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Abstract

We consider a linear system of differential equations with fractional
derivatives, and its corresponding system in the field of Mikusiński oper-
ators, written in a matrix form, by using the connection between the frac-
tional and the Mikusiński calculus. The exact and the approximate opera-
tional solution of the corresponding matrix equations, with operator entries
are determined, and their characters are analyzed.

By using the packages Scientific Workplace and GeoGebra, the exact and
the approximate solution of the given numerical example are constructed,
and their dependence on the initial condition and the fractional derivatives
is shown graphically.

MSC 2010: 26A33, 44A45, 44A40, 65J10
Key Words and Phrases: fractional calculus, operational calculus

1. Introduction

In this paper we consider, in the frame of the Mikusiński calculus, the
system of time-fractional differential equations of the form

dβu(t)
dtβ

= Au(t), (1)
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with the initial conditions:
u(0) = u0. (2)

In (1), A is the matrix [aij ], i, j = 1, 2 . . . n, where aij , are numer-
ical constants. The unknown n−dimensional vector, u is considered as
u= [u1 u2 . . . un]T , where ui, i = 1, 2, . . . n, are the unknown functions.
The vector β = [β1 β2 . . . βn]T , where 0 < βi < 1, i = 1, 2, . . . n, is given,
and 0 < t < T.

The fractional derivative, in equation (1),

dβu(t)
dtβ

=
[
dβ1u1(t)

dtβ1
,

dβ2u1(t)
dtβ2

, . . . ,
dβnu1(t)

dtβn

]T

,

is considered in the sense of Caputo ([1]).
The initial vector u0 = [φ1 φ2 . . . φn]T , i = 1, 2, . . . , n, is given in (2),

with the numerical constants φi, i = 1, 2, . . . , n.
In this paper we construct the exact and the approximate solution of the

system given by (1), (2), in the frame of Mikusiński calculus. In the paper
[8], the special system of two fractional differential equations is considered
and its exact and the approximate solution is determined. Analytic study
on linear systems of fractional differential equations is given in the paper
[5].

In Section 2, we give some notions from the fractional calculus and the
Mikusiński operational calculus ([4]), with the accent on their connections.

In Section 3, we consider the operational differential equation in the
field F , corresponding to the time fractional differential equation appearing
in (1), taking n = 1. We construct the exact and the approximate solution
of such equation with the given initial condition, and express the error of
approximation in the field of Mikusi’nski operators.

In Section 4, we constructed the system of operational differential equa-
tions in the field F , corresponding to the system of fractional differential
equations (1), (2). In fact, we considered the matrix equation in the field of
Mikusiński operators, and construct its operational exact and the approxi-
mate solution. We analyzed the character of the obtained solution. Since,
the operational solution represents the continuous function we express the
exact and the approximate solution of the system (1), depending on the
initial conditions (2), and the vector β.

In Section 5, we constructed the approximate solution, of the given sys-
tem of three time fractional differential equations, by using packages Sci-
entific Workplace and GeoGebra. We presented the graphs of the obtained
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approximate solutions and discussed the dependence of the solution on the
initial conditions given in (2), and the numbers in β, appearing in fractional
derivative, graphically.

In the papers [8], [9] and [10] the solution of the partial differential
equations, mathematical models of a viscoelastic bar is constructed, by using
the similar procedure.

2. Notions and notations

In this paper we use the Riemann-Liouville fractional integral operator
Jα, of order α > 0, defined by the convolution

Jαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ,

J 0f(t) = f(t),

(3)

and the so-called Caputo derivative (originated from [1]) because it is more
suitable for applications to problems with initial and boundary conditions
(see [3], [6]). The definition used for the Caputo derivative is as follows ([6],
[7]):

Dαf(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α

dτ, t > 0. (4)

The elements of the field of Mikusiński operator, F , are called operators;
they are quotients of the form

f

g
, f ∈ C+, 0 6≡ g ∈ C+,

where the last division is meant in the sense of convolution (see [4]).
We shall denote by Fc the proper subset of F consisting of the operators

representing continuous functions. As examples of such operators, we have
the integral operator ` ∈ Fc representing the constant function 1 on [0,∞),
and the α powers of `, `α :

` = {1}, `α =
{

tα−1

Γ(α)

}
, α ≥ 1. (5)

Also, among the most important operators are the differential operator
s (the inverse operator to `), and I, the identity operator, i.e.,

`s = I.
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Neither s nor I are operators from Fc.
For the use of the Mikusiński operational calculus in the theory of dif-

ferential equations, the following relation, connecting the operator repre-
senting the n-th derivative of an n times derivable function a = a(t) with
the operator a is essential:

{a(n)(t)} = sna− a(0)sn−1 − · · · − a(n−1)(0) I. (6)

In the following we shall connect the Mikusiński and the fractional cal-
culus. From relations (3) it follows that in the field F the operator `α

corresponds to the Riemann-Liouville fractional integral operator of order
α, Jα. In fact, for every continuous function f it holds:

`αf = {Jαf(t)} , 0 < α < 1. (7)

