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Abstract

A more general version of Hilbert’s fifth problem, called the Hilbert-
Smith conjecture, asserts that among all locally compact topological groups
only Lie groups can act effectively on finite-dimensional manifolds. We give
a solution of the Hilbert-Smith Conjecture for K−quasiconformal groups
acting on domains in the extended n−dimensional Euclidean space.
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1. Introduction

A more general version of Hilbert’s fifth problem, called the Hilbert-
Smith conjecture, asserts that among all locally compact topological groups
only Lie groups can act effectively on finite dimensional manifolds. The
Hilbert-Smith conjecture is still an open problem. Bochner and Montgomery
[3] solved for diffeomorphisms in 1943; Repovš and Ščepin [12] solved for
actions by Lipschitz mappings in 1997. Notice that diffeomorphisms and
Lipschitz mappings are locally quasiconformal homeomorphisms, they are
hence quasiconformal homeomorphisms on precompact subdomains. How-
ever, quasiconformal homeomorphisms are neither diffeomorphisms nor Lip-
schitz mappings. Martin [9] solved for quasiconformal category in 1999, see
the following theorem.
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Theorem 1. (Martin 1999) Let G be a locally compact group acting
effectively by quasiconformal homeomorphisms on a Riemannian manifold.
Then G is a Lie group.

Here groups of quasiconformal homeomorphisms are required to be a
locally compact group acting effectively on a Riemannian manifold.

A smooth manifold (C∞ differentiable manifold) is a Riemannian man-
ifold if there exists a Riemannian metric on it. For example, Proposition
1 [6] states that every domain Ω in the extended n−dimensional Euclidean
space Rn = Rn ∪ {∞} is a Riemannian manifold.

A topological group G is a topological transformation group of the topo-
logical space X if the following two conditions are satisfied: (1) There ex-
ists a homomorphism φ : G → Homeo(X), where Homeo(X) is the group
of homeomorphisms of X; (2) The mapping f : G × X → X given by
(g, x) 7→ φ(g)x is continuous. A topological transformation group G is act-
ing effectively on a topological space X if for each non-trivial g ∈ G there
exists x ∈ X such that x is not fixed by g. For example, Theorem 2.3.5 [7]
states that each K−quasiconformal group acting on a domain Ω in Rn is
a topological transformation group, and Proposition 2 [6] gives that each
K−quasiconformal group of a domain Ω in Rn is acting effectively on Ω in
Rn.

Recently Gong [6] applied the above Martin’s Theorem 1 and solved
the Hilbert-Smith Conjecture for non-elementary K−quasiconformal groups
acting on domains in Rn, see the following theorem.

Theorem 2. (Gong 2008) Suppose that Ω is a domain in Rn and G is
a non-elementary K−quasiconformal group actiong on Ω. Then G is a Lie
group.

A group G of self homeomorphisms of a domain Ω in Rn is said to be
discontinuous at a point x ∈ Ω if there exists a neighborhood U of x such
that g(U) ∩ U = ∅ for all but finite many g ∈ G. The ordinary set of G is
the set of all x ∈ Ω at which G is discontinuous. The complement of the
ordinary set is called the limit set of G. We say that G is an elementary
group if the limit set contains at most two points. Otherwise we say that
G is non-elementary.

In this paper, we want to remove the condition of non-elementary group
and give the following theorem to solve Hilbert-Smith Conjecture for the K-
quasiconformal groups acting on domains in Rn.
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Theorem 3. Suppose that Ω is a domain in Rn and G is a K−quasi-
conformal group acting on Ω. Then G is a Lie group.

Let Ω and Ω′ be subdomains of Rn, where n ≥ 2. Let f : Ω → Ω′ be a
homeomorphism, x ∈ Ω and r < d(x, ∂Ω), where d is the Euclidean metric
for Rn. The infinitesimal distortion of f at x ∈ Ω�{∞, f−1(∞)} is

Hf (x) = lim sup
r→0

Lf (x, r)
lf (x, r)

,

where

Lf (x, r) = max
|h|=r

|f(x + h)− f(x)|, lf (x, r) = min
|h|=r

|f(x + h)− f(x)|.

