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Abstract. In this paper we investigate the existence of a sequence (xk)
satisfying 0 ∈ f(xk)+∇f(xk)(xk+1−xk)+ 1

2
∇2f(xk)(xk+1−xk)2+G(xk+1)

and converging to a solution x∗ of the generalized equation 0 ∈ f(x)+G(x);
where f is a function and G is a set-valued map acting in Banach spaces. We
show that the previous sequence is locally cubic convergent to x∗ whenever
the set-valued map [f(x∗) +∇f(x∗)(· − x∗) + 1

2
∇2f(x∗)(· − x∗)2 +G(·)]−1

is M -pseudo-Lipschitz around (0, x∗).

1. Introduction. Throughout this paper X and Y are two real or

complex Banach spaces and we consider a generalized equation of the form

0 ∈ f(x) +G(x)(1)
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where f is a function from X into Y an G is a set-valued map from X to the

subsets of Y .

When G = ∂ψC is the subdifferential of the function

ψC(x) =

{

0 if x ∈ C

+∞ otherwise,

(1) has been studied by Robinson [10]. The key of his idea is to associate to (1)

a linearized equation. His study concerns especially the stability of solutions of

some minimization problems.

When ∇f is locally Lipschitz Dontchev [4] associates to (1) a Newton-

type method based on a partial linearization which provides a local quadratic

convergence. Following his work, Pietrus [9] obtains a Newton-type sequence

which converges whenever ∇f satisfies a Hölder-type condition.

In this paper we associate to (1) the relation

0 ∈ f(xk) + ∇f(xk)(xk+1 − xk) +
1

2
∇2f(xk)(xk+1 − xk)

2 +G(xk+1),(2)

where ∇f(x) and ∇2f(x) denote respectivly the first and the second Fréchet

derivative of f at x. One can note that if xk −→ x∗, then x∗ is a solution of (1).

Let us mention that relation (2) derives from a second-degree Taylor polynomial

expansion of f at xk and that such an approximation is an extension of Dontchev’s

original work [3].

The paper is organized as follows: in section 2 we recall a few preliminary

results and make some fundamental assumptions on f . Then, in section 3 we

prove the existence of a sequence (xk) satisfying (2) and we show that it is locally

cubic convergent.

2. Preliminaries and fundamental assumptions.

Definition 2.1. A set-valued map Γ : X −→ Y is said to be M -pseudo-

lipschitz around (x0, y0) ∈ graph Γ := {(x, y) ∈ X × Y | y ∈ Γ(x)} if there exist

neighbourhoods V of x0 and U of y0 such that

sup
y∈Γ(x1)∩U

dist(y,Γ(x2)) ≤M ‖ x1 − x2 ‖,∀x1, x2 ∈ V.(3)



Acceleration of convergence in Dontchev’s iterative method 47

When a multiapplication Γ is M -pseudo-Lipschitz, the constant M is

called the modulus of Aubin continuity.

The Aubin continuity of Γ is equivalent to the openess with linear rate

of Γ−1 (the covering property) and to the metric regularity of Γ−1 (a basic well-

posedness property in optimization).

Finally, when f is a function which is strictly differentiable at some x0,

then the Aubin continuity of f−1 around (f(x0), x0) is equivalent to the surjec-

tivity of ∇f(x0). For more details, the reader can refer to [1, 2, 8, 11, 12].

Let A and C be two subsets of X, we recall that the excess e from the set

A to the set C is given by e(C,A) = sup
x∈C

dist(x,A).

Then, we have an equivalent definition ofM -pseudo-Lipschitzness in terms

of excess by replacing (3) by

e(Γ(x1) ∩ U,Γ(x2)) ≤M ‖ x1 − x2 ‖,∀x1, x2 ∈ V,(4)

in the previous definition. In [6] the above property is called Aubin property and

in [5] it has been used to study the problem of the inverse for set-valued maps.

In the sequel, we will need the following fixed point statement which has been

proved in [5].

Lemma 2.1. Let (X, ρ) be a complete metric space, let φ a map from X

into the closed subsets of X, let η0 ∈ X and let r and λ be such that 0 ≤ λ < 1

and

a) dist (η0, φ(η0)) ≤ r(1 − λ),

b) e(φ(x1) ∩Br(η0), φ(x2)) ≤ λ ρ(x1, x2) ∀x1, x2 ∈ Br(η0),

then φ has a fixed point in Br(η0). That is, there exists x ∈ Br(η0) such that

x ∈ φ(x). If φ is single-valued, then x is the unique fixed point of φ in Br(η0).

The previous lemma is a generalization of a fixed-point theorem in [7],

where in (b) the excess e is replaced by the Haussdorff distance.

We suppose that x∗ ∈ X is a solution of equation (1). Before studying our

problem, we make the following assumptions:

(H0) G has closed graph;

(H1) f is Fréchet differentiable on some neighborhood V of x∗;
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(H2) ∇2f is Lipschitz on V with constant L;

(H3) For all y ∈ V , the application

[f(x∗) + ∇f(x∗)(· − x∗) +
1

2
∇2f(x∗)(· − x∗)2 +G(·)]−1,

is M -pseudo-Lipschitz around (0, x∗).