On the other hand, the Caputo fractional derivative Dαf(t), of order
α, 0 < α < 1, applied to function f , corresponds to the operator sαf −
f(0)sα−1, i.e.

sαf − f(0)sα−1 = {Dαf(t)}. (8)

3. An operational equation

In the system (1), for n = 1, it appears the time-fractional differential
equation of the form

dβu(t)
dt

= Au, (9)

with the initial conditions:
u(0+) = φ, (10)

where u is the unknown function, 0 < β < 1, and A and φ are numerical
constants. The equation (9) with (10) corresponds in the field of Mikusiński
operators to the equation:

(sβ −A)u = s1−βφ. (11)

The exact solution of equation (11) has the form:

u =
`1−βφ

sβ −A
=

`φ

I −A`β
= `φ

∞∑

i=0

(A`β)i, (12)
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and represent the continuous function, which can be treated as the solution
of the time fractional differential equation (9):

u(t) = φ
∞∑

i=0

tiβAi

Γ(1 + iβ)
. (13)

The approximate solution of equation (11) can be written in a form:

uN = `φ
N∑

i=0

(A`β)i, (14)

and the approximate solution of the time fractional differential equation (9)
can be considered in the form:

u(t) = φ
N∑

i=0

tiβAi

Γ(1 + iβ)
. (15)

Since the solution of equation (11) represent the continuous function the
error of approximation can be estimated as:

|u− uN | = `|φ|
∣∣∣∣∣
∞∑

i=0

(A`β)i −
N∑

i=0

(A`β)i

∣∣∣∣∣ = `|φ|
∣∣∣∣∣

∞∑

i=N+1

(A`β)i

∣∣∣∣∣

≤T `|φ|
∞∑

i=N+1

T iβAi

Γ(1 + iβ)
.

(16)

From (16), it follows that in order to get good approximate solution one
has to take big number N , because 0 < β < 1.

4. A system of operational equations

In this section we shall determine the exact and the approximate solution
of operator differential equations corresponding to the system of equations
(1), (2).

In the field F , the system of equations



sβ1 − a11 −a12 . . . −a1n

−a21 sβ2 − a22 . . . −a2n

. . . . . . . . .
−a2n −a22 . . . sβn − a2n







u1

u2

. . .
un


 =




φ1`
1−β1

φ2`
1−β2

. . .
φn`1−βn




(17)
corresponds to the problem (1).
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In (17) we got the matrix equation in the field of Mikusiński operators
with the non integer exponent of s and `. In the paper ([2]) the matrix
equation with the integer exponent of s and ` was considered and its exact
and approximate solution id determined.

In this paper we consider the numerical constants 0 < βi < 1, i =
1, 2 . . . , n as follows:

1. β1 = β2 = . . . = βn = β;

2. 0 < βi < 1, i = 1, 2 . . . , n are rational numbers of the form

β1 =
p1

r
, β2 =

p2

r
. . . . βn =

pn

r
, (18)

where p1, p2, . . . , pn, r are natural numbers.

In the first case we shall consider the exact solution of matrix equation
(17) in a form of infinite series:

ui = `

∞∑

k=0

uik`
kβ, i = 1, 2, (19)

where numerical constants uik, i = 1, 2, . . . n, k = 1, 2, . . . , are to be
determined in the following.

In order to determine the numerical coefficients uik, i = 1, 2, . . . n, k =
1, 2, . . ., from (19), the matrix equation can be written in the form of the
following system of equations:

sβ

( ∞∑

k=0

uik`
1+kβ

)
−

n∑

j=1

aij

( ∞∑

k=0

ujk`
1+kβ

)
= φi`

1−β, (20)

for i = 1, 2, . . . n, wherefrom we get:

ui0 = φi, ui1 =
n∑

j=1

aijφj , uik =
n∑

j=1

aijujk−1, i = 1, 2, . . . , n. (21)

If βi, i = 1, 2 . . . n, are different, and has the form (18), then the
solution can be considered as:

ui = `
∞∑

k=0

uik`
k
r , i = 1, 2. (22)
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The numerical coefficients uik, i = 1, 2, . . . n, k = 1, 2, . . ., can be determined
from the system:

s
pi
r

( ∞∑

k=0

uik`
1+ k

r

)
−

n∑

j=1

aij

( ∞∑

k=0

ujk`
1+ k

r

)
= φi`

1− pi
r , (23)

for i = 1, 2, . . . n, wherefrom we get:

ui0 = φi, uiji =
n∑

j=1

aijφi, i = 1, 2, . . . , n. (24)

Further on, by equating the coefficients we got the other finite number of
uik, k ∈ N, i = 1, 2, . . . n.

