

BOCHNER-HECKE THEOREMS FOR THE WEINSTEIN TRANSFORM AND APPLICATION

Chirine Chettaoui 1 and Khalifa Trimèche 2

Abstract

In this paper we prove Bochner-Hecke theorems for the Weinstein transform and we give an application to homogeneous distributions.

MSC 2010: 42B10, 44A15

Key Words and Phrases: Weinstein transform, Bochner-Hecke theorems, homogeneous distributions

1. Introduction

We consider the Weinstein operator
$$\Delta_{d,\alpha}$$
 defined on $\mathbb{R}^{d-1} \times]0, +\infty[$ by
$$\Delta_{d,\alpha} = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2} + \frac{2\alpha+1}{x_d} \frac{\partial}{\partial x_d} , \quad \alpha \in \mathbb{R}, \ \alpha > -\frac{1}{2}.$$

Then

$$\Delta_{d,\alpha} = \Delta_{d-1} + \ell_{\alpha},$$

where Δ_{d-1} is the Laplacian operator in \mathbb{R}^{d-1} and ℓ_{α} the Bessel operator with respect to the variable x_d defined by

$$\ell_\alpha = \frac{d^2}{dx_d^2} + \frac{2\alpha + 1}{x_d} \frac{d}{dx_d} , \quad \alpha > -\frac{1}{2} .$$

The Weinstein operator $\Delta_{d,\alpha}$ has several applications in Pure and Applied Mathematics, especially in Fluid Mechanics, [3].

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

In this paper we consider the spherical harmonics associated with the Weinstein operator, and the Weinstein transform studied in [1], [2], [8], [9], [10].

The principles of constructing of multidimensional Fourier transforms associated with integral transforms, of the type considered in the paper are also well discussed in [4].

With the help of the Weinstein transform, the mean value property of the W-harmonic functions and the translation operator associated with the Weinstein operator, we prove a Hecke formula, a Funk-Hecke formula and Bochner-Hecke theorems for the Weinstein transform.

The analogues of these formulas and theorems have been proved in [6], [7], [12] for the classical Fourier transform on \mathbb{R}^d and the Dunkl transform on \mathbb{R}^d .

As application of the Bochner-Heck theorems for the Weinstein transform, we determine the Weinstein transform of some homogeneous distributions on \mathbb{R}^d . An analogous application has been studied in the cases of the classical Fourier transform on \mathbb{R}^d and the Dunkl transform on \mathbb{R}^d (see [6], [10], [12]).

The contents of the paper is as follows:

- In Section 2 we give the main results concerning the Weinstein transform. - In Section 3 we study the translation operator associated with the Weinstein operator. - In Section 4 we define the mean value property of W-harmonic functions. - Section 5 is devoted to the Hecke formula associated with the Weinstein operator. - In Section 6 we give a proof of the Funk-Hecke formula for the Weinstein transform. - In Section 7 we give the Bochner-Hecke theorems for the Weinstein transform. - As an application of the results of the preceding sections, in Section 8 we determine the Weinstein transform of some homogeneous distributions on $\mathbb{R}^{d-1} \times]0, +\infty[$.

2. The eigenfunction of the operator $\Delta_{d,\alpha}$ and the Weinstein transform

2.1. The eigenfunction of the operator $\Delta_{d,\alpha}$

For all $\lambda = (\lambda_1, ..., \lambda_d) \in \mathbb{C}^d$, the system

$$\begin{cases} \frac{\partial^2 u(x)}{\partial x_i^2} &= -\lambda_i^2 u(x), \quad i = 1, ..., d - 1, \\ \ell_{\alpha} u(x) &= -\lambda_d^2 u(x) \\ u(0) &= 1, \frac{\partial u}{\partial x_d}(0) = 0, \frac{\partial u}{\partial x_j}(0) = -i\lambda_j, \quad j = 1, ..., d - 1, \end{cases}$$

has a unique solution on \mathbb{R}^d , denoted by Ψ_{λ} , and given by

$$\Psi_{\lambda}(x) = e^{-i\langle x', \lambda' \rangle} j_{\alpha}(x_d \lambda_d). \tag{2.1}$$

Here $x' = (x_1, ..., x_{d-1}), \lambda' = (\lambda_1, ..., \lambda_{d-1})$ and j_{α} is the normalized Bessel function of index α defined by

$$\forall z \in \mathbb{C}, \quad j_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n! \Gamma(n + \alpha + 1)}, \tag{2.2}$$

satisfying the Laplace type integral representation

$$\forall z \in \mathbb{C}, \quad j_{\alpha}(z) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_{0}^{\pi} e^{iz\cos\theta} (\sin\theta)^{2\alpha} d\theta.$$
 (2.3)