3. Convergence analysis.The main theorem of this study reads as

follows:

Theorem 3.1. Let x∗ be a solution of (1), if we suppose that assumptions

(H0)-(H3) are satisfied, then for every C >
ML

6
one can find δ > 0 such that

for every starting point x0 ∈ Bδ(x
∗), there exists a sequence (xk) for (1), defined

by (2), which satisfies

‖ xk+1 − x∗ ‖≤ C ‖ xk − x∗ ‖3 .(5)

In other words, (2) generates (xk) with cubic order.

Before proving Theorem 3.1, we need to introduce a few notation. First,

for k ∈ N and xk ∈ X we define the set-valued map Q from X to the subsets of

Y by

Q(x) = f(x∗) + ∇f(x∗)(x− x∗) +
1

2
∇2f(x∗)(x− x∗)2 +G(x).

Then we set

Zk(x):= f(x∗) + ∇f(x∗)(x− x∗) +
1

2
∇2f(x∗)(x− x∗)2

−f(xk) −∇f(xk)(x− xk) −
1

2
∇2f(xk)(x− xk)

2.

Finally, we define the set-valued map φk:X → X by

φk(x) = Q−1[Zk(x)].

One can note that x1 is a fixed point of φ0 if and only if the following

holds:

f(x∗) + ∇f(x∗)(x1 − x∗) +
1

2
∇2f(x∗)(x1 − x∗)2

−f(x0) −∇f(x0)(x1 − x0) −
1

2
∇2f(x0)(x1 − x0)

2 ∈ Q(x1).
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Thus, it is easy to see that the previous assertion is equivalent to

0 ∈ f(x0) + ∇f(x0)(x1 − x0) +
1

2
∇2f(x0)(x1 − x0)

2 +G(x1).(6)

Once xk is computed, we show that the function φk has a fixed point xk+1 in X.

This process allows us to prove the existence of a sequence (xk) satisfying (2).

Now, we state a result which is the starting point of our algorithm. It

will be very usefull to prove Theorem 3.1 and reads as follows:

Proposition 3.1. Under the hypotheses of Theorem 3.1, there exists

δ > 0 such that for all x0 ∈ Bδ(x
∗) (x0 6= x∗), the map φ0 has a fixed point x1 in

Bδ(x
∗) satisfying ‖x1 − x∗‖ ≤ C‖x0 − x∗‖3.

P r o o f. By hypothesis (H3) there exist positive numbers a and b such

that

e(Q−1(y′) ∩Ba(x
∗), Q−1(y′′)) ≤M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ Bb(0).(7)

Fix δ > 0 such that

δ < min

{

a,

(

2b

3L

)
1

3

,
1√
C

}

.(8)

To prove Proposition 3.1 we intend to show that both assertions (a) and

(b) of Lemma 2.1 hold; where η0: = x∗, φ is the function φ0 defined at the very

begining of this section and where r and λ are numbers to be set.

According to the definition of the excess e, we have

dist (x∗, φ0(x
∗)) ≤ e

(

Q−1(0) ∩Bδ(x
∗), φ0(x

∗)

)

.(9)

Moreover, for all x0 ∈ Bδ(x
∗) such that x0 6= x∗ we have

‖Z0(x
∗)‖ = ‖f(x∗)− f(x0)−∇f(x0)(x

∗ − x0)−
1

2
∇2f(x0)(x

∗ − x0)
2‖, so

‖Z0(x
∗)‖ ≤ L

6
‖x∗ − x0‖3.
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Then (8) yields, ‖Z0(x
∗)‖ < b. Hence from (7) one has

e

(

Q−1(0)∩Bδ(x
∗), φ0(x

∗)

)

= e

(

Q−1(0)∩Bδ(x
∗), Q−1[Z0(x

∗)]

)

≤ ML

6
‖x∗−x0‖3.

By (9), we get

dist (x∗, φ0(x
∗)) ≤ ML

6
‖x∗ − x0‖3.(10)

Since C >
ML

6
there exists λ ∈ ]0, 1[ such that C(1 − λ) ≥ ML

6
. Hence,

dist (x∗, φ0(x
∗)) ≤ C(1 − λ)‖x∗ − x0‖3.(11)

By setting η0 := x∗ and r := r0 = C‖x∗ − x0‖3 we can deduce from the

last inequalities that assertion (a) in Lemma 2.1 is satisfied.

Now, we show that condition (b) of lemma 2.1 is satisfied. Since
1√
C

≥ δ

and ‖x∗ − x0‖ ≤ δ, we have r0 ≤ δ ≤ a.

Moreover for x ∈ Bδ(x
∗),

‖Z0(x)‖ ≤ ‖f(x∗) − f(x) −∇f(x∗)(x− x∗) − 1

2
∇2f(x∗)(x− x∗)2‖

+ ‖f(x) − f(x0) −∇f(x0)(x− x0) −
1

2
∇2f(x0)(x− x0)

2‖

≤ L

6
‖x− x∗‖3 +

L

6
‖x− x0‖3

≤ 3L

2
δ3.

