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Abstract

In this paper we derive an analytic solution for the fractional Helmholtz
equation in terms of the Mittag-Leffler function. The solutions to the frac-
tional Poisson and the Laplace equations of the same kind are obtained,
again represented by means of the Mittag-Leffler function. In all three
cases the solutions are represented also in terms of Fox’s H-function.

MSC 2010: 26A33, 33E12, 33C60, 35R11
Key Words and Phrases: fractional Helmholtz equation, Caputo frac-

tional derivative, Weyl fractional derivative, Mittag-Leffler function, Fox’s
H-function

1. Introduction

The Helmholtz equation ∇2Ψ(x, y, z) + k2Ψ(x, y, z) = 0 is named after
Hermann Von Helmholtz (1821-1894). It represents the time-independent
form of the wave equation or diffusion equation obtained while applying the
technique of separation of variables to reduce the complexities of the solu-
tion procedure of the original equations. The two-dimensional Helmholtz
equation appears in physical phenomena and engineering applications such
as heat conduction, acoustic radiation, water wave propagation and even in
biology. It plays essential role for estimating the geodesic sea floor proper-
ties, the proper prediction of acoustic propagation in shallow water as well
as at low frequencies, for solutions provided to such problems, we refer to

c© 2010, FCAA – Diogenes Co. (Bulgaria). All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


296 M.S. Samuel, A. Thomas

Liu et al. [9]. The Helmholtz equation solves also problems in pattern for-
mation of animal coating, see Murray and Myerscough [12]; in electromag-
netics, where its two-dimensional form appears as the governing equation
for waveguide problems, etc.

Different numerical methods like the Ritz-Galerkin method (Itoh [7]),
the surface integral equation method and the finite element method have
been employed to solve this equation. In the Ritz-Galerkin method and in
the integral equation method, the application of the method of moments
to the solution of the integral equation leads to homogeneous systems of
linear equations. The matrix coefficients of these systems of equations are
given by infinite summation in the case of the Ritz-Galerkin method, while
in the surface integral method, integrals containing Hankel functions have
to be numerically computed, and this consumes large central processing
unit time. In the finite element method (we refer e.g. to Pregla [16]),
the basis functions representing the field singularities lead to matrices in
the generalized eigenvalue problem, whose coefficients have to be computed
by means of numerical integration. If we ignore these field singularities
when applying finite element method, inaccurate results may be obtained.
To reduce the memory requirements and inaccuracy, it is advantageous to
reformulate the boundary value problem for the Helmholtz equation as an
initial value problem of fractional order α, where 1 < <(α) ≤ 2.

In this paper, we introduce a model fractional Helmholtz equation in
two-dimensions, in which both the space variables x and y are allowed to
take fractional order changes. This model is suitable for the study of elec-
tromagnetic waves propagating in the upper halfspace of the cartesian plane
and is defined as

−∞Dα
xN(x, y) + 0D

α
y N(x, y) + k2N(x, y) = Φ(x, y); (1)

k > 0, x ∈ <, y ∈ <+, 1 < <(α) ≤ 2, where k is the wave number given
by k = 2π

λ , λ is the wavelength, N(x, y) is the field variable of interest,
which could be acoustic pressure, wave elevation or electromagnetic poten-
tial, among many other possibilities and Φ(x, y) is a non-linear function in
the field. Here −∞Dα

x denotes the Weyl fractional derivative of order α, and
0D

α
y is the Caputo fractional derivative of order α, which are two alternative

forms of the Riemann-Liouville fractional derivative aD
α
x of order α:

aD
α
t N(x, t) := R

a Dα
t N(x, t) =

1
Γ(m− α)

dm

dtm

∫ t

a

N(x, u)
(t− u)α−m+1

du; (2)

that are defined as follows:
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0D
α
t N(x, t) := C

0 Dα
t N(x, t) =

1
Γ(m− α)

∫ t

0

N (m)(x, u)
(t− u)α−m+1

du, (3)

−∞Dα
t N(x, t) =

1
Γ(m− α)

dm

dtm

∫ t

−∞

N(x, u)
(t− u)α−m+1

du, (4)

where t > 0, m−1 < α ≤ m, m ∈ N , and dm

dtm N(x, t) is the mth derivative
of order m of the function N(x, t) with respect to t.