REMARK 2.1. From the relation (2.3) we deduce by change of variables that the function $j_{\alpha}(t\mu)$ admits for $\alpha > -\frac{1}{2}$, the Laplace type integral representation

$$j_{\alpha}(t\mu) = \frac{2\Gamma(\alpha+1)t^{-2\alpha}}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_{0}^{t} (t^{2} - y^{2})^{\alpha-\frac{1}{2}} \cos(\mu y) dy,$$

 $\forall \ \mu \in \mathbb{C}, \forall \ t \in [0, +\infty[.$

By using [13], p. 165, and the preceding relation, we deduce that the function $j_{\alpha}(t\mu)$ possesses for $\alpha \in]-\frac{1}{2},-\frac{3}{2}[$ the following type Laplace representation

$$j_{\alpha}(t\mu) = \frac{2\Gamma(\alpha+2)t^{-2(\alpha+1)}}{\sqrt{\pi}\Gamma(\alpha+\frac{3}{2})} \int_{0}^{t} (t^{2}-y^{2})^{\alpha+\frac{1}{2}} \left[1 - \frac{\mu^{2}(t^{2}-y^{2})}{2(\alpha+1)(2\alpha+3)}\right] \cos(ty) dy,$$

 $\forall \mu \in \mathbb{C}, \ \forall t \in [0, +\infty[$. As the kernel of this representation contains the parameter μ , then we cannot built a harmonic analysis associated with the Bessel operator ℓ_{α} for $\alpha \in]-\frac{1}{2}, -\frac{3}{2}[$, as for the case $\alpha > -\frac{1}{2}$. For this reason, we suppose in this paper the requirement $\alpha > -\frac{1}{2}$ (see [11]).

The function Ψ_{λ} has a unique extension to $\mathbb{C}^d \times \mathbb{C}^d$. It has the following properties:

i)
$$\forall \lambda, z \in \mathbb{C}^d$$
, $\Psi_{\lambda}(z) = \Psi_z(\lambda)$, (2.4)

ii)
$$\forall \lambda, z \in \mathbb{C}^d$$
, $\Psi_{\lambda}(-z) = \Psi_{-\lambda}(z)$, (2.5)

iii)
$$\forall \lambda, x \in \mathbb{R}^d$$
, $|\Psi_{\lambda}(x)| \le 1$. (2.6)

2.2. The Weinstein transform

NOTATIONS: We denote by

- $C_*(\mathbb{R}^d)$ the space of continuous functions on \mathbb{R}^d , even with respect to the last variable, resp. $C_{*,c}(\mathbb{R}^d)$ denotes the subspace formed by functions with compact support.
- $\mathcal{D}_*(\mathbb{R}^d)$ the space of C^{∞} functions on \mathbb{R}^d , even with respect to the last variable and with compact support.
- $S_*(\mathbb{R}^d)$ the space of C^{∞} -functions on \mathbb{R}^d , even with respect to the last variable, and rapidly decreasing together with their derivatives.

The topology of $S_*(\mathbb{R}^d)$ is defined by the seminorms $P_{\ell,m}, (\ell, m) \in \mathbb{N}^2$, given by

$$P_{\ell,m}(\varphi) = \sup_{\substack{|\mu| \le m \\ x \in \mathbb{R}^d}} (1 + ||x||^2)^{\ell} |D^{\mu}\varphi(x)|,$$

where
$$D^{\mu} = \frac{\partial^{|\mu|}}{\partial x_1^{\mu_1} ... \partial x_d^{\mu_d}}, \mu = (\mu_1, ..., \mu_d), |\mu| = \mu_1 + ... + \mu_d.$$

- $L^p_{\alpha}(\mathbb{R}^{d-1} \times [0, +\infty[), 1 \le p \le +\infty$, the space of measurable functions f on $\mathbb{R}^{d-1} \times [0, +\infty[$ such that

$$||f||_{\alpha,p} = \left(\int_{\mathbb{R}^{d-1} \times [0,+\infty[} |f(x)|^p d\mu_{\alpha}(x)\right)^{1/p} < +\infty \quad \text{if } p \in [1,+\infty[,$$

$$||f||_{\alpha,\infty} = \operatorname{ess\,sup}_{x \in \mathbb{R}^{d-1} \times [0,+\infty[} |f(x)| < \infty, \quad \text{ if } p = +\infty,$$

where μ_{α} is the measure defined by

$$d\mu_{\alpha}(x) = x_d^{2\alpha+1} dx = x_d^{2\alpha+1} dx_1 ... dx_d.$$

- $\mathcal{E}_*(\mathbb{R})$ the space of C^{∞} -functions on \mathbb{R}^d , even with respect to the last variable.