The distortion function of f is the essential supremum
K(f) = ess sup

x∈Ω
Hf (x) = ‖Hf (x)‖∞.

A homeomorphism f : Ω → Ω′ is called a K−quasiconformal, if

K(f) ≤ K.

Clearly, 1 ≤ K < ∞. A homeomorphism f : Ω → Ω′ is called quasiconformal
if it is a K−quasiconformal for some K. Thus a quasiconformal homeomor-
phism is a homeomorphism with uniformly bounded distortion; it distorts
the shape of an infinitesimal sphere about each point by at most a uniformly
bounded factor.

Let Γ( Ω) be the family of all quasiconformal self homeomorphisms of
a domain Ω in Rn, and let ΓK( Ω) be the family of all K−quasiconformal
self homeomorphisms of a domain Ω in Rn. It is easy to see that

Γ(Ω) = ∪K≥1ΓK(Ω). (1)

If f is a K−quasiconformal homeomorphism, the inverse f−1 is a K-
quasiconformal homeomorphism; if fj is a Kj−quasiconformal homeomor-
phism (j = 1, 2), then f1 ◦ f2 is a K1K2−quasiconformal homeomorphism
[1]. Thus, Γ(Ω) forms a group under composition. By contrast, ΓK(Ω) is
not a group if K > 1. However, when K = 1, the family Γ1(Ω) of all 1−
quasiconformal self homeomorphisms of Ω in Rn is the conformal group of
Ω. Indeed, Γ1( Ω) is a subgroup of the Möbius transformation group if
n > 2 or if n = 2 with Ω = Rn. In the latter case when n = 2 with Ω = R2,
Γ1(R2) is just the classical Möbius transformation group, that is, the group
of linear fractional transformations of C.
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A subfamily G of ΓK(Ω) is called a K−quasiconformal group if it con-
stitutes a subgroup of Γ(Ω) under composition. For example, the quasicon-
formal conjugate

G = f−1 ◦ Γ1(Ω) ◦ f

of the subgroup Γ1(Ω) of Möbius transformations by a K−quasiconformal
homeomorphism f : Ω → Ω is a K2−quasiconformal group acting on
Ω. For subdomains of the plane Sullivan and Tukia showed in [13, 14],
using a result of Maskit regarding groups of conformal transformations,
that the quasiconformal conjugate is in fact the only construction. That
is, a K−quasiconformal group of a domain Ω ⊂ R2 must be quasicon-
formally conjugate to a subgroup of Möbius transformations of a domain
Ω ⊂ R2. However, the situation in higher dimensions is different; not ev-
ery K−quasiconformal group is obtained by quasiconformally conjugates
[10, 15].

2. Metric Space

In this section, we introduce a metric ρ for the topological space Γ(Ω),
so a compact subset in the metric space Γ( Ω) coincides with a sequentially
compact subset. We give a characterization of an open set in the met-
ric space (Γ(Ω), ρ) in Theorem 4. As a consequence the topology induced
from the metric ρ agrees with the topology induced from locally uniform
convergence. Thus, all three topologies of Γ(Ω) induced from the compact-
open topology, from locally uniform convergence, and from the metric ρ are
equivalent.

Consider the topological space Γ(Ω) of all quasiconformal self homeo-
morphisms of a domain Ω in Rn equipped with the compact-open topology.
We know from [4] that the compact-open topology is equivalent to the topol-
ogy induced from locally uniform convergence. Notice that the topology of
Rn and all notions of convergence will be taken with respect to the following
spherical metric q :

q(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2 , for x, y ∈ Rn;

q(x,∞) =
1√

1 + |x|2 , for x ∈ Rn.