Then by (8) we deduce that for all x ∈ Bδ(x
∗), Z0(x) ∈ Bb(0). Then it

follows that for all x′, x′′ ∈ Br0
(x∗), we have

e(φ0(x
′) ∩ Br0

(x∗), φ0(x
′′)) ≤ e(φ0(x

′) ∩ Bδ(x
∗), φ0(x

′′)), which yields by

(7):

e(φ0(x
′) ∩Br0

(x∗), φ0(x
′′)) ≤M‖Z0(x

′) − Z0(x
′′)‖

≤M‖∇f(x∗)(x′ − x′′) −∇f(x0)(x
′ − x′′)
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+
1

2
∇2f(x∗)(x′ − x∗)2 − 1

2
∇2f(x∗)(x′′ − x∗)2

+
1

2
∇2f(x0)(x

′′ − x0)
2 − 1

2
∇2f(x0)(x

′ − x0)
2‖

≤M‖∇f(x∗)(x′ − x′′) −∇f(x0)(x
′ − x′′)

+
1

2
∇2f(x∗)(x′ − x′′ + x′′ − x∗)2 − 1

2
∇2f(x∗)(x′′ − x∗)2

+
1

2
∇2f(x0)(x

′′ − x0)
2 − 1

2
∇2f(x0)(x

′ − x′′ + x′′ − x0)
2‖.

Assumption (H2) ensures the existence of L1 > 0 such that ‖∇2f‖ ≤ L1

on Bδ(x
∗). Then an easy computation yields:

e(φ0(x
′) ∩Br0

(x∗), φ0(x
′′)) ≤ 5ML1δ‖x′ − x′′‖.(12)

Without loss of generality we may assume that δ <
λ

5ML1
thus condition

(b) of Lemma 2.1 is satisfied. Since both conditions of Lemma 2.1 are fulfilled,

we can deduce the existence of a fixed point x1 ∈ Br0
(x∗) for the map φ0. Then

the proof of Proposition 3.1 is complete. �

Now that we proved Proposition 3.1, the proof of Theorem 3.1 is straight-

forward as it is shown below.

P r o o f o f Th e o r em 3.1. Proceeding by induction, keeping η0 = x∗

and setting rk = C‖xk − x∗‖3, the application of proposition 3.1 to the map φk

gives the existence of a fixed point xk+1 for φk, which is an element of Brk
(x∗).

This last fact implies that :

‖ xk+1 − x∗ ‖≤ C ‖ xk − x∗ ‖3 .(13)

In others words, (2) generates a sequence (xk) with cubic order and the proof of

theorem 3.1 is complete. �

Corollary 3.1. Let x∗ be an isolated solution of (1), if assumptions

(H0)-(H3) are satisfied, then for every C >
ML

6
one can find δ > 0 such that

any sequence (xk) generated by (2) with xk ∈ Bδ(x
∗) satisfies (5).
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P r o o f. As we recalled it in the proof of Proposition 3.1, there exists

L1 > 0 such that ‖∇2f(x)‖ ≤ L1. Then, we fix δ satisfying both relation (8) and

the following:

δ < min

{

1

3ML1
,
6C −ML

18CML1

}

.(14)

Without loss of generality we may assume that the solution of (1) is unique

in B4δ(x
∗). Let (xk) be a sequence generated by (2) with xk ∈ Bδ(x

∗), then x∗ is

the only point in B4δ(x
∗) satisfying (1), i.e., x∗ = Q−1(0) ∩ B4δ(x

∗). Moreover,

for all k ∈ N, by Theorem 3.1 we have:

xk+1 ∈ Q−1[Zk(xk+1)].

Hence,

‖xk+1 − x∗‖ = dist (xk+1, Q
−1(0)) then,

‖xk+1 − x∗‖ ≤ e

(

Q−1[Zk(xk+1)] ∩Bδ(x
∗), Q−1(0)

)

,

‖xk+1 − x∗‖ ≤M‖Zk(xk+1)‖,

‖xk+1 − x∗‖ ≤M‖f(x∗) + ∇f(x∗)(xk+1 − x∗) +
1

2
∇2f(x∗)(xk+1 − x∗)2

−f(xk) −∇f(xk)(xk+1 − xk) −
1

2
∇2f(xk)(xk+1 − xk)

2‖.

Then, an easy computation shows that

‖xk+1 − x∗‖ ≤M

(

L

6
‖x∗ − xk‖3 + 3L1δ‖xk+1 − x∗‖

)

.

Thus,

‖xk+1 − x∗‖ ≤ ML

6(1 − 3ML1δ)
‖xk − x∗‖3.

Thanks to (14), we have C >
ML

6(1 − 3ML1δ)
so ‖xk+1−x∗‖ ≤ C ‖xk−x∗‖3

and then the proof is complete. �
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