DEFINITION 2.1. The Weinstein transform \mathcal{F}_W is defined on $L^1_{\alpha}(\mathbb{R}^{d-1}\times [0,+\infty[)$ by

$$\forall \lambda \in \mathbb{R}^d, \quad \mathcal{F}_W(f)(\lambda) = \int_{\mathbb{R}^{d-1} \times [0, +\infty[} f(x) \Psi_{\lambda}(x) d\mu_{\alpha}(x). \tag{2.7}$$

Proposition 2.2.

i) For all $f \in L^1_{\alpha}(\mathbb{R}^{d-1} \times [0, +\infty[), \text{ the function } \mathcal{F}_W(f) \text{ is continuous on } \mathbb{R}^d \text{ and we have}$

$$\|\mathcal{F}_W(f)\|_{\alpha,\infty} \le \|f\|_{\alpha,1}.\tag{2.8}$$

ii) For all $f \in S_*(\mathbb{R}^d)$ and $n \in \mathbb{N}$, we have

$$\forall \lambda \in \mathbb{R}^d, \quad \mathcal{F}_W(\Delta_{d,\alpha}^n f)(\lambda) = P_n(\lambda) \mathcal{F}_W(f)(\lambda). \tag{2.9}$$

and

$$\forall \lambda \in \mathbb{R}^d, \quad \Delta_{d,\alpha}^n(\mathcal{F}_W(f))(\lambda) = \mathcal{F}_W(P_n f)(\lambda),$$
 (2.10)

where
$$P_n(\lambda) = (-1)^n ||\lambda||^{2n} = (-1)^n (\lambda_1^2 + \dots + \lambda_d^2)^n$$
.

THEOREM 2.1. The Weinstein transform is a topological isomorphism from $S_*(\mathbb{R}^d)$ onto itself. The inverse transform is given by

$$\forall x \in \mathbb{R}^d, \quad \mathcal{F}_W^{-1}(f)(x) = C_\alpha \mathcal{F}_W(f)(-x_1, ..., -x_{d-1}, x_d), \tag{2.11}$$

where

$$C_{\alpha} = \frac{1}{(2\pi)^{d-1} 2^{2\alpha} (\Gamma(\alpha+1))^2}$$
 (2.12)

THEOREM 2.2.

i) Plancherel formula: For all $f \in S_*(\mathbb{R}^d)$ we have

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} |f(x)|^2 d\mu_{\alpha}(x) = \int_{\mathbb{R}^{d-1}\times[0,+\infty[} |\mathcal{F}_W(f)(\lambda)|^2 d\nu_{\alpha}(\lambda),$$
(2.13)

where $d\nu_{\alpha}(\lambda) = C_{\alpha}d\mu_{\alpha}(\lambda)$, with C_{α} the constant given by (2.12).

ii) Plancherel theorem: The Weinstein transform \mathcal{F}_W extends uniquely to an isomorphism isometric from $L^2_{\alpha}[\mathbb{R}^{d-1}\times[0,+\infty[)$ onto $L^2_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[)$ onto $L^2_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[)$

3. The translation operator associated with the Weinstein operator

DEFINITION 3.2. The translation operator $T_x, x \in \mathbb{R}^{d-1} \times [0, +\infty[$, associated with the operator $\Delta_{d,\alpha}$ is defined for a continuous function f on \mathbb{R}^d which is even with respect to the last variable and for all $y = (y', y_d) \in \mathbb{R}^{d-1} \times [0, +\infty[$ by

$$T_x f(y) = \frac{\Gamma(\alpha + 1)}{\sqrt{\pi} \Gamma(\alpha + \frac{1}{2})} \int_0^{\pi} f(x' + y', \sqrt{x_d^2 + y_d^2 + 2x_d y_d \cos \theta}) (\sin \theta)^{2\alpha} d\theta.$$

$$(3.1)$$

PROPOSITION 3.1. The translation operator $T_x, x \in \mathbb{R}^{d-1} \times [0, +\infty[$, satisfies the following properties:

i) For all continuous function f on \mathbb{R}^d which is even with respect to the last variable and $x, y \in \mathbb{R}^{d-1} \times [0, +\infty[$, we have

$$T_x f(y) = T_y f(x)$$
, $T_0 f = f$.