The virtue of the spherical metric q is that it allows ∞ to be treated like
any other finite point, and q(x, y) ≤ 1 for x, y ∈ Rn.
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Since a domain Ω in Rn is a second countable, locally compact Hausdorff
topological space, there exists a sequence {Kj} of compact sets in Ω such
that Ω = ∪∞j=1Kj [17]. Moreover, the compact sets Kj can be chosen to
satisfy the conditions: Kj ⊂ int Kj+1 and if K ⊂ Ω is a compact set then
K ⊂ Kj for some j. Indeed, for each j ∈ N, let

Kj = {x ∈ Ω : q(x, ∂Ω) ≥ 1
j
} .

Then Kj is closed in the compact space Rn, hence Kj is compact in Rn.
Since the compactness is independent of whether the topology of a space or
its subspace is considered, Kj is compact in Ω. Notice that for each j ∈ N
the interior of Kj is

int Kj = {x ∈ Ω : q(x, ∂Ω) >
1
j
} .

Thus Kj ⊂ int Kj+1 ⊂ Kj+1, Ω = ∪∞j=1Kj = ∪∞j=1int Kj . It follows that if
K ⊂ Ω is a compact set, then K ⊂ Kj for some j.

Proposition 1. The topological space Γ(Ω) of all quasiconformal self
homeomorphisms of a domain Ω in Rn is a metric space, where the metric
is defined by

ρ(f, g) =
∞∑

j=1

2−j max
x∈Kj

q(f(x), g(x)), for f, g ∈ Γ(Ω).

P r o o f. Notice that max
x∈Kj

q(f(x), g(x)) ≤ 1 for f, g ∈ Γ(Ω) and the

series
∞∑

j=1
2−j is convergent. Thus, the series

∞∑
j=1

2−j max
x∈Kj

q(f(x), g(x)) is

convergent for all f and g ∈ Γ(Ω). It is clear that ρ(f, g) ≥ 0, ρ(f, g) =
ρ(g, f) and ρ satisfies the triangle inequality.

Also notice that Ω = ∪∞j=1Kj , then it is easy to verify that ρ(f, g) = 0
implies f = g.

In the next theorem, we give a characterization of open sets in the metric
space Γ(Ω), which gives that open sets does not depend on the choice of the
compact sets Kj . That is, the metric ρ for Γ(Ω) is independent of the choice
of the compact sets Kj .

Theorem 4. A subset U in the metric space (Γ(Ω), ρ) is open if and
only if for each f in U there exists a compact set K and a δ > 0 such that

Vf := {g ∈ Γ(Ω) : max
x∈K

q(f(x), g(x)) < δ} ⊂ U.
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P r o o f. If U is open in the metric space Γ(Ω), then each f ∈ U , there
exists an open ball

B := {g ∈ Γ(Ω) : ρ(f, g) < ε}, for some ε > 0

such that B ⊂ U. We claim that there exists a compact set K and a δ > 0
such that Vf ⊂ B, hence Vf ⊂ U .

For some ε > 0, there exists a m ∈ N such that
∑∞

j=m+1 2−j < ε
2 .

Let K = Km and let δ = ε
2 . If g ∈ Vf , then maxx∈K q(f(x), g(x)) < δ.

Since Kj ⊂ Km = K for 1 ≤ j ≤ m,maxx∈Kj q(f(x), g(x)) < δ. For j ≥
m + 1,maxx∈Kj q(f(x), g(x)) ≤ 1. Thus,

ρ(f, g) =
m∑

j=1

2−j max
x∈Kj

q(f(x), g(x)) +
∞∑

j=m+1

2−j max
x∈Kj

q(f(x), g(x))

<
m∑

j=1

2−j ε

2
+

∞∑

j=m+1

2−j <
ε

2

∞∑

j=1

2−j +
ε

2
= ε.

That is g ∈ B. Conversely, if δ > 0 and a compact set K are given such
that Vf ⊂ U. Then there exists a m ∈ N such that K ⊂ Km. Thus

max
x∈K

q(f(x), g(x)) ≤ max
x∈Km

q(f(x), g(x)).

