
FEKETE-SZEGÖ INEQUALITY FOR

UNIVERSALLY PRESTARLIKE FUNCTIONS

T.N. Shanmugam ∗, J. Lourthu Mary ∗∗

This paper is dedicated to the 70th anniversary of Professor Srivastava

Abstract

The universally prestarlike functions of order α ≤ 1 in the slit domain
Λ = C\[1,∞) have been recently introduced by S. Ruscheweyh. This notion
generalizes the corresponding one for functions in the unit disk ∆(and other
circular domains in C). In this paper, we obtain the coefficient inequalities
and the Fekete-Szegö inequality for such functions.
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1. Introduction

Let H(Ω) denote the set of all analytic functions defined in a domain
Ω. For domain Ω containing the origin H0(Ω) stands for the set of all
function f ∈ H(Ω) with f(0) = 1. We also use the notation H1(Ω) =
{zf : f ∈ H0(Ω)} . In the special case when Ω is the open unit disk ∆ =
{z ∈ C : |z| < 1} , we use the abbreviation H,H0 and H1 respectively for
H(Ω),H0(Ω) and H1(Ω).
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A function f ∈ H1 is called starlike of order α with (0 ≤ α < 1) satisfying
the inequality

<
{

zf ′(z)
f(z)

}
> α (z ∈ ∆) (1.1)

and the set of all such functions is denoted by Sα. The convolution or

Hadamard Product of two functions f(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn

is defined as

(f ∗ g)(z) =
∞∑

n=0

anbnzn.

A function f ∈ H1 is called prestarlike of order α if

z

(1− z)2−2α
∗ f(z) ∈ Sα. (1.2)

The set of all such functions is denoted by Rα. The notion of prestarlike
functions has been extended from the unit disk to other disk and half planes
containing the origin. Let Ω be one such disk or half plane.Then there are
two unique parameters γ ∈ C \ {0} and ρ ∈ [0, 1] such that

Ωγ,ρ = {wγ,ρ(z) : z ∈ ∆} , (1.3)

where

wγ,ρ(z) =
γz

1− ρz
.

Note that 1 /∈ Ωγ,ρ iff |γ + ρ| ≤ 1.

Definition 1.1. (see [2], [3], [4]) Let α ≤ 1, and Ω = Ωγ,ρ for some
admissible pair (γ, ρ). A function f ∈ H1(Ωγ,ρ) is called prestarlike of order
α in Ωγ,ρ if

fγ,ρ(z) =
1
γ

f(wγ,ρ(z)) ∈ Rα. (1.4)

The set of all such functions f is denoted by Rα(Ω).
Let Λ be the slit domain C \ [1,∞)(the slit being along the positive real

axis).

Definition 1.2. (see [2], [3], [4]) Let α ≤ 1. A function f ∈ H1(Λ) is
called universally prestarlike of order α if and only if f is prestarlike of order
α in all sets Ωγ,ρ with |γ + ρ| ≤ 1. The set of all such functions is denoted
by Ru

α.
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Example 1.1. A function f(z) =
z

(1− z)1−2α
is prestarlike of order

0 ≤ α < 1. When α = 0 the function is universally prestarlike of order
0.When α = 1

2 the function f(z) = z is the only entire function in Ru
α.

Example 1.2. A function f(z) =
z

(1− z)
1
2

is universally prestarlike of

order 1
2 .

Definition 1.3. (see [4]) Let φ(z) be an analytic function with positive
real part on ∆, which satisfies φ(0) = 1, φ′(0) > 0 and which maps the unit
disc ∆ onto a region starlike with respect to 1 and symmetric with respect
to the real axis. Then the class Ru

α(φ) consists of all analytic function
f ∈ H1(Λ) satisfying

D3−2αf

D2−2αf
≺ φ(z), (1.5)

where ≺ denotes the subordination,where (Dβf)(z) = z
(1−z)β ? f, for β ≥ 0.

In particular, for β = n ∈ N. We have Dn+1f = z
n!(z

n−1f)(n). We let

Ru
α(A,B) denote the class Ru

α(φ), where φ(z) =
1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1).

For suitable choices of A,B,α the class Ru
α(A, B) reduces to several well

known classes of functions. Ru
1
2

(1,−1) is the class S∗ of starlike univalent
functions.