- ii) For all f in $\mathcal{E}_*(\mathbb{R}^d)$ and $y \in \mathbb{R}^{d-1} \times [0, +\infty[$, the function $x \to T_x f(y)$ belongs to $\mathcal{E}_*(\mathbb{R}^d)$.
- iii) For all $x \in \mathbb{R}^{d-1} \times [0, +\infty[$, we have

$$\Delta_{d,\alpha} \circ T_x = T_x \circ \Delta_{d,\alpha}. \tag{3.2}$$

PROPOSITION 3.2. The space $S_*(\mathbb{R})$ is invariant under the operators $T_x, x \in \mathbb{R}^{d-1} \times [0, +\infty[$.

PROPOSITION 3.3. For all f in $\mathcal{E}_*(\mathbb{R}^d)$ and $g \in S_*(\mathbb{R}^d)$ we have

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} T_x f(y)g(y)d\mu_{\alpha}(y) = \int_{\mathbb{R}^{d-1}\times[0,+\infty[} f(y)T_x g(y)d\mu_{\alpha}(y).$$
 (3.3)

PROPOSITION 3.4. For all f in $L^p_\alpha(\mathbb{R}^{d-1}\times[0,+\infty[),p\in[1,+\infty])$, and $x\in\mathbb{R}^{d-1}\times[0,+\infty[$ we have

$$||T_x f||_{p,\alpha} \le ||f||_{p,\alpha}$$
 (3.4)

4. Mean value property of the W-harmonic functions

DEFINITION 4.1. Let u be a function of class C^2 on $\mathbb{R}^{d-1} \times [0, +\infty[$, even with respect to the last variable. We say that the function u is W-harmonic, if

$$\forall x \in \mathbb{R}^{d-1} \times [0, +\infty[, \quad \Delta_{d,\alpha} u(x) = 0.$$

DEFINITION 4.2. The mean value associated with the Weinstein operator $\Delta_{d,\alpha}$ of a function u in $C_*(\mathbb{R}^d)$ is defined by

$$\mathcal{M}_{x,r}^{\alpha}(u) = \frac{1}{\Omega_{d,\alpha}} \int_{S_{+}^{d-1}} T_{x} u(rw) w_{d}^{2\alpha+1} d\sigma_{d}(w), \tag{4.1}$$

where

$$\Omega_{d,\alpha} = \int_{S_+^{d-1}} w_d^{2\alpha+1} d\sigma_d(w) = \frac{\pi^{\frac{d-1}{2}} \Gamma(\alpha+1)}{\Gamma(\frac{d+2\alpha+1}{2})}$$

and $S_{+}^{d-1} = \{(x_1, ..., x_{d-1}, x_d) \in \mathbb{R}^d, x_1^2 + ... + x_{d-1}^2 + x_d^2 = 1, x_d \ge 0\}$ and $d\sigma_d$ is the normalized surface measure on S_{+}^{d-1} .

DEFINITION 4.3. Let u be a function in $C_*(\mathbb{R}^d)$. We say that u satisfies the mean value property associated with the Weinstein operator $\Delta_{d,\alpha}$ if for all r > 0 and $x \in \mathbb{R}^{d-1} \times [0, +\infty[$. We have

$$u(x) = \mathcal{M}_{x,r}^{\alpha}(u).$$

THEOREM 4.1. Let u be a W-harmonic function on $\mathbb{R}^{d-1} \times [0, +\infty[$. Then u satisfies the mean value property associated with the Weinstein operator $\Delta_{d,\alpha}$ (see [2], p.40).

5. Hecke formula for the Weinstein transform

NOTATIONS: We denote by

- \mathcal{P}_n^d the space of homogeneous polynomials of degree n.
- H_n^{α} the space of W-harmonic homogeneous polynomials of degree n. It is defined by

$$H_n^{\alpha} = (ker\Delta_{d,\alpha}) \cap \mathcal{P}_n^d$$
.

THEOREM 5.1. Let H be in H_n^{α} . Then we have the following relation

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} e^{-\frac{\|y\|^2}{2}} H(y) \Psi_y(x) y_d^{2\alpha+1} dy = c_{\alpha,n} e^{-\frac{\|x\|^2}{2}} H(x), \tag{5.1}$$

where

$$c_{\alpha,n} = 2^{\frac{d-1}{2} + \alpha} \pi^{\frac{d-1}{2}} i^n \Gamma(\alpha + 1).$$
 (5.2)

To prove this theorem we need the following lemma.