The Mittag-Leffler function is a special function having an essential role
in the solutions of fractional order integral and differential equations. This
function is frequently used recently in modeling phenomena of fractional
order appearing in physics, biology, engineering and applied other sciences.
After being introduced and studied by Mittag-Leffler (1903-1905), Wiman
(1905) and Agarwal (1953), the Mittag-Leffler function, in its two forms:

Eα(z) =
∞∑

n=0

zn

Γ(nα + 1)
, α ∈ C, <(α) > 0, (5)

Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β)
, α, β ∈ C, <(α) > 0, <(β) > 0, (6)

has been studied in details by Dzherbashyan [1]. Both functions (5)-(6) are
entire functions of order ρ = 1

α and type σ = 1. Firstly in 1920, Hille and
Tamarkin [6] have presented a solution of the Abel-Volterra type integral
equation

φ(x)− λ

Γ(α)

∫ x

0

φ(t)
(x− t)1−α

dt = f(x), 0 < x < 1,

in terms of Mittag-Leffler function. We are motivated by the recent works
of Saxena-Mathai-Haubold ([18], [19], [20]) on fractional kinetic and frac-
tional diffusion equations to obtain solutions in terms of the Mittag-Leffler
function. For an extensive bibliography on these kind of studies, see e.g. in
Povstenko [14].

The objective of this paper is to represent a solution of the fractional
Helmholtz equation (1) in terms of the Mittag-Leffler function as well as
in Fox’s H-function, using the Laplace and Fourier transforms and their
inverse transforms. Mathematically, the Poisson and the Laplace equations
are two special cases of the Helmholtz equation. We apply this fact also
to the fractional case. In Section 3, we derive the solution of the fractional
Laplace equation in Mittag-Leffler function and Fox’s H-function. Section 4
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is devoted to the fractional Poisson equation. The solution of the fractional
Helmholtz equation is given in Section 5. Its proof and the convergence and
the series representation of the H-function are given in the Appendix.

2. Mathematical preliminaries

The main results on Mittag-Leffler functions (5), (6) are available in the
handbook of Erdélyi et al. [4], the monographs by Dzherbashyan ([1], [2]),
some recent books as by Kiryakova (1994), Podlubny [15], Kilbas, Srivastava
and Trujillo (2006), Mainardi (2010), among them see e.g. the book of
Mathai-Saxena-Haubold [10]. The H-function is defined by means of a
Mellin-Barnes type integral in the following manner (we refer to Mathai-
Saxena-Haubold [10]),

Hm,n
p,q (z)

[
z

∣∣∣∣
(ap,Ap)

(bq ,Bq)

]

(7)

=
1

2πi

∫

L

{∏m
j=1 Γ(bj + Bjs)

}{∏n
j=0 Γ(1− bj −Bjs)

}
{∏q

j=m+1 Γ(1− bj −Bjs)
}{∏p

j=n+1 Γ(aj + Ajs)
} z−s ds,

where: an empty product is always interpreted as unity; m, n, p, q ∈ N0

with 0 ≤ n ≤ p, 1 ≤ m ≤ q, Aj , Bj ∈ <+, ai, bj ∈ < or C, i =
1, . . . , p; j = 1, . . . , q such that Ai(bj + k) 6= Bj(ai − l − 1), k, l ∈
N0; i = 1, . . . , n; j = 1, . . . , m, and we employ the usual notations: N0 =
(0, 1, . . . , ); < = (−∞,∞), <+ = (0,∞) and C being the complex number
field. For the details about the contour L and the existence conditions
see, Mathai-Saxena-Haubold [10], Prudnikov-Brychkov-Marichev [17] and
Kilbas-Saigo [8].

The Wright’s generalized hypergeometric function (Wright ([21], [22]) is
defined by the series representation

pψq(z) =p ψq

[
z
∣∣(ap,Ap)

(bq ,Bq)

]
=

∞∑

r=0

[∏p
j=1 Γ(aj + Ajs)

]
zs

[∏q
j=1 Γ(bj + Bjs)

]
s!