Let us remark that the approximate operational solution (finite number
of numerical coefficients) of the matrix equation (17) can be obtain alge-
braically, by using some programme package, because the field Mikusiński
operators has very good algebraic properties. After that it is important to
analyze the character of the obtained approximate and the exact solution.
In this case the solution of the considered system (17) given by (19) and
(22) represent continuous function and in this case we can write the exact
solution u = {ui}, i = 1, 2, . . . n, as:

ui =
∞∑

k=0

uik
tkβ

Γ(1 + kβ)
, i = 1, 2, . . . , n, (25)

for β1 = β2 = . . . = βn = β. The coefficients uik are given by (21). In this
case the approximate solution has the form:

ui =
N∑

k=0

uik
tkβ

Γ(1 + kβ)
, i = 1, 2, . . . , n. (26)

5. An application

Let us consider the system of three fractional differential equations of
the form

dβ1u1(t)
dt

= a11u1(t) + a13u3(t),

dβ2u2(t)
dt

= 2u1(t)− u2(t),

dβ3u2(t)
dt

= −u2(t) + u3(t),

(27)
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with the initial conditions:

u1(0+) = a, u2(0+) = b, u2(0+) = c. (28)

Taking β1 = 4/5, β2 = 3/5, β3 = 2/5, and a11 = 2, a13 = 1, a21 =
2 a22 = −1, a32 = −1, a33 = 1, a12 = a23 = a31 = 0, the system (27),
(28) can be written, in the field of Mikusiński operators, in the matrix form:




s4/5 − 2 0 −1
−2 s3/5 + 1 0
0 1 s2/5 − 1







u1

u2

u3


 =




as4/5−1

bs3/5−1

cs2/5−1


 , (29)

where s is a differential operator. Using the package Scientific Workplace,
we obtain the solution of previous equation in the form:

u 1 = `
(
a + a`3/5 − a`− a`7/5 − b`6/5 + c`4/5 + c`7/5

)
(1− 2`2/5 + `3/5

+3`4/5 − 6`− `6/5 + 17`7/5 − 13`8/5 − 35`9/5 + 61`2 + 35`11/5 + ...),

u 2 = `
(
b + 2a`3/5 − b`2/5 − 2a`− 2b`4/5 + 2b`6/5 + 2c`7/5

)
(1− 2`2/5

+`3/5+3`4/5−6`−`6/5 + 17`7/5 − 13`8/5 − 35`9/5 + 61`2 + 35`11/5 + ...),

u 3 = `(c− b`2/5−2a` + c`3/5+2b`6/5− 2c`4/5 − 2c`7/5)(1− 2`2/5 + `3/5

+3`4/5− 6`− `6/5 + 17`7/5 − 13`8/5 − 35`9/5 + 61`2 + 35`11/5 + ...).
(30)

Using the previous form of the solution and the approximate solution of
the matrix equation, (29) can be considered in the form:

u18
i = `

18∑

k=0

uik`
k
5 , i = 1, 2, 3, (31)

where the numerical coefficients uik, i = 1, 2, 3, k = 1, 2, . . . , are given
in (24).

We can say that the exact solution of the matrix equation (29) in the
field F has the form

ui = `
∞∑

k=0

uik`
k
5 , i = 1, 2, 3. (32)
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From (32) it follows that the exact solution solution of the problem (27),
(28) has the form

ui =
∞∑

k=0

uik
t

k
5

Γ(1 + k
5 )

, i = 1, 2, 3. (33)

The approximate solution of the problem (27), (28) has the form

ui =
18∑

k=0

uik
t

k
5

Γ(1 + k
5 )

, i = 1, 2, 3, (34)

where the coefficients uik, k = 1, 2, . . . , i = 1, 2, 3, are given in relation
(32).

Figure 1.

Let us remark that the initial conditions (28), are given as parame-
ters a, b, and c, and we used the package GeoGebra to draw the graph of
the approximate solution of the system of fractional differential equations.
Namely the parameters a, b, and c, can be continuously changed by using
three sliders, and we obtain different curves representing the approximate
solution. On Figure 1 the graphs of functions u1, u2, and u3, are drawn for
a = −1.4, b = 6.1 and c = 3, but these values can be changed by using the
sliders a, b, and c the corresponding solutions u1, u2 u3 can be obtained.
Next, we consider the system of fractional differential equations (27), with
the conditions (28), by taking

0 ≤ β1 = β2 = β3 = p < 1.
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Figure 2.

Then the approximate solution solution of the system (27), (28) has the
form

uN
i = `

N∑

k=0

uik`
kp, i = 1, 2, 3, (35)

where the numerical coefficients uik, i = 1, 2, 3, k = 1, 2, . . . , are given
by the relations (21), and in this particular case they have the form:

u10 = a, u11 = 2a + c, u12 = 4a− b + 3c) u13 = 6a− 2b + 7c,

u14 = 8a− 5b + 13c, u15 = 6a− 8b + 21c, u16 = 27c− 13b− 4a, . . .

u20 = b, u21 = 2a− b, u22 = 2a + b + 2c, u23 = 6a− 3b + 4c,

u24 = 6a− b + 10c, u25 = 10a− 9b + 16c, u26 = 10a− 9b + 16c, . . .

u30 = c, u31 = c− b, u32 = c− 2, u33 = −4a− b− c,

u34 = 2b− 10a− 5c, u35 = 2b− 10a− 5c, u36 = 12b− 26a− 31c, . . .
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