LEMMA 5.1. Let H be in H_n^{α} , and f be a radial function in $S_*(\mathbb{R}^d)$. Then we have

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} T_x f(y) H(y) y_d^{2\alpha+1} dy = H(x) \int_{\mathbb{R}^{d-1}\times[0,+\infty[} f(y) y_d^{2\alpha+1} dy.$$
 (5.3)

P r o o f. Since H is in H_n^{α} , then from Theorem 4.1 we have

$$H(x) = \mathcal{M}_{x,r}^{\alpha}(H) = \frac{1}{\Omega_{d,\alpha}} \int_{S_{d}^{d-1}} T_{x} H(r\omega) w_{d}^{2\alpha+1} d\sigma_{d}(\omega).$$
 (5.4)

Let F be the function on $[0, +\infty]$ given by f(x) = F(||x||). From the relation (3.3) and using the spherical coordinates we obtain

$$\int_{\mathbb{R}^{d-1} \times [0,+\infty[} T_x f(y) H(y) y_d^{2\alpha+1} dy$$

$$= \int_0^{+\infty} \int_{S_+^{d-1}} F(r) T_x H(ru) (ru_d)^{2\alpha+1} r^{d-1} dr d\sigma_d(u).$$

Using (5.4) and Fubini's theorem, we obtain

$$\int_{\mathbb{R}^{d-1} \times [0,+\infty[} T_x f(y) H(y) y_d^{2\alpha+1} dy = H(x) \int_{\mathbb{R}^{d-1} \times [0,+\infty[} f(y) y_d^{2\alpha+1} dy.$$

Proof of Theorem 5.1.

We take $f(x) = e^{-\frac{\|x\|^2}{2}}$ with $\|x\|^2 = \sum_{i=1}^{d} x_i^2$. From relation (5.3) and the

fact that

$$\int_{\mathbb{R}^{d-1} \times [0,+\infty[} e^{-\frac{\|y\|^2}{2}} y_d^{2\alpha+1} dy = 2^{\alpha} (2\pi)^{\frac{d-1}{2}} \Gamma(\alpha+1),$$

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} T_x(e^{-\frac{\|\xi\|^2}{2}})(y)H(y)y_d^{2\alpha+1}dy = H(x)(2\pi)^{\frac{d-1}{2}}2^{\alpha}\Gamma(\alpha+1).$$

The relations (2.3), (3.1) give
$$T_x(e^{(-\frac{\|\xi\|^2}{2})})(y) = e^{-\frac{\|x\|^2 + \|y\|^2}{2}} \psi_{iy}(x),$$

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} e^{-\frac{\|x\|^2+\|y\|^2}{2}} H(y)\psi_{iy}(x) y_d^{2\alpha+1} dy = 2^{\frac{d-1}{2}+\alpha} \pi^{\frac{d-1}{2}} \Gamma(\alpha+1) H(x).$$

By changing in this relation x by ix, and using the fact that

$$\forall x, y \in \mathbb{R}^d, \ \psi_{iy}(ix) = \psi_y(x),$$

we obtain

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} e^{-\frac{\|y\|^2}{2}} H(y)\psi_y(x)y_d^{2\alpha+1} dy = c_{\alpha,n}e^{-\frac{\|x\|^2}{2}} H(x)$$
 (5.5)

with $c_{\alpha,n}$ given by (5.2).

Remark. By a change of variables in (5.5), we obtain

$$\int_{\mathbb{R}^{d-1}\times[0,+\infty[} e^{-\lambda\frac{\|y\|^2}{2}} H(y) j_{\alpha}(x_d y_d) e^{-i\langle x',y'\rangle} y_d^{2\alpha+1} dy$$

$$= c_{\alpha,n} \lambda^{-(n+\alpha+\frac{d}{2}+\frac{1}{2})} e^{-\frac{\|x\|^2}{2\lambda}} H(x). \tag{5.6}$$

6. Funk-Hecke formula for the Weinstein transform

In this subsection we give a proof of a Funk-Hecke formula for the Weinstein transform.

THEOREM 6.1. Let H be in H_n^{α} . Then for all $y \in \mathbb{R}^{d-1} \times [0, +\infty[$, we have

$$\int_{S_{+}^{d-1}} H(u)\Psi_{y}(iu)u_{d}^{2\alpha+1}d\sigma_{d}(u) = a_{\alpha,n} j_{n+\alpha+\frac{d}{2}-\frac{1}{2}}(\|y\|)H(y),$$
 (6.1)

where

$$a_{\alpha,n} = \frac{c_{\alpha,n} 2^{-n-\alpha - \frac{d}{2} + \frac{1}{2}}}{\Gamma(n + \alpha + \frac{d}{2} + \frac{1}{2})},$$
(6.2)

and $j_{n+\alpha+\frac{d}{2}-\frac{1}{2}}$ is the normalized Bessel function of first kind and order $n+\alpha+\frac{d}{2}-1$.