,

where z ∈ C, aj , bj ∈ C, Aj , Bj ∈ <+; i = 1, ..., p; j = 1, ..., q;
∑q

j=1 bj −∑p
j=1 Aj > −1; C is the complex number field. The Mittag-Leffler function

is a special case of this function,

Eα,β(z) = 1ψ1

[
z

∣∣∣∣
(1,1)

(β,α)

]
= H1,1

1,2

[
−z

∣∣∣∣
(0,1)

(0,1)(1−β,α)

]
. (8)
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The Laplace transform of the function N(x, t) with respect to t is

L [N(x, t)] =
∫ ∞

0
e−stN(x, t)dt = Ñ(x, s), x ∈ <, <(s) > 0, (9)

and its inverse transform with respect to s is given by

L−1
[
Ñ(x, s)

]
=

1
2πi

∫ γ+i∞

γ−i∞
estÑ(x, s)ds = N(x, t), (10)

γ being a fixed real number. The Fourier transform of a function N(x, t)
with respect to x is defined as

F [N(x, t)] =
∫ ∞

−∞
eipxN(x, t)dx = N∗(p, t), x ∈ <, (11)

the inverse Fourier transform with respect to p:

F−1 [N∗(p, t)] =
1
2π

∫ ∞

−∞
e−ipxN∗(p, t) dp = N(x, t). (12)

The space of functions for the above two transforms is LF = L(<+) ×
F (<), where L(<+) is the space of summable functions on <+ with norm
||f || =

∫∞
0 |f(t)|dt < ∞ and F (<) is the space of summable functions

on < with norm ||f || = ∫∞
−∞ |f(t)|dt < ∞. From Saxena-Mathai-Haubold

[10] and Prudnikov-Brychkov-Marichev [17], the cosine transform of the H-
function is given by

∫ ∞

0
tρ−1 cos(kt)Hm,n

p,q

[
atµ

∣∣∣∣
(ap,Ap)

(bq ,Bq)

]
dt (13)

=
π

kρ
Hn+1,m

q+1,p+2

[
pµ

a

∣∣∣∣
(1−bq ,Bq)( 1+ρ

2
, µ

2
)

(ρ,µ), (1−ap,Ap),( 1+ρ
2

, µ
2
)

]
,

where <
[
ρ + µ min

1≤j≤m
(
bj

Bj
)
]

> 0, <
[
ρ + µ min

1≤j≤n
(
aj − 1

Aj
)
]

< 0, |arg a| <

1
2πθ; θ =

∑n
j=1 Aj −

∑p
j=n+1 Aj +

∑m
j=1 Bj −

∑q
j=m+1 Bj > 0.

The Laplace transform of the Caputo fractional derivative is (see e.g.
Podlubny [15])

L[0Dα
t N(x, t)] = sαN(x, s)−

n∑

r=1

sr−1
0D

α−r
t N(x, t)|t=0, n− 1 < <(α) ≤ n.

(14)
The Fourier transform of the Weyl fractional derivative, as given by Metzler-
Klafter [11] is

F [−∞Dα
t N(x, t)] = (ik)αÑ(p, t), <(α) > 0, (15)
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where Ñ(p, t) is the Fourier transform of N(x, t) with respect to the vari-
able x of N(x, t). By adopting Saxena-Mathai-Haubold [20] and also from
Gorenflo-Luchko-Umarov [5],

F [−∞Dα
t N(x, t)] = |k|αÑ(p, t), <(α) > 0. (16)

We also need the following property of H-function, well known from the
recent books on special functions (see e.g. in Mathai-Saxena-Haubold [10]):

Hm,n
p,q

[
zδ

∣∣∣∣
(ap,Ap)

(bq ,Bq)

]
=

1
δ
Hm,n

p,q


z

∣∣∣∣
(ap,

Ap
δ

)

(bq ,
Bq
δ

)


 , (17)

and the following result (see e.g. Podlubny [15])

L−1

(
sβ−1

sα + a
; t

)
= tα−βEα,α−β+1(−atα), <(s) > 0,<(α−β) > −1,

∣∣∣ a

sα

∣∣∣ < 1.

(18)

3. Fractional Laplace equation

Let us start with the fractional Laplace equation. By replacing the
integer order of the standard Laplace equation

∂2

∂x2
N(x, y) +

∂2

∂y2
N(x, y) = 0, (19)

by a fractional order α, where 1 < <(α) ≤ 2, we get the fractional Laplace
equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = 0.

In this section we derive a solution of the fractional Laplace equation
in terms of the Mittag-Leffler function and derive also its Fox’s H-function
form. The case we consider is related to a Cauchy problem.

