[|°.
Thanks to (14), we have C' > __ ML 50 ||zpy1—2*]| < O ||zp—2a*|?
6(1 — 3ML10)

and then the proof is complete. O
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