P r o o f. Using the relation (5.6) and spherical coordinates y = ru with $r \in]0, +\infty[$ and $u \in S^{d-1}_+$, and by making the change of variables $r = \sqrt{2s}$,

we obtain
$$I = \int_{\mathbb{R}^{d-1} \times [0, +\infty[} e^{-\frac{\lambda}{2} ||y||^2} H(y) e^{-i\langle x', y' \rangle} j_{\alpha}(x_d y_d) y_d^{2\alpha + 1} dy$$

$$= \int_0^{+\infty} \int_{S_+^{d-1}} e^{-\lambda s} (2s)^{\frac{n+2\alpha + d-1}{2}} H(u) e^{-i\langle \sqrt{2s}x', u' \rangle} j_{\alpha}(\sqrt{2s} x_d u_d) u_d^{2\alpha + 1} d\sigma_d(u) ds.$$
(6.3)

From Fubini's Theorem,

$$I = c_{\alpha,n} \lambda^{-(n+\alpha+\frac{d+1}{2})} e^{-\|x\|^2/2\lambda} H(x).$$

But from formula of [13], p. 394, we have $\lambda^{-(n+\alpha+\frac{d+1}{2})}e^{-\frac{\|x\|^2}{2\lambda}}$

$$\lambda^{-(n+\alpha+\frac{d+1}{2})}e^{-\frac{\|x\|^2}{2\lambda}}$$

$$= \frac{1}{\Gamma(n+\alpha+\frac{d+1}{2})} \int_0^{+\infty} e^{-\lambda s} j_{n+\alpha+\frac{d-1}{2}}(\sqrt{2s}||x||) s^{n+\alpha+\frac{d-1}{2}} ds.$$

By using this relation in (6.3), we obtain

$$\int_{0}^{+\infty} e^{-\lambda s} s^{-\frac{n}{2}} \left[\int_{S_{+}^{d-1}} H(u) e^{-i\langle\sqrt{2s}x',u'\rangle} j_{\alpha}(\sqrt{2s}x_{d}u_{d}) u_{d}^{2\alpha+1} d\sigma_{d}(u) \right] s^{n+\alpha+\frac{d-1}{2}} ds$$

$$= \frac{c_{\alpha,n} 2^{\frac{n+2\alpha+d-1}{2}} H(x)}{\Gamma(n+\alpha+\frac{d+1}{2})} \int_{0}^{+\infty} e^{-\lambda s} j_{n+\alpha+\frac{d-1}{2}}(\sqrt{2s}||x||) s^{n+\alpha+\frac{d-1}{2}} ds.$$

The injectivity of the Laplace transform implies

$$\forall s > 0, \quad \int_{S_{+}^{d-1}} H(u)e^{-i\langle\sqrt{2s}x',u'\rangle} j_{\alpha}(\sqrt{2s}x_{d}u_{d}) u_{d}^{2\alpha+1} d\sigma_{d}(u)$$
$$= c_{\alpha,n} \frac{S^{\frac{n}{2}} 2^{-\frac{n}{2} - \alpha - \frac{d-1}{2}}}{\Gamma(n + \alpha + \frac{d+1}{2})} j_{n+\alpha + \frac{d-1}{2}}(\sqrt{2s}||x||) H(x).$$

For $s = \frac{1}{2}$ we obtain

$$\int_{S_{+}^{d-1}} H(u)e^{-i\langle x', u'\rangle} j_{\alpha}(x_{d}u_{d}) u_{d}^{2\alpha+1} d\sigma_{d}(u) = a_{\alpha,n}H(x)j_{n+\alpha+\frac{d-1}{2}}(\|x\|),$$

where

$$a_{\alpha,n} = \frac{2^{-n-\alpha-\frac{d}{2}+\frac{1}{2}}}{\Gamma(n+\alpha+\frac{d+1}{2})}c_{\alpha,n}.$$

7. Bochner-Hecke theorems for the Weinstein transform

In this section we give for the Weinstein transform the analogue of the classical Bochner-Hecke theorem, studied in [6], p. 66-70 and [7], p. 30-31.