3.1. Cauchy problem. The solution to the fractional Laplace equa-
tion

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = 0; y > 0, x ∈ <, 1 < <(α) ≤ 2, (20)

with the initial conditions 0D
α−1
y N(x, 0) = f(x), 0D

α−2
y N(x, 0) = g(x),

x ∈ <, lim
x→±∞N(x, y) = 0 is:

N(x, y) =
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−(|p|αyα)]e−ipxdp

+
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−(|p|αyα)]e−ipxdp, (21)

where ∼ indicates the Fourier transform with respect to space variable x.
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Solution. If we apply the Laplace transform with respect to the space
variable y and use (14), then (20) becomes

−∞Dα
xN∗(x, s) + sαN∗(x, s)− f(x)− sg(x) = 0, (22)

where ∗ depicts the Laplace transform with respect to the space variable
y. Now applying the Fourier transform with respect to the space variable x
and using initial conditions and (16), the above equation takes the form

Ñ∗(p, s) =
˜f(p)

sα + |p|α +
sg̃(p)

sα + |p|α .

Using (18), it is seen that

Ñ(p, y) = f̃(p)yα−1Eα,α [−(|p|αyα)] + g̃(p)yα−2Eα,α−1 [−(|p|αyα)] .

Taking the inverse Fourier transform on both sides, the solution is

N(x, y) =
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−(|p|αyα)]e−ipxdp

+
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−(|p|αyα)]e−ipxdp.

In the initial conditions of Cauchy problem 3.1, put g(x) = 0, and with the
help of the convolution theorem of the Fourier transforms, see the changes
in the solution of the above problem.

Corollary 3.1. The solution of the fractional Laplace equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = 0, y > 0, (23)

0D
α−1
y N(x, y = 0) = f(x), 0D

α−2
y N(x, y = 0) = 0,

x ∈ R, lim
x→±∞N(x, y) = 0, 1 < <(α) ≤ 2, is given by

N(x, y) =
∫ ∞

−∞
G(x− τ, y)f(τ)dτ, (24)

where

G(x, y) =
yα−1

2π

∫ ∞

−∞
e−ipxEα,α(−|p|αyα)dp

=
yα−1

πα

∫ ∞

0
cos(px)H1,1

1,2

[
|p|y

∣∣∣∣
(0, 1

α
)

(0, 1
α

),(1−α,1)

]
dp, using property (17),

=
yα−1

α|x| H
2,1
3,3

[
|x|
y

∣∣∣∣
(1, 1

α
),(α,1),(1, 1

2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
, using eq. (13), where 1 < <(α) ≤ 2.
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Again, by changing the initial conditions of the Cauchy problem 1, as f(x) =
δ(x), where δ(x) is the Dirac-delta function defined by

δ(x) =
{

1, x = 0,
0, elsewhere,

and g(x) = 0, we can express the above solution in terms of a Fox’s H-
function. We shall consider this in the following result.

Corollary 3.2. The solution to the fractional Laplace equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = 0; y > 0, x ∈ <, 1 < <(α) ≤ 2, (25)

with the initial conditions 0D
α−1
y N(x, 0) = δ(x), 0D

α−2
y N(x, 0) = 0, x ∈

R, limx→±∞N(x, y) = 0, is:

N(x, y) =
yα−1

2π

∫ ∞

−∞
e−ipxEα,α(−|p|αyα)dp,

=
yα−1

α|x| H
2,1
3,3

[
|x|
y

∣∣∣∣
(1, 1

α
),(α,1)(1, 1

2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
, 1 < <(α) ≤ 2. (26)

4. Fractional Poisson equation

To generalize Cauchy problem 3.1, we consider the Mittag-Leffler solu-
tion of the fractional Poisson equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = Φ(x, y). (27)

Namely, we consider the following
4.1. Cauchy problem. The solution to the fractional Poisson equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) = Φ(x, y); y > 0, x ∈ <, 1 < <(α) ≤ 2, (28)

where Φ(x, y) is a non-linear function, with the initial conditions

0D
α−1
y N(x, 0) = f(x), 0D

α−2
y N(x, 0) = g(x), x ∈ R, limx→±∞N(x, y) = 0,

N(x, y) =
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−(|p|αyα)]e−ipxdp,

+
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−(|p|αyα)]e−ipxdp, (29)

+
1
2π

∫ y

0
ξα−1

∫ ∞

−∞
Φ̃(k, y − ξ)Eα,α[−(|p|αξα)]e−ipxdpdξ.
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Solution. Applying the Laplace transform with respect to the space
variable y and Fourier transform with respect to the space variable x and
using the initial conditions and (14), we have

[sα + |p|α] Ñ∗(p, s) = ˜f(p)− sg̃(p) + φ̃∗(p, s).