Let ε = 2−mδ. If g ∈ B then ρ(f, g) < ε. We have

ε > ρ(f, g) =
∞∑

j=1

2−j max
x∈Kj

q(f(x), g(x))

= 2−m max
x∈Km

q(f(x), g(x)) +
∞∑

j 6=m

2−j max
x∈Kj

q(f(x), g(x))

> 2−m max
x∈Km

q(f(x), g(x))

Thus 2−m maxx∈Km q(f(x), g(x)) < ε which gives maxx∈Km q(f(x), g(x)) <
2mε = δ. Therefore, maxx∈K q(f(x), g(x)) ≤ maxx∈Km q(f(x), g(x)) < δ
which gives g ∈ Vf . So B ⊂ Vf ⊂ U, it is that U is open.

Notice that defining a topology for the metric space Γ(Ω) is the same
thing as defining the convergence of sequences in Γ(Ω). Thus, the next
corollary is a consequence of Theorem 4.

Corollary 1. The topology of Γ(Ω) induced from the metric ρ agrees
with the topology induced from locally uniform convergence. Thus, all three
topologies of Γ(Ω) induced from the compact-open topology, from locally
uniform convergence, and from the metric ρ are equivalent.
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3. Locally compactness

As normal families play an important role in the property of compact-
ness, we discuss normality at beginning of this section. For a family F of
K−quasiconformal self homeomorphisms of Ω in Rn, we prove that the clo-
sure F of a family of K−quasiconformal self homeomorphisms of Ω in Rn

is compact in Theorem 6. For a K−quasiconformal group G, we prove that
G is a locally compact group in Theorem 7. At the end of this section, we
complete the proof of the main theorem, Theorem 3.

A family F of quasiconformal self homeomorphisms of a domain Ω in
Rn is a normal family in Ω if every sequence in F has a subsequence which
converges locally uniformly in Ω. Thus, every locally uniformly convergent
sequence in Γ( Ω) is a normal family in Ω. Notice that each finite family
can be regarded as a normal family and an infinite family F of quasicon-
formal self homeomorphisms of a domain Ω in Rn may not be a normal
family in Ω. However, next theorem states that every infinite family of
K−quasiconformal homeomorphisms always contains a normal subfamily.

Theorem 5. Suppose that F is an infinite family of K−quasiconformal
self homeomorphisms of a domain Ω in Rn. Then there exists an infinite
normal subfamily F0 of F in Ω.

P r o o f. Let F be an infinite family of K−quasiconformal self homeo-
morphisms of a domain Ω in Rn.

If a domain Ω in Rn with at least two boundary points, by Theorem 20.5
[16], every family of K−quasiconformal self homeomorphisms of a domain
Ω in Rn with at least two boundary points is a normal family in Ω, hence
F is a normal family in Ω.

If a domain Ω in Rn with at most one boundary point, that is, Ω = Rn

or Rn\{x1}, by Theorem 3.1 [5], every family F of K−quasiconformal self
homeomorphisms of Ω is either a normal family in Ω or there exists a point
x0 ∈ Ω and an infinite normal subfamily F1 of F in Ω0 = Ω\{x0}. For
the latter case, Ω0 = Rn\{x0} or Rn\{x0, x1}, from Theorem 3.3 [5], there
exists an infinite normal subfamily extension F0 of F1 ⊂ F in Ω. The proof
is complete.

For a given normal family F, limit mappings of subsequences are not
required to be in the normal family F. By contrast, limit mappings of sub-
sequences could be in the closure of a normal family F. Now we turn our
attention to the closure F of family in the topological space Γ( Ω).
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Proposition 2. Let F be a family of K−quasiconformal self homeo-
morphisms of a domain Ω in Rn, then F is also a family of K−quasiconformal
self homeomorphisms of Ω.

P r o o f. Let F be a family of K−quasiconformal self homeomorphisms
of a domain Ω in Rn, then the closure F is formed by the family F together
with its limit mappings of subsequences. By Corollaries 21.3 and 37.4 of
[16], if a sequence of K−quasiconformal homeomorphisms is convergent
locally uniformly to a mapping f, then f is either a K−quasiconformal
self homeomorphism of Ω or a constant. Since F ⊂ Γ( Ω) and constant
limit mappings are not contained in Γ( Ω), the closure F is a family of
K−quasiconformal self homeomorphisms of a domain Ω in Rn.

Furthermore, we are going to show the next theorem that the closure
F of a family of K−quasiconformal self homeomorphisms of a domain Ω in
Rn is is compact in Γ(Ω).

Theorem 6. Let F be a family of K−quasiconformal self homeomor-
phisms of Ω in Rn, then the closure F is compact in the space Γ( Ω).

P r o o f. Let F be a family of K−quasiconformal self homeomorphisms
of Ω in Rn, then F is also a family of K−quasiconformal self homeomor-
phisms of Ω by Proposition 2. Since Γ( Ω) is a metric space by Proposition
1, the closure F is compact if and only if F is sequential compact. We
need to show that every sequence in F has a subsequence which converges
locally uniformly in Ω and the limit mapping is contained in F. By Corol-
laries 21.3 and 37.4 of [16], the mapping f is either a K−quasiconformal
self homeomorphism of Ω or a constant.

Let {fj} be a sequence in F , then {fj} is a sequence of K−quasiconformal
self homeomorphisms of a domain Ω in Rn. By Theorem 5, there exists a
subsequence {fjk

} which converges locally uniformly to a mapping f in Ω.

If Ω = Rn. According to Theorem 21.5 and Corollary 37.4 [16], the
limit mapping f is also a K−quasiconformal self homeomorphism of Rn, so
f ∈ F . Therefore, F is compact in Γ(Rn).

If Ω 6= Rn, then the boundary ∂Ω 6= φ. If the limit mapping f is a
constant c, by Theorems 21.7 and 21.11 [16], then c ∈ ∂Ω. It is followed
that the limit mapping f is a K−quasiconformal self homeomorphism of Ω,
hence f ∈ F, and F is compact in Γ(Ω).

Now consider a K−quasiconformal group G acting on Ω, we have the
next important theorem.
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Theorem 7. Suppose that Ω is a domain in Rn, and that G is a
K−quasiconformal group acting on Ω. Then G is a locally compact topo-
logical transformation group in ΓK(Ω).

P r o o f. First of all, by Theorem 2.3.5 [7], each K−quasiconformal
group acting on a domain Ω in Rn is a topological transformation group.
Let g ∈ G and let U be a neighborhood of g. Since G is a topological group,
G is a regular topological space [11]. Thus, there exists a neighborhood V
of g such that

g ∈ V ⊂ V ⊂ U ⊂ G ⊂ ΓK(Ω).

Applying the previous Theorem 6, V is compact in ΓK(Ω). Therefore G is
locally compact in ΓK(Ω), hence G is a locally compact topological trans-
formation group in ΓK(Ω).

Finally, we are ready to complete the proof of Theorem 3 and solve
Hilbert-Smith Conjecture for K−quasiconformal groups acting on domains
in Rn.

P r o o f o f T h e o r e m 3. First, by Proposition 1 [6], every smooth
manifold is a Riemannian manifold. Since each domain in Rn is a smooth
manifold, every domain Ω in Rn is a Riemannian manifold.

Second, by Proposition 2 [6], every K−quasiconformal group G of a
domain Ω in Rn is a topological transformation group acting effectively on
Ω.

Third, by the previous Theorem 7, if a K−quasiconformal group G
acting on a domain Ω in Rn, then G is a locally compact topological trans-
formation group.

Finally, applying Martin’s Theorem 1, each K−quasiconformal group is
a Lie group acting on a domain Ω in Rn.
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