THEOREM 7.1. Let H be in H_n^{α} and f a measurable function on $[0, +\infty[$ such that

$$\int_0^{+\infty} |f(x)|^{2n+2\alpha+d} < +\infty. \tag{7.1}$$

Then the function F(x) = f(||x||)H(x) belongs to $L^1_{\alpha}(\mathbb{R}^{d-1} \times [0, +\infty[)$ and its Weinstein transform is given by

$$\forall y \in \mathbb{R}^d, \quad \mathcal{F}_W(F)(\lambda) = c_{\alpha,n}H(\lambda)\mathcal{F}_B^{n+\alpha+\frac{d}{2}-1}(f)(\|\lambda\|), \tag{7.2}$$

where \mathcal{F}_{B}^{γ} is the Fourier-Bessel transform of order $\gamma, \gamma > -\frac{1}{2}$, given by

$$\mathcal{F}_{B}^{\gamma}(h)(\lambda) = \frac{1}{2^{\gamma}\Gamma(\gamma+1)} \int_{0}^{+\infty} h(r)j_{\gamma}(\lambda r)r^{2\gamma+1}dr.$$

Proof. The spherical coordinates and Fubini-Tonelli's Theorem imply that the function F belongs to $L^1_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[),$

$$\forall \lambda \in \mathbb{R}^d, \mathcal{F}_W(F)(\lambda) = \int_{\mathbb{R}^{d-1} \times [0, +\infty[} f(\|x\|) H(x) e^{-i\langle x', \lambda' \rangle} j_{\alpha}(x_d \lambda_d) x_d^{2\alpha+1} dx.$$

By using spherical coordinates, Fubini's Theorem and Theorem 6.1, we obtain

$$\forall \lambda \in \mathbb{R}^d, \ \mathcal{F}_W(F)(\lambda) = a_{\alpha,n}H(\lambda) \int_0^{+\infty} j_{n+\alpha+\frac{d}{2}-\frac{1}{2}}(r||\lambda||)f(r)r^{2n+2\alpha+d}dr$$
$$= c_{\alpha,n}H(\lambda)\mathcal{F}_B^{n+\alpha+\frac{d}{2}-\frac{1}{2}}(f)(||\lambda||),$$

where $c_{\alpha,n}$ and $a_{\alpha,n}$ are the constants given by (5.2) and (6.2).

To state and prove the second generalized Bochner-Hecke theorem, we need the following notations and lemmas.

NOTATIONS: Let for $n \in \mathbb{N}$ and $H \in H_n^{\alpha}$ we denote by

- $L^p_{(n,\alpha)}([0,+\infty[),p=1,2,$ the space of measurable function f on $[0,+\infty[$ such that

$$||f||_{(n,\alpha),p} = \left(\int_0^{+\infty} |f(r)|^p r^{2n+2\alpha+d} dr\right)^{1/p} < +\infty.$$

- $L^2_{(\alpha,H)}(\mathbb{R}^d) = \{f(\|x\|)H(x) \in L^2_{\alpha}(\mathbb{R}^{d-1} \times [0,+\infty[) \text{ with } f \text{ defined a.e. in } [0,+\infty[\}.$

LEMMA 7.1. The operator τ_H from $L^2_{(n,\alpha)}([0,+\infty[)$ into $L^2_{(\alpha,H)}(\mathbb{R}^d)$ defined by

$$\tau_H(f)(x) = f(||x||)H(x),$$

satisfies

$$\|\tau_H(f)\|_{\alpha,2} = k\|f\|_{(n,\alpha),2},$$

with

$$k = \left[\int_{S_{\perp}^{d-1}} |H(u)|^2 d\sigma_d(u) \right]^{1/2}.$$

P r o o f. Using the spherical coordinates and Fubini's theorem, we obtain

$$\|\tau_H(f)\|_{\alpha,2}^2 = \int_{\mathbb{R}^{d-1} \times [0,+\infty[} |\tau_H f(x)|^2 d\mu_{\alpha}(x)$$
$$= \left(\int_{S_{\perp}^{d-1}} |H(u)|^2 u_d^{2\alpha+1} d\sigma_d(u)\right) \left(\int_0^{+\infty} f(r) r^{2n+2\alpha+d} dr\right) = k^2 \|f\|_{(n,\alpha),2}^2.$$

LEMMA 7.2. The set of linear combination of the functions $r \to e^{-\lambda \frac{r^2}{2}}$, $\lambda > 0$, is dense in $L^2_{(n,\alpha)}([0,+\infty[).$

P r o o f. We have to prove that each function φ in $L^2_{(n,\alpha)}([0,+\infty[)$ that satisfies

$$\int_{0}^{+\infty} \varphi(r)e^{-\mu r^{2}}r^{2n+2\alpha+d}dr = 0, \text{ for all } \mu > 0,$$
 (7.3)

is the function equal to zero.