Note 1.1. (see [4]) Let F (z) =
∞∑

k=0

akz
k =

∫ 1

0

dµ(t)
1− tz

where, ak =
∫ 1

0
tkdµ(t), µ(t) is a probability measure on [0, 1]. Let T denote the set of

all such functions F . They are analytic in the slit domain Λ.

Note 1.2. (see [3]) Let Ω be a circular domain containing the origin,
α ≤ 1, and let f ∈ Rα(Ω), F ∈ Ru

α. Then f ∗ F ∈ Rα(Ω).

To prove our result we need the following theorem.

Theorem 1.1. (see [2], [4]) Let 0 ≤ α ≤ 1 and f ∈ H1(Λ). Then f ∈ Ru
α

if and only if

D3−2αf

D2−2αf
∈ T. (1.6)

This admits an explicit representation of the function in Ru
α. If f ∈ H0 has

all its Taylor coefficients at the origin different from zero we write f (−1) for
the (possibly formal but) unique solution of f ∗ f (−1) = 1

1−z .
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Lemma 1.1. (see [1]) If P1(z) = 1 + c1z + c2z
2 + . . . is an analytic

function with positive real part in ∆, then

|c2 − vc2
1| ≤





−4v + 2, v ≤ 0
2, 0 ≤ v ≤ 1

4v + 2, v ≥ 1

when v < 0, or v > 1, the equality holds if and only if P1(z) is
1 + z

1− z
or

one of its rotations.when 0 < v < 1, then the equality holds if and only if

P1(z) is
1 + z2

1− z2
or one of its rotations. If v = 0, the equality holds if and

only if P1(z) =
(

1
2

+
λ

2

)
1 + z

1− z
+

(
1
2
− λ

2

)
1− z

1 + z
. 0 ≤ λ ≤ 1 or one of its

rotations. If v = 1, the equality holds if and only if P1(z) is the reciprocal
of one of the function for which the equality holds in the case of v = 0. Also
the above upper bound can be improved as follows when 0 < v < 1

|c2 − vc2
1|+ v|c1|2 ≤ 2 (0 < v ≤ 1

2
),

|c2 − vc2
1|+ (1− v)|c1|2 ≤ 2 (

1
2

< v ≤ 1).

2. Series representation for universally prestarlike functions

Theorem 2.1. Let f be an universally prestarlike function of order
0 ≤ α ≤ 1, then the function f(z) has a representation of the form

f(z) = z +
∞∑

n=2

anzn,

where

an =





n−1∑

k=1

C(α, k)akbn−k

C′(α, n)− C(α, n)





, n = 2, 3, . . . (2.1)

C(α, n) =

n∏

k=2

(k − 2α)

(n− 1)!
, C(α, k) =

k∏

m=2

(m− 2α)

(k − 1)!
, C(α, 1)a1 = 1
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C′(α, n) =

n∏

k=2

(k + 1− 2α)

(n− 1)!
, bn =

∫ 1

0
tndµ(t) and µ(t) is a probability

measure on [0, 1].

P r o o f. By Theorem 1.1, f ∈ Ru
α if and only if

D3−2αf

D2−2αf
∈ T. Hence,

D3−2αf

D2−2αf
=

∫ 1

0

dµ(t)
1− tz

, for some probability measure µ(t) on [0, 1],

D3−2αf

D2−2αf
=

∞∑

n=0

bnzn, where bn =
∫ 1

0
tndµ(t).

Therefore,

D3−2αf = z +
∞∑

n=2

C′(α, n)anzn,

where C′(α, n) =

n∏

k=2

(k + 1− 2α)

(n− 1)!
, n = 2, 3, . . .

Now,

D2−2αf = z +
∞∑

n=2

C(α, n)anzn,

where C(α, n) =

n∏

k=2

(k − 2α)

(n− 1)!
, n = 2, 3, . . .

Therefore,

D3−2αf

D2−2αf
=

z +
∞∑

n=2

C′(α, n)anzn

z +
∞∑

n=2

C(α, n)anzn

=
∞∑

n=0

bnzn. (2.2)

Equating the like of coefficients, we obtain for n = 2, 3, . . .:

an =

n−1∑

k=1

C(α, k)akbn−k

C′(α, n)− C(α, n)
,

with C(α, 1)a1 = 1.
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3. Main result

We now establish the Fekete Szegö inequality.

Theorem 3.1. Let φ(z) = 1+B1z +B2z
2 + . . . . If f(z) = z +

∞∑

n=2

anzn

is a universally prestarlike function of order α, then

|a3 − µa2
2| ≤





B2 + (2− 2α)B2
1 − (3− 2α)B2

1µ

3− 2α
, µ ≤ σ1

B1

3− 2α
, σ1 ≤ µ ≤ σ2

−B2 − (2− 2α)B2
1 + (3− 2α)B2

1µ

3− 2α
, µ ≥ σ2,

where σ1 =
(B2 −B1) + (2− 2α)B2

1

(3− 2α)B2
1

, σ2 =
(B2 + B1) + (2− 2α)B2

1

(3− 2α)B2
1

.

The result is sharp.

P r o o f. If f ∈ Ru
α, then there is a Schwartz function w(z), analytic in

∆ with w(0) = 0 and |w(z)| < 1 in ∆ such that
D3−2αf

D2−2αf
= φ(w(z)). Define

the function P1(z) by P1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z
2 + . . . . Since w(z)

is a Schwartz function, we see that ReP1(z) > 0 and P1(0) = 1. Define the

function P (z) =
D3−2αf

D2−2αf
= 1+b1z+b2z

2+. . . Now, P (z) = φ

(
P1(z)− 1
P1(z) + 1

)
,

where
P1(z)− 1
P1(z) + 1

=
c1z + c2z

2 + . . .

2 + c1z + c2z2 + . . .

=
1
2

[
c1z + z2[c2 − c2

1

2
] + z3[c3 − c1c2 +

c3
1

4
] + . . .

]
.

Hence, on simplification, we get

P (z) = 1 +
B1c1z

2
+

[
B1

2

(
c2 − c2

1

2

)
+

B2c
2
1

4

]
z2 + . . .

Therefore,

1 + b1z + b2z
2 + . . . = 1 +

B1c1z

2
+

[
B1

2

(
c2 − c2

1

2

)
+

B2c
2
1

4

]
z2 + . . .

Equating the like coefficients, we get



FEKETE-SZEGÖ INEQUALITY FOR . . . 391

b1 =
B1c1

2
, (3.1)

b2 =
B1

2

(
c2 − c2

1

2

)
+

B2c
2
1

4
. (3.2)

Now,
D3−2αf

D2−2αf
= 1 + b1z + b2z

2 + . . . From equation (2.2), we have

1 +
[C′(α, 2)a2 − C(α, 2)a2

]
z +

[
C′(α, 3)a3 − C(α, 2)C′(α, 2)a2

2 − C(α, 3)a3

+(C(α, 2)a2)2
]
z2 + . . . = 1 + b1z + b2z

2 + . . .

Equating the coefficients of z and z2 respectively and simplifying, we get

a2 = b1 , a3 =
b2 + (2− 2α)b2

1

3− 2α
. (3.3)

Applying equations (3.1) and (3.2) in (3.3), we get

a2 =
B1c1

2
, a3 =

1
3− 2α

[
B1

2

(
c2 − c2

1

2

)
+

B2c
2
1

4
+ (2− 2α)

B2
1c2

1

4

]
.

Now,

a3 − µa2
2 =

1
3− 2α

[
B1

2

(
c2 − c2

1

2

)
+

B2c
2
1

4
+ (2− 2α)

B2
1c2

1

4

]
− µ

B2
1c2

1

4

=
1

3− 2α

B1

2

[
c2 − c2

1

[
1
2
− B2

2B1
− (2− 2α)

B1

2
+ (3− 2α)µ

B1

2

]]

=
B1

2(3− 2α)

[
c2 − c2

1v
]
,

where

v =
[
1
2
− B2

2B1
− (2− 2α)

B1

2
+ (3− 2α)µ

B1

2

]
.

Now by an application of Lemma 1.1, if µ ≤ σ1,

|a3 − µa2
2| ≤

B2 + (2− 2α)B2
1 − (3− 2α)B2

1µ

3− 2α
,

where

σ1 =
(B2 −B1) + (2− 2α)B2

1µ

(3− 2α)B2
1

.
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Now, if σ1 ≤ µ ≤ σ2,

|a3 − µa2
2| ≤

B1

3− 2α
.

Now, if µ ≥ σ2,

|a3 − µa2
2| ≤

−B2 − (2− 2α)B2
1 + (3− 2α)B2

1µ

3− 2α
,

where

σ2 =
(B2 + B1) + (2− 2α)B2

1µ

(3− 2α)B2
1

.

If µ = σ1, then the equality holds in Lemma 1.1, if and only if

P1(z) =
(

1
2

+
λ

2

)
1 + z

1− z
+

(
1
2
− λ

2

)
1− z

1 + z
, 0 ≤ λ ≤ 1,

or one of its rotations. If µ = σ2, then
1

P1(z)
=

1(
1
2

+
λ

2

)
1 + z

1− z
+

(
1
2
− λ

2

)
1− z

1 + z

.

If σ1 < µ < σ2, P1(z) =
1 + λz2

1− λz2
. To show that the bounds are sharp, we

define the function Kφn
α (n = 2, 3, . . .) by

D3−2αKφn
α

D3−2αKφn
α

= φ(zn−1),

Kφn
α (0) = 0, (Kφn

α )′(0) = 1 and function F λ
α and Gλ

α (0 ≤ λ ≤ 1) by(
D3−2αF λ

α

)
(z)

(D2−2αF λ
α ) (z)

= φ

(
z(z + λ)
1 + λz

)
,

F λ
α (0) = 0, (F λ

α )′(0) = 1 and similarly,
(
D3−2αGλ

α

)
(z)

(D2−2αGλ
α) (z)

= φ

(
z(z + λ)
1 + λz

)

Gλ
α(0) = 0, (Gλ

α)′(0) = 1. Clearly, the functions Kφn
α , F λ

α , Gλ
α ∈ Ru

α. Also we
write Kφ

α := Kφ2
α . If µ < σ1 or µ < σ2, then the equality holds if and only if

f is Kφ
α or one of its rotations. When σ1 < µ < σ2, then the equality holds

if and only if f is Kφ3
α or one of its rotations. If µ = σ1, then the equality

holds if and only if f is F λ
α or one of its rotations If µ = σ2 then the equality

holds if and only if f is Gλ
α or one of its rotations. Hence the result follows.
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Remark 3.1. If σ1 ≤ µ ≤ σ2, then in view of Lemma 1.1, Theorem 3.1
can be improved. Let σ3 be given by

σ3 =
B2 + (2− 2α)B2

1

(3− 2α)B2
1

.

If σ1 ≤ µ ≤ σ3, then

|a3 − µa2
2|+

(
(3− 2α)µB2

1 − [(B2 −B1) + (2− 2α)B2
1 ]

(3− 2α)B2
1

)
|a2

2| ≤
B1

3− 2α
.

If σ2 ≤ µ ≤ σ3, then

|a3 − µa2
2|+

(
−(3− 2α)µB2

1B2 + B1 + (2− 2α)B2
1

(3− 2α)B2
1

)
|a2

2| ≤
B1

3− 2α
.

P r o o f. For σ1 ≤ µ ≤ σ3, we have

|a3 − µa2
2|+ (µ− σ1)|a2

2|

=
B1

2(3− 2α)
|c2 − vc2

1|+
(

µ− [(B2 −B1) + (2− 2α)B2
1 ]

(3− 2α)B2
1

)
B2

1 |c1|2
4

=
B1

2(3− 2α)

(
(3− 2α)µB2

1 −B2 −B1 − (2− 2α)B2
1

(3− 2α)B2
1

)
B2

1 |c1|2
4

=
B1

(3− 2α)

[
1
2
|c2 − vc2

1|+
1
2
v|c1|2

]

=
B1

(3− 2α)

[
1
2

[
|c2 − vc2

1|+ v|c1|2
]]

.

Now, by using Lemma 1.1, we get |a3−µa2
2|+(µ−σ1)|a2

2| ≤
B1

(3− 2α)
. Now,

for σ2 ≤ µ ≤ σ3 , we have

|a3 − µa2
2|+ (σ2 − µ)|a2

2|

=
B1

2(3− 2α)
|c2 − vc2

1|+
(

B2 + B1 + (2− 2α)B2
1

(3− 2α)B2
1

− µ

)
B2

1 |c1|2
4

=
B1

2(3− 2α)

(
−(3− 2α)µB2

1 + B2 + B1 + (2− 2α)B2
1

(3− 2α)B2
1

)
B2

1 |c1|2
4

=
B1

(3− 2α)

(
1
2

[
|c2 − vc2

1|+ (1− v)|c1|2
])

.
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Now, by using Lemma 1.1, we get |a3 − µa2
2|+ (σ2 − µ)|a2

2| ≤
B1

(3− 2α)
.

Hence the result follows.
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