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Abstract

In this paper, we prove a Stolarsky type inequality for pseudo-integrals.
More precisely, we show that:

∫ sup

[0,1]
f(x

1
a+b )dx ≥

( ∫ sup

[0,1]
f(x

1
a )dx

)
¯

( ∫ sup

[0,1]
f(x

1
b )dx

)
,

where a, b > 0, f : [0, 1] → [0, 1] is a continuous and strictly decreasing
function ( strictly increasing function ) and µ is the sup-measure the same
as Theorem 2.4. Also ¯ is represented by an increasing multiplicative gen-
erator g.
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1. Introduction

Not long ago, H. Román-Flores et al. in [2] analyzed an intersting type
of geometric inequalities for the Sugeno integral with some applications to
convex geometry. More precisely, a Prékopa-Leindler type inequality for
fuzzy integrals was proven, and subsequently used for the characterization
of some convexity properties of fuzzy measures.
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We know that the Sugeno integral is not an extension of the Lebesgue
integral. The difference between the Sugeno integral and the Lebesgue in-
tegral is that addition and multiplication in the definition of the Lebesgue
integral are replaced respectively by the operations max and min when the
Sugeno integral is considered. In this paper, we use of pseudo-analysis for
the generalization of the classical analysis, where instead of the field of real
numbers a semiring is defined on a real interval [a, b] ⊂ [−∞, +∞] with
pseudo-addition ⊕ and with pseudo-multiplication ¯. Thus it would be an
interesting topic to generalize an inequality from the from work of the clas-
sical analysis as special cases. In this paper, we investigate a Stolarsky type
inequality for pseudo-integrals where ⊕ = max and ¯ generate by a con-
tinuous monotonic generator function g. The paper is organized as follows:
Section 2 contains some of preliminaries, such as pseudo-operations, pseudo-
analysis and pseudo-additive measures as well as integrals. In Section 3 we
have main results.

2. Preliminaries

Definition 2.1. The operation ⊕ (pseudo-addition) is a function
⊕ : [a, b]× [a, b] → [a, b] which is commutative, nondecreasing (with respect
to ¹ ), associative and with a zero (natural) element denoted by 0, i.e., for
each x ∈ [a, b],0⊕ x = x holds (usually 0 is either a or b).

Let [a, b]+ = {x|x ∈ [a, b],0 ¹ x}.
Definition 2.2. The operation ¯ (pseudo-multiplication) is a func-

tion¯ : [a, b]×[a, b] → [a, b] which is commutative, positively non-decreasing,
i.e., x ¹ y implies x¯ z ¹ y¯ z for all z ∈ [a, b]+, associative and for which
there exist a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b],1¯ x = x.

We assume also 0¯x = 0 and that ¯ is a distributive pseudo-multiplica-
tion with respect to ⊕, i.e., x¯ (y ⊕ z) = (x¯ y)⊕ (x¯ z). The structure
([a, b],⊕,¯) is a semiring (see [8, 19]).

There are semirings with the following continuous operations:

Case I: The pseudo-addition is an idempotent operation and the pseudo-
multiplication is not.

(a) x⊕y = sup(x, y),¯ is not arbitrary idempotent pseudo-multiplication
on the interval [a, b]. We have 0 = a and the idempotent operation sup in-
duces a full order in the following way: x ¹ y if and only if sup(x, y) = y.
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(b) x⊕ y = inf(x, y),¯ is not arbitrary idempotent pseudo-multiplica-
tion on the interval [a, b]. We have 0 = b and the idempotent operation inf
induces a full order in the following way: x ¹ y if and only if inf(x, y) = y.

Case II: The pseudo-operations are defined by a monotone and con-
tinuous function g : [a, b] → [0,∞], i.e., pseudo operations are given with
x ⊕ y = g−1(g(x) + g(x)) and x ¯ y = g−1(g(x)g(x)). If the zero element
of the pseudo-addition is a, we will consider increasing generators. Then
g(a) = 0 and g(b) = 1. If the zero element of the pseudo-addition is b, we
will consider decreasing generators. Then g(b) = 0 and g(a) = 1. If the
generator g is increasing or decreasing, then the operation ⊕ induces the
usual order or opposite to the usual order respectively on the interval [a, b]
in the following way: x ¹ y if and only if g(x) ≤ g(y).

Case III: Both operations are idempotent. We have
(a) x⊕ y = sup(x, y), x¯ y = inf(x, y), on the interval [a, b]. We have

0 = a and 1 = b. The idempotent operation sup induces the usual order
(x ¹ y if and only if sup(x, y) = y).

(b) x⊕ y = inf(x, y), x¯ y = sup(x, y), on the interval [a, b]. We have
0 = b and 1 = a. The idempotent operation inf induces an opposite order
to the usual order (x ¹ y if and only if inf(x, y) = y).

But in this paper we consider semirings with the following continuous
operations:

Case I: When x⊕ y = max(x, y) and x¯ y = g−1(g(x)g(y)).
Case II: When ⊕ = Sup and ¯ = inf .

Let X be a non-empty set. Let A be a σ-algebra of subsets of a set X.

Definition 2.3. Let m : A → [a, b]+ be a ⊕-measure.
(i) The pseudo-integral of an elementary function e : X → [a, b] with

respect to m is defined by
∫ ⊕

X
e¯ dm =

n⊕

i=1

ai ¯m(Ai).