We consider the function

$$\psi(x) = \begin{cases} 0, & \text{if } x \le 0\\ \varphi(\sqrt{x})x^{n+\alpha+\frac{d}{2}-\frac{1}{2}}e^{-\frac{x}{2}}, & \text{if } x > 0 \end{cases}$$

By using the substitution $x = r^2$ and the Schwartz inequality, we obtain

$$\int_0^{+\infty} |\psi(x)| dx = \int_0^{+\infty} |\varphi(\sqrt{x})| x^{n+\alpha+\frac{d}{2}-\frac{1}{2}} e^{-\frac{x}{2}} dx$$
$$= 2 \int_0^{+\infty} |\varphi(r)| r^{2n+2\alpha+d-1} e^{-\frac{r^2}{2}} r dr$$

$$\leq 2\Big(\int_0^{+\infty}|\varphi(r)|^2r^{2n+2\alpha+d}dr\Big)\Big(\int_0^{+\infty}e^{-r^2}r^{2n+2\alpha+d}dr\Big)<+\infty.$$

As supp ψ is contained in $[0, +\infty[$, then the function ψ is integrable on \mathbb{R} with respect to the Lebesgue measure.

On the other hand, for all
$$s > 0$$
, the substitution $x = r^2$ implies
$$\int_0^{+\infty} \psi(x) e^{-sx} dx = 2 \int_0^{+\infty} \varphi(r) r^{2n+2\alpha+d} e^{-r^2(\frac{1}{2}+s)} dr.$$

From this relation and (7.1) we deduce that
$$\int_0^{+\infty} \psi(x)e^{-sx}dx = 0.$$

The injectivity of the Laplace transform implies that $\psi = 0$ and then $\varphi = 0$.

THEOREM 7.2. Let f be in $L^2_{(n,n)}([0,+\infty[)$. Then:

i) The function F(x) = f(||x||)H(x) belongs to $L^2_{(\alpha,H)}(\mathbb{R}^d)$, and its Weinstein transform is of the form

$$\mathcal{F}_W(F)(y) = g(\|y\|)H(y), \quad y \in \mathbb{R}^d , \qquad (7.4)$$

with g in $L^2_{(n,\alpha)}([0,+\infty[).$

ii) If moreover, f belongs to $L^1_{(n,\alpha)}([0,+\infty[), \text{ then we have}$ $\forall r \geq 0, \quad g(r) = c_{\alpha,n} \mathcal{F}_B^{n+\alpha+\frac{d}{2}-\frac{1}{2}}(f)(r), \tag{7.5}$

with $c_{\alpha,n}$ the constant given in (5.2).

Proof.

i) From Lemma 7.1 it is clear that the function F(x) = f(||x||)H(x) belongs to $L^2_{(\alpha,H)}([0,+\infty[).$

Also from this lemma, up to a constant of normalization, the application $\mathcal{F}_W \circ \tau_H$ is an isometry from $L^2_{(n,\alpha)}([0,+\infty[)$ into $L^2_{\alpha}(\mathbb{R}^{d-1} \times [0,+\infty[))$. From relation (5.1) this isometry applies to all functions of the type $e^{-\lambda \frac{\|x\|^2}{2}}, \lambda > 0$, in the space $L^2_{(\alpha,H)}(\mathbb{R}^d)$. Then by using Lemma 7.2, we deduce that the space $L^2_{(\alpha,H)}(\mathbb{R}^d)$ is invariant under the Weinstein transform. Thus

$$\mathcal{F}_W(F)(y) = g(||y||)H(y), \quad y \in \mathbb{R}^d,$$

with g in $L^2_{(n,\alpha)}([0,+\infty[).$

ii) Moreover, if f belongs to $L^1_{(n,\alpha)}([0,+\infty[),$ then we have

$$\int_{0}^{+\infty} |f(r)| r^{n+2\alpha+d} dr = \int_{0}^{1} (|f(r)| r^{n}) r^{2\alpha+d} dr + \int_{1}^{+\infty} |f(r)| r^{n+2\alpha+d} dr.$$

By applying the Schwartz inequality to the first integral and by replacing r^n by r^{2n} in the second integral, we obtain

$$\begin{split} & \int_0^{+\infty} |f(r)| r^{n+2\alpha+d} dr \leq \Big(\int_0^1 |f(r)r^n|^2 r^{2\alpha+d} dr \Big)^{1/2} \Big(\int_0^1 r^{2\alpha+d} dr \Big)^{1/2} \\ & + \int_1^{+\infty} |f(r)| r^{2n+2\alpha+d} dr \leq \frac{1}{2\alpha+d+1} \|f\|_{(n,\alpha),2} + \|f\|_{(n,\alpha),1} < +\infty. \end{split}$$

Thus the function f satisfies the condition (7.1), Theorem 7.1, implies (7.4). We obtain (7.5) from (7.4) and (7.2).

8. Application

In this section we use the results of the preceding section to obtain the Weinstein transform of some homogeneous distributions on \mathbb{R}^d .

8.1. The Weinstein transform of distributions

NOