

FEKETE-SZEGÖ INEQUALITY FOR

UNIVERSALLY PRESTARLIKE FUNCTIONS

T.N. Shanmugam *, J. Lourthu Mary **

This paper is dedicated to the 70th anniversary of Professor Srivastava

Abstract

The universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = \mathcal{C} \setminus [1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathcal{C}). In this paper, we obtain the coefficient inequalities and the Fekete-Szegö inequality for such functions.

MSC 2010: 30C45

Key Words and Phrases: prestarlike functions, universally prestarlike functions, coefficients, Fekete-Szegö inequality

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω . For domain Ω containing the origin $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with f(0) = 1. We also use the notation $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathcal{C} : |z| < 1\}$, we use the abbreviation H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$.

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

T.N. Shanmugam , J. Lourthu Mary

A function $f \in H_1$ is called starlike of order α with $(0 \le \alpha < 1)$ satisfying the inequality

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \Delta) \tag{1.1}$$

and the set of all such functions is denoted by S_{α} . The convolution or Hadamard Product of two functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

A function $f \in H_1$ is called prestarlike of order α if

$$\frac{z}{(1-z)^{2-2\alpha}} * f(z) \in S_{\alpha}.$$
(1.2)

The set of all such functions is denoted by \mathcal{R}_{α} . The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin. Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathcal{C} \setminus \{0\}$ and $\rho \in [0, 1]$ such that

$$\Omega_{\gamma,\rho} = \{ w_{\gamma,\rho}(z) : z \in \Delta \}, \qquad (1.3)$$

where

$$w_{\gamma,\rho}(z) = \frac{\gamma z}{1 - \rho z}.$$

Note that $1 \notin \Omega_{\gamma,\rho}$ iff $|\gamma + \rho| \leq 1$.

DEFINITION 1.1. (see [2], [3], [4]) Let $\alpha \leq 1$, and $\Omega = \Omega_{\gamma,\rho}$ for some admissible pair (γ, ρ) . A function $f \in H_1(\Omega_{\gamma,\rho})$ is called prestarlike of order α in $\Omega_{\gamma,\rho}$ if

$$f_{\gamma,\rho}(z) = \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_{\alpha}.$$
(1.4)

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.

Let Λ be the slit domain $\mathcal{C} \setminus [1, \infty)$ (the slit being along the positive real axis).

DEFINITION 1.2. (see [2], [3], [4]) Let $\alpha \leq 1$. A function $f \in H_1(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma,\rho}$ with $|\gamma + \rho| \leq 1$. The set of all such functions is denoted by $\mathcal{R}^{\alpha}_{\alpha}$.

EXAMPLE 1.1. A function $f(z) = \frac{z}{(1-z)^{1-2\alpha}}$ is prestarlike of order $0 \leq \alpha < 1$. When $\alpha = 0$ the function is universally prestarlike of order 0. When $\alpha = \frac{1}{2}$ the function f(z) = z is the only entire function in \mathcal{R}^u_{α} .

EXAMPLE 1.2. A function $f(z) = \frac{z}{(1-z)^{\frac{1}{2}}}$ is universally prestarlike of

order $\frac{1}{2}$.

DEFINITION 1.3. (see [4]) Let $\phi(z)$ be an analytic function with positive real part on Δ , which satisfies $\phi(0) = 1$, $\phi'(0) > 0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}^{u}_{\alpha}(\phi)$ consists of all analytic function $f \in H_1(\Lambda)$ satisfying

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \prec \phi(z), \tag{1.5}$$

where \prec denotes the subordination, where $(D^{\beta}f)(z) = \frac{z}{(1-z)^{\beta}} \star f$, for $\beta \ge 0$. In particular, for $\beta = n \in \mathbb{N}$. We have $D^{n+1}f = \frac{z}{n!}(z^{n-1}f)^{(n)}$. We let $\mathcal{R}^{u}_{\alpha}(A, B)$ denote the class $\mathcal{R}^{u}_{\alpha}(\phi)$, where $\phi(z) = \frac{1+Az}{1+Bz}$ $(-1 \leq B < A \leq 1)$. For suitable choices of A,B, α the class $\mathcal{R}^{u}_{\alpha}(A, B)$ reduces to several well known classes of functions. $\mathcal{R}^{u}_{\frac{1}{2}}(1,-1)$ is the class S^{*} of starlike univalent functions.

NOTE 1.1. (see [4]) Let
$$F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz}$$
 where, $a_k =$

 $\int_0^1 t^k d\mu(t), \ \mu(t)$ is a probability measure on [0, 1]. Let T denote the set of all such functions F. They are analytic in the slit domain Λ .

NOTE 1.2. (see [3]) Let Ω be a circular domain containing the origin, $\alpha \leq 1$, and let $f \in \mathcal{R}_{\alpha}(\Omega), F \in \mathcal{R}_{\alpha}^{u}$. Then $f * F \in \mathcal{R}_{\alpha}(\Omega)$.

To prove our result we need the following theorem.

THEOREM 1.1. (see [2], [4]) Let $0 \leq \alpha \leq 1$ and $f \in H_1(\Lambda)$. Then $f \in \mathcal{R}^u_{\alpha}$ if and only if

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \in T.$$
(1.6)

This admits an explicit representation of the function in \mathcal{R}^{u}_{α} . If $f \in H_{0}$ has all its Taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f * f^{(-1)} = \frac{1}{1-z}$.

T.N. Shanmugam , J. Lourthu Mary

LEMMA 1.1. (see [1]) If $P_1(z) = 1 + c_1 z + c_2 z^2 + \ldots$ is an analytic function with positive real part in Δ , then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2, & v \le 0\\ 2, & 0 \le v \le 1\\ 4v + 2, & v \ge 1 \end{cases}$$

when v < 0, or v > 1, the equality holds if and only if $P_1(z)$ is $\frac{1+z}{1-z}$ or one of its rotations.when 0 < v < 1, then the equality holds if and only if $P_1(z)$ is $\frac{1+z^2}{1-z^2}$ or one of its rotations. If v = 0, the equality holds if and only if $P_1(z) = \left(\frac{1}{2} + \frac{\lambda}{2}\right) \frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right) \frac{1-z}{1+z}$. $0 \le \lambda \le 1$ or one of its rotations. If v = 1, the equality holds if and only if $P_1(z)$ is the reciprocal of one of the function for which the equality holds in the case of v = 0. Also the above upper bound can be improved as follows when 0 < v < 1

$$|c_2 - vc_1^2| + v|c_1|^2 \le 2$$
 $(0 < v \le \frac{1}{2}),$
 $|c_2 - vc_1^2| + (1 - v)|c_1|^2 \le 2$ $(\frac{1}{2} < v \le 1).$

2. Series representation for universally prestarlike functions

THEOREM 2.1. Let f be an universally prestarlike function of order $0 \le \alpha \le 1$, then the function f(z) has a representation of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

where

$$a_n = \left\{ \frac{\sum\limits_{k=1}^{n-1} \mathcal{C}(\alpha, k) a_k b_{n-k}}{\mathcal{C}'(\alpha, n) - \mathcal{C}(\alpha, n)} \right\}, \quad n = 2, 3, \dots$$
(2.1)

$$C(\alpha, n) = \frac{\prod_{k=2}^{n} (k - 2\alpha)}{(n-1)!}, \ C(\alpha, k) = \frac{\prod_{m=2}^{k} (m - 2\alpha)}{(k-1)!}, \ C(\alpha, 1)a_1 = 1$$

 $\mathcal{C}'(\alpha,n) = \frac{\prod_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}, \quad b_n = \int_0^1 t^n d\mu(t) \text{ and } \mu(t) \text{ is a probability}$ measure on [0,1].

P r o o f. By Theorem 1.1, $f \in \mathcal{R}^u_{\alpha}$ if and only if $\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \in T$. Hence, $\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = \int_0^1 \frac{d\mu(t)}{1-tz}$, for some probability measure $\mu(t)$ on [0, 1],

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = \sum_{n=0}^{\infty} b_n z^n, \quad \text{where} \quad b_n = \int_0^1 t^n d\mu(t).$$

Therefore,

$$D^{3-2\alpha}f = z + \sum_{n=2}^{\infty} \mathcal{C}'(\alpha, n)a_n z^n,$$

where
$$\mathcal{C}'(\alpha, n) = \frac{\prod_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}, \quad n = 2, 3, \dots$$

Now,

$$D^{2-2\alpha}f = z + \sum_{n=2}^{\infty} \mathcal{C}(\alpha, n)a_n z^n,$$

where $C(\alpha, n) = \frac{\prod_{k=2}^{n} (k - 2\alpha)}{(n-1)!}, \quad n = 2, 3, \dots$ Therefore,

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = \frac{z + \sum_{n=2}^{\infty} \mathcal{C}'(\alpha, n)a_n z^n}{z + \sum_{n=2}^{\infty} \mathcal{C}(\alpha, n)a_n z^n} = \sum_{n=0}^{\infty} b_n z^n.$$
 (2.2)

Equating the like of coefficients, we obtain for $n = 2, 3, \ldots$:

$$a_n = \frac{\sum_{k=1}^{n-1} \mathcal{C}(\alpha, k) a_k b_{n-k}}{\mathcal{C}'(\alpha, n) - \mathcal{C}(\alpha, n)},$$

with $\mathcal{C}(\alpha, 1)a_1 = 1$.

3. Main result

We now establish the Fekete Szegö inequality.

THEOREM 3.1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$ If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is a universally prestarlike function of order α , then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{B_{2} + (2 - 2\alpha)B_{1}^{2} - (3 - 2\alpha)B_{1}^{2}\mu}{3 - 2\alpha}, & \mu \leq \sigma_{1} \\ \frac{B_{1}}{3 - 2\alpha}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{-B_{2} - (2 - 2\alpha)B_{1}^{2} + (3 - 2\alpha)B_{1}^{2}\mu}{3 - 2\alpha}, & \mu \geq \sigma_{2}, \end{cases}$$

where $\sigma_1 = \frac{(B_2 - B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}, \ \sigma_2 = \frac{(B_2 + B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}.$ The result is sharp.

Proof. If $f \in \mathcal{R}^u_{\alpha}$, then there is a Schwartz function w(z), analytic in Δ with w(0) = 0 and |w(z)| < 1 in Δ such that $\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = \phi(w(z))$. Define the function $P_1(z)$ by $P_1(z) = \frac{1+w(z)}{1-w(z)} = 1 + c_1 z + c_2 z^2 + \dots$ Since w(z) is a Schwartz function, we see that $ReP_1(z) > 0$ and $P_1(0) = 1$. Define the function $P(z) = \frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = 1 + b_1 z + b_2 z^2 + \dots$ Now, $P(z) = \phi\left(\frac{P_1(z) - 1}{P_1(z) + 1}\right)$, where

$$\frac{P_1(z) - 1}{P_1(z) + 1} = \frac{c_1 z + c_2 z^2 + \dots}{2 + c_1 z + c_2 z^2 + \dots}$$
$$= \frac{1}{2} \left[c_1 z + z^2 [c_2 - \frac{c_1^2}{2}] + z^3 [c_3 - c_1 c_2 + \frac{c_1^3}{4}] + \dots \right].$$

Hence, on simplification, we get

$$P(z) = 1 + \frac{B_1 c_1 z}{2} + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2 c_1^2}{4}\right] z^2 + \dots$$

Therefore,

$$1 + b_1 z + b_2 z^2 + \ldots = 1 + \frac{B_1 c_1 z}{2} + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2 c_1^2}{4}\right] z^2 + \ldots$$

Equating the like coefficients, we get

$$b_1 = \frac{B_1 c_1}{2},\tag{3.1}$$

$$b_2 = \frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4}.$$
 (3.2)

Now, $\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} = 1 + b_1 z + b_2 z^2 + \dots$ From equation (2.2), we have

$$1 + \left[\mathcal{C}'(\alpha, 2)a_2 - \mathcal{C}(\alpha, 2)a_2\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3 - \mathcal{C}(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha, 3)a_3\right]z + \left[\mathcal{C}'(\alpha,$$

+
$$(\mathcal{C}(\alpha, 2)a_2)^2] z^2 + \ldots = 1 + b_1 z + b_2 z^2 + \ldots$$

Equating the coefficients of z and z^2 respectively and simplifying, we get $b_2 + (2 - 2\alpha)b_1^2$

$$a_2 = b_1$$
 , $a_3 = \frac{b_2 + (2 - 2\alpha)b_1}{3 - 2\alpha}$. (3.3)

Applying equations (3.1) and (3.2) in (3.3), we get

$$a_2 = \frac{B_1 c_1}{2}$$
, $a_3 = \frac{1}{3 - 2\alpha} \left[\frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4} + (2 - 2\alpha) \frac{B_1^2 c_1^2}{4} \right].$

Now,

$$a_{3} - \mu a_{2}^{2} = \frac{1}{3 - 2\alpha} \left[\frac{B_{1}}{2} \left(c_{2} - \frac{c_{1}^{2}}{2} \right) + \frac{B_{2}c_{1}^{2}}{4} + (2 - 2\alpha)\frac{B_{1}^{2}c_{1}^{2}}{4} \right] - \mu \frac{B_{1}^{2}c_{1}^{2}}{4}$$
$$= \frac{1}{3 - 2\alpha} \frac{B_{1}}{2} \left[c_{2} - c_{1}^{2} \left[\frac{1}{2} - \frac{B_{2}}{2B_{1}} - (2 - 2\alpha)\frac{B_{1}}{2} + (3 - 2\alpha)\mu\frac{B_{1}}{2} \right] \right]$$
$$= \frac{B_{1}}{2(3 - 2\alpha)} \left[c_{2} - c_{1}^{2}v \right],$$

where

$$v = \left[\frac{1}{2} - \frac{B_2}{2B_1} - (2 - 2\alpha)\frac{B_1}{2} + (3 - 2\alpha)\mu\frac{B_1}{2}\right]$$

Now by an application of Lemma 1.1, if $\mu \leq \sigma_1$,

$$|a_3 - \mu a_2^2| \le \frac{B_2 + (2 - 2\alpha)B_1^2 - (3 - 2\alpha)B_1^2\mu}{3 - 2\alpha},$$

where

$$\sigma_1 = \frac{(B_2 - B_1) + (2 - 2\alpha)B_1^2\mu}{(3 - 2\alpha)B_1^2}.$$

Now, if $\sigma_1 \leq \mu \leq \sigma_2$,

$$|a_3 - \mu a_2^2| \le \frac{B_1}{3 - 2\alpha}.$$

Now, if $\mu \geq \sigma_2$,

$$|a_3 - \mu a_2^2| \le \frac{-B_2 - (2 - 2\alpha)B_1^2 + (3 - 2\alpha)B_1^2\mu}{3 - 2\alpha},$$

where

$$\sigma_2 = \frac{(B_2 + B_1) + (2 - 2\alpha)B_1^2\mu}{(3 - 2\alpha)B_1^2}$$

If $\mu = \sigma_1$, then the equality holds in Lemma 1.1, if and only if

$$P_1(z) = \left(\frac{1}{2} + \frac{\lambda}{2}\right) \frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right) \frac{1-z}{1+z}, \ 0 \le \lambda \le 1,$$

or one of its rotations. If $\mu = \sigma_2$, then

$$\frac{1}{P_1(z)} = \frac{1}{\left(\frac{1}{2} + \frac{\lambda}{2}\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right)\frac{1-z}{1+z}}.$$

If $\sigma_1 < \mu < \sigma_2$, $P_1(z) = \frac{1 + \lambda z^2}{1 - \lambda z^2}$. To show that the bounds are sharp, we define the function $K_{\alpha}^{\phi_n}$ (n = 2, 3, ...) by

$$\frac{D^{3-2\alpha}K^{\phi_n}_{\alpha}}{D^{3-2\alpha}K^{\phi_n}_{\alpha}} = \phi(z^{n-1}),$$

$$\begin{split} K_{\alpha}^{\phi_n}(0) &= 0, \ (K_{\alpha}^{\phi_n})'(0) = 1 \text{ and function } F_{\alpha}^{\lambda} \text{ and } G_{\alpha}^{\lambda} \ (0 \leq \lambda \leq 1) \text{ by} \\ \frac{\left(D^{3-2\alpha}F_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2\alpha}F_{\alpha}^{\lambda}\right)(z)} &= \phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right), \end{split}$$

 $F_{\alpha}^{\lambda}(0) = 0, \ (F_{\alpha}^{\lambda})'(0) = 1$ and similarly,

$$\frac{\left(D^{3-2\alpha}G^{\lambda}_{\alpha}\right)(z)}{\left(D^{2-2\alpha}G^{\lambda}_{\alpha}\right)(z)} = \phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right)$$

 $G_{\alpha}^{\lambda}(0) = 0, (G_{\alpha}^{\lambda})'(0) = 1$. Clearly, the functions $K_{\alpha}^{\phi_n}, F_{\alpha}^{\lambda}, G_{\alpha}^{\lambda} \in \mathcal{R}_{\alpha}^u$. Also we write $K_{\alpha}^{\phi} := K_{\alpha}^{\phi_2}$. If $\mu < \sigma_1$ or $\mu < \sigma_2$, then the equality holds if and only if f is K_{α}^{ϕ} or one of its rotations. When $\sigma_1 < \mu < \sigma_2$, then the equality holds if and only if f is $K_{\alpha}^{\phi_3}$ or one of its rotations. If $\mu = \sigma_1$, then the equality holds if and only if f is F_{α}^{λ} or one of its rotations. If $\mu = \sigma_2$ then the equality holds if and only if f is G_{α}^{λ} or one of its rotations. Hence the result follows.

REMARK 3.1. If $\sigma_1 \leq \mu \leq \sigma_2$, then in view of Lemma 1.1, Theorem 3.1 can be improved. Let σ_3 be given by

$$\sigma_3 = \frac{B_2 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}.$$

If $\sigma_1 \leq \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \left(\frac{(3 - 2\alpha)\mu B_1^2 - [(B_2 - B_1) + (2 - 2\alpha)B_1^2]}{(3 - 2\alpha)B_1^2}\right)|a_2^2| \le \frac{B_1}{3 - 2\alpha}.$$

If $\sigma_2 \leq \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \left(\frac{-(3 - 2\alpha)\mu B_1^2 B_2 + B_1 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}\right)|a_2^2| \le \frac{B_1}{3 - 2\alpha}$$

P r o o f. For $\sigma_1 \leq \mu \leq \sigma_3$, we have

$$\begin{split} |a_{3} - \mu a_{2}^{2}| + (\mu - \sigma_{1})|a_{2}^{2}| \\ &= \frac{B_{1}}{2(3 - 2\alpha)}|c_{2} - vc_{1}^{2}| + \left(\mu - \frac{\left[(B_{2} - B_{1}) + (2 - 2\alpha)B_{1}^{2}\right]}{(3 - 2\alpha)B_{1}^{2}}\right)\frac{B_{1}^{2}|c_{1}|^{2}}{4} \\ &= \frac{B_{1}}{2(3 - 2\alpha)}\left(\frac{(3 - 2\alpha)\mu B_{1}^{2} - B_{2} - B_{1} - (2 - 2\alpha)B_{1}^{2}}{(3 - 2\alpha)B_{1}^{2}}\right)\frac{B_{1}^{2}|c_{1}|^{2}}{4} \\ &= \frac{B_{1}}{(3 - 2\alpha)}\left[\frac{1}{2}|c_{2} - vc_{1}^{2}| + \frac{1}{2}v|c_{1}|^{2}\right] \\ &= \frac{B_{1}}{(3 - 2\alpha)}\left[\frac{1}{2}\left[|c_{2} - vc_{1}^{2}| + v|c_{1}|^{2}\right]\right]. \end{split}$$

Now, by using Lemma 1.1, we get $|a_3-\mu a_2^2|+(\mu-\sigma_1)|a_2^2|\leq \frac{B_1}{(3-2\alpha)}.$ Now, for $\sigma_2\leq \mu\leq \sigma_3$, we have

$$\begin{aligned} |a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2^2| \\ &= \frac{B_1}{2(3 - 2\alpha)}|c_2 - vc_1^2| + \left(\frac{B_2 + B_1 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} - \mu\right)\frac{B_1^2|c_1|^2}{4} \\ &= \frac{B_1}{2(3 - 2\alpha)}\left(\frac{-(3 - 2\alpha)\mu B_1^2 + B_2 + B_1 + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2}\right)\frac{B_1^2|c_1|^2}{4} \\ &= \frac{B_1}{(3 - 2\alpha)}\left(\frac{1}{2}\left[|c_2 - vc_1^2| + (1 - v)|c_1|^2\right]\right).\end{aligned}$$

T.N. Shanmugam, J. Lourthu Mary

Now, by using Lemma 1.1, we get $|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2^2| \le \frac{B_1}{(3-2\alpha)}$. Hence the result follows.

References

- W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. *Proc. Conf. on Complex Analysis* (Eds: F. Li, L. Ren, L. Yang, S. Zhang), Int. Press (1994), 157-169.
- [2] S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions. Intern. Conf. Geometric Function Theory, J. Analysis 15 (2007), 247-254.
- [3] S. Ruscheweyh, L. Salinas, Universally prestarlike functions as convolution multipliers. *Mathematische Zeitschrift* (2009), 607-617.
- [4] S. Ruscheweyh, L. Salinas, T. Sugawa, Completely monotone sequences and universally prestarlike functions. *Israel J. Math.* **171** (2009), 285-304.

Department of Mathematics Anna University Chennai, Chennai – 600025, INDIA

* e-mail: shan@annauniv.edu

** e-mail: j_lourthumary@annauniv.edu

Received: GFTA, August 27-31, 2010