Using the result (16),

Ñ(p, y) = f̃(p)yα−1Eα,α [−(|p|αyα)] + g̃(p)yα−2Eα,α−1 [−(|p|αyα)]

+
∫ ∞

0
φ̃(p, y − ξ)ξα−1Eα,α[−(|p|α)ξα]dξ.

Taking the inverse Fourier transform, the solution is

N(x, y) =
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−|p|αyα]e−ipxdp

+
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−|p|αyα]e−ipxdp

+
1
2π

∫ y

0
ξα−1

∫ ∞

−∞
φ̃(k, y − ξ)Eα,α[−(|p|α)ξα]e−ipxdpdξ.

Now we shall try to get an H-function solution.

Corollary 4.1. The solution of the fractional Poisson equation

−∞Dx
αN(x, y) + 0Dy

αN(x, y) = Φ(x, y), y > 0, (30)

0Dy
α−1N(x, y=0) = f(x), 0Dy

α−2N(x, y=0) = 0 for x ∈ <, lim
x→±∞N(x, y)

= 0, 1 < <(α) ≤ 2 and Φ(x, y) a non-linear function of x and y, is given by

N(x, y) =
∫ ∞

−∞
G1(x−τ, y)f(τ)dτ+

∫ y

0
(y−ξ)α−1

∫ x

0
G2(x−τ, y−ξ)Φ(τ, ξ)dτdξ,

(31)
where

G1(x, y) =
tα−1

α|x|H
2,1
3,3

[ |x|
y

∣∣(1, 1
α

),(α,1),(1, 1
2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
, 1 < <(α) ≤ 2,

Similarly,

G2(x, y) =
1

α|x|H
2,1
3,3

[ |x|
y

∣∣(1, 1
α

),(α,1),(1, 1
2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
, 1 < <(α) ≤ 2.



304 M.S. Samuel, A. Thomas

5. Fractional Helmhotz equation

In this section, we solve the fractional Helmholtz equation (1) to gen-
erate a solution in terms of the Mittag-Leffler function, using the Laplace
and Fourier transforms and their inverses.

Theorem 5.1. Consider the fractional Helmholtz equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) + k2N(x, y) = Φ(x, y); k > 0, x ∈ <, y > 0,

(32)
1 < <(α) ≤ 2, with initial conditions 0D

α−1
y N(x, 0) = f(x), 0D

α−2
y N(x, 0) =

g(x), x ∈ <,
lim

x→±∞N(x, y) = 0, where 0D
α−1
y N(x, 0) means the Riemann-Liouville frac-

tional derivative of order α− 1 with respect to y and 0D
α−2
y N(x, 0) means

the Riemann-Liouville fractional derivative of order α − 2 with respect to
y, when y = 0. The quantity k is a constant and Φ(x, y) is a nonlinear
function. Then the solution of (32) subject to the initial conditions, is:

N(x, y) =
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−(|p|α + k2)yα]e−ipxdp (33)

+
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−(|p|α + k2)yα]e−ipxdp

+
1
2π

∫ y

0
ξα−1

∫ ∞

−∞
Φ̃(k, y − ξ)Eα,α[−(|p|α + k2)ξα]e−ipxdpdξ,

where ∼ indicates the Fourier transform with respect to the space variable
x.

The proof of this theorem and the H-function solution of the fractional
Helmholtz equation are discussed in the Appendix.

6. Conclusion

The closed form solutions in terms of the Mittag-Leffler function and
Fox’s H-function are obtained for the fractional Laplace and the fractional
Poisson equations. It is seen that, the solutions in terms of the Mittag-
Leffler function as well as in the H-function to the fractional Helmholtz
equation are the master solutions to the solutions of the fractional Laplace
equation and the fractional Poisson equation.
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Appendix

A.1. The Mittag-Leffler solution
of the fractional Helmholtz equation

If we apply the Laplace transform with respect to the space variable y
and use (14), the equation (32) becomes

−∞Dα
xN∗(x, s) + sαN∗(x, s)− f(x)− sg(x) + k2N∗(x, s) = Φ∗(x, s). (34)

Now applying the Fourier transform with respect to the space variable x
and use initial conditions and (16) to obtain

Ñ∗(p, s) =
˜f(p)

sα + |p|α + k2
+

sg̃(p)
sα + |p|α + k2

+
Φ̃∗(p, s)

sα + |p|α + k2
.

Using the result (18), it is seen that

Ñ(p, y) = f̃(p)yα−1Eα,α

[−(|p|α + k2)yα
]
+g̃(p)yα−2Eα,α−1

[−(|p|α + k2)yα
]

+
∫ ∞

0
φ̃(p, y − ξ)ξα−1Eα,α[−(|p|α + k2)ξα]dξ.

Taking the inverse Fourier transform on both sides, the solution is

N(x, y) =
yα−1

2π

∫ ∞

−∞
f̃(p)Eα,α[−(|p|α + k2)yα]e−ipxdp

+
yα−2

2π

∫ ∞

−∞
g̃(p)Eα,α−1[−(|p|α + k2)yα]e−ipxdp

+
1
2π

∫ y

0
ξα−1

∫ ∞

−∞
φ̃(k, y − ξ)Eα,α[−(|p|α + k2)ξα]e−ipxdpdξ.

Hence Theorem 5.1 follows. Using the equation (8), the solution (33) of the
fractional Helmholtz equation can be given in terms of the Fox’s H-function.
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We shall consider the case as follows.

A.2. The Fox’s H-function solution
of the fractional Helmholtz equation

The solution of the fractional Helmholtz equation

−∞Dα
xN(x, y) + 0D

α
y N(x, y) + k2N(x, y) = Φ(x, y), (35)

y > 0, k > 0, x ∈ <, 1 < <(α) ≤ 2 with the initial conditions 0D
α−1
y N(x, y)

= f(x), 0D
α−2
x N(x, y) = 0, for x ∈ R, lim

x→±∞N(x.y) = 0, and Φ(x, y) is a

non-linear function, given by

N(x, y)=
∫ ∞

−∞
G1(x−τ, y)f(τ)dτ+

∫ y

0
(y−ξ)α−1

∫ x

0
G2(x−τ, y−ξ)Φ(τ, ξ)dτdξ,

(36)
where

G1(x, y) =
yα−1

2π

∫ ∞

−∞
e−ipx[H1,1

1,2

[
(|p|α + k2)yα

∣∣∣∣
0,1

(0,1),(1−α,α)

]
dp, (37)

G2(x, y) =
1
2π

∫ ∞

−∞
e−ipxH1,1

1,2

[
(|p|α + k2)yα

∣∣∣∣
(0,1)

(0,1),(1−α,α)

]
dp. (38)

Convergence and the series representation of the solution (26)

By Mathai-Saxena-Haubold [10], the H2,1
3,3

[
|x|
y

∣∣∣∣
(1, 1

α
),(α,1),(1, 1

2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
converges

for 0 < | |x|y | < 1. Again, by Mathai-Saxena-Haubold [10], the series expan-
sion of the H-function is given as follows: We have:

H2,1
3,3

[
|x|
y

∣∣∣∣
(1, 1

α
),(α,1),(1, 1

2
)

(1,1),(1, 1
α

),(1, 1
2
)

]
=

1
2πi

∫

L

Γ(1 + s)Γ(1 + s
α)Γ(−s

α )
Γ(−s

2 )Γ(α + s)Γ(1 + s
2)

[ |x|
y

]−s

ds.

(39)
Let us assume that the poles of the integrand are simple. The region of
convergence is L = Liγ∞ is a contour starting at the point γ − i∞ and
terminating at the point γ + i∞, where γ ∈ < = (−∞,+∞) such that
all the poles of Γ(bj + Bjs), j = 1, · · · ,m are separated from those of
Γ(1 − aj − Ajs), j = 1, · · · , n. By calculating the residues at the poles of
Γ(1+s) and Γ(1+ s

α) where the poles are given by 1+s = −ν, ν = 0, 1, 2, · · ·
and 1+ s

α = −ν, ν = 0, 1, 2, · · · we will get the series representation of (26).
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N(x, y) = yα−1

α

∞∑

ν=0

(−1)νΓ(1− 1+ν
α )Γ(1+ν

α )
(ν)!Γ(1+ν

2 )Γ(α− 1− ν)Γ(1− 1+ν
2 )

[ |x|
y

]ν

+ |x|α−1

y

∞∑

ν=0

(−1)νΓ(1− α(1 + ν))Γ((1 + ν))
(ν)!Γ((1 + ν)α

2 )Γ(α− α(1 + ν))Γ(1− (1 + ν)α
2 )

[ |x|
y

]αν

,

where <(1− 1+ν
α ) > 0, 0 <

[∣∣∣∣ |x|y
∣∣∣∣
]

< 1.
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