(ii) The pseudo-integral of a bounded measurable function f : X →
[a, b], (if ⊕ is not idempotent we suppose that for each ε > 0 there exists a
monotone ε-net in f(X)) is defined by

∫ ⊕

X
f(x)¯ dm = limn→∞

∫ ⊕

X
en(x)¯ dm,

where (en)n∈N is a sequence of elementary functions such that d(en(x), f(x))
→ 0 uniformly as n →∞.
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The pseudo-integral for a function f : R → [a, b] is given by
∫ ⊕

R
f ¯ dm = sup

(
f(x)¯ ψ(x)

)
, (2.1)

where function ψ defines sup-measure m. Any sup-measure generated as
essential supremum of a continuous density can be obtained as a limit of
pseudo-additive measures with respect to generated pseudo-addition [10].
For any continuous function f : [0,∞] → [0,∞] the integral

∫⊕ f ¯ dm can
be obtained as a limit of g-integrals, [10].

We denote by µ the usual Lebesgue measure on R. We have

m(A) = esssup(x|x ∈ A) = sup{a|µ({x|x ∈ A, x > a}) > 0}.

Theorem 2.4. ([10]) Let m be a sup-measure on ([0,∞],B([0,∞])),
where B([0,∞]) is the Borel σ-algebra on [0,∞], m(A) = esssupµ(ψ(x)|x ∈
A), and ψ : [0,∞] → [0,∞] is a continuous density. Then for any pseudo-
addition ⊕ with a generator g there exists a family {mλ} of ⊕λ–measure
on ([0,∞),B), where ⊕λ is generated by gλ (the function g of the power
λ), λ ∈ (0,∞), such that limλ→∞mλ = m.

Theorem 2.5. ([10]) Let ([0,∞], sup, ¯) be a semiring with ¯ with
a generator g, i.e.,we have x ¯ y = g−1(g(x)g(y)) for every x, y ∈ (0,∞).
Let m be the same as in Theorem 2.4. Then there exists a family mλ of
⊕λ-measures, where ⊕λ is generated by gλ, λ ∈ (0,∞) such that for every
continuous function f : [0,∞] → [0,∞],
∫ sup

f ¯ dm = limλ→∞
∫ ⊕λ

f ¯ dmλ

= limλ→∞(gλ)−1
( ∫

gλ(f(x))dx
)
. (2.2)

3. Main results

Theorem 3.1. Let a, b > 0, if f : [0, 1] → [0, 1] is a continuous and
strictly increasing function and let m be the same as in the Theorem 2.4.
if ¯ is represented by a decreasing multiplicative generator g, then the
inequality

∫ sup

[0,1]
f(x

1
a+b )dm ≥

( ∫ sup

[0,1]
f(x

1
a )dm

)( ∫ sup

[0,1]
f(x

1
b )dm

)

holds.
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P r o o f. Theorem 2.5 implies that
∫ sup

[0,1]
f(x

1
a+b )dm = limλ→∞

∫ ⊕λ

[0,1]
f(x

1
a+b )dmλ

= limλ→∞(gλ)−1
∫ 1

0
gλ(f(x

1
a+b ))dx

= limλ→∞(gλ)−1
∫ 1

0
(gλf)(x

1
a+b )dx. (3.1)

Since gλf is nonincreasing, if we get
∫ sup

[0,1]
f(x

1
a+b )dm = a,

then from (3.1) we have

a ≥ limλ→∞(gλ)−1
( ∫ 1

0
(gλf)(x

1
a )dx

∫ 1

0
(gλf)(x

1
b )dx

)

= limλ→∞(gλ)−1
( ∫ 1

0
gλ(f(x

1
a ))dx

∫ 1

0
gλ(f(x

1
b ))dx

)

=
(
limλ→∞(gλ)−1

( ∫ 1

0
gλ(f(x

1
a ))dx

))

×
(
limλ→∞(gλ)−1

( ∫ 1

0
gλ(f(x

1
b ))dx

))

=
(
limλ→∞

∫ ⊕λ

[0,1]
f(x

1
a )dm

)(
limλ→∞

∫ ⊕λ

[0,1]
f(x

1
b )dm

)

=
( ∫ sup

[0,1]
f(x

1
a )dm

)( ∫ sup

[0,1]
f(x

1
b )dm

)
.

The proof now is complete.

Example 3.2. Suppose that gλ(x) = x−λ. Then

x⊕ y = (x−λ + y−λ)−
1
λ

and
x¯ y = xy.

Therefore, the Stolarsky type inequality from Theorem 3.1 reduces to

sup(f(x
1

a+b ) + ψ(x) ≥ sup(f(x
1
a ) + ψ(x))sup(f(x

1
b ) + ψ(x)),

where ψ is from Theorem 2.4.



472 B. Daraby

Theorem 3.3. Let a, b > 0, f : [0, 1] → [0, 1] be a continuous and
strictly decreasing function and let m be the same as in Theorem 2.4. If ¯ is
represented by an increasing multiplicative generator g, then the inequality

∫ sup

[0,1]
f(x

1
a+b )dm ≥

( ∫ sup

[0,1]
f(x

1
a )dm

)( ∫ sup

[0,1]
f(x

1
b )dm

)
,

holds.

P r o o f. The proof is similar with Theorem 3.1.

Example 3.4. Let gλ(x) = eλx. Then

x⊕ y = limλ→∞
1
λ

ln(eλx + eλy) = max(x, y),

and
x¯ y = limλ→∞

1
λ

ln(eλxeλy) = x + y.

Therefore, the Stolarsky type inequality from Theorem 3.3 reduces to

sup(f(x
1

a+b ) + ψ(x)) ≥ sup(f(x
1
a ) + ψ(x)) + sup(f(x

1
b ) + ψ(x)),

where ψ is from Theorem 2.4.

Note that the second important case ⊕ = max and ¯ = min has been
studied in [5] and the pseudo-integral in such a case yields the Sugeno inte-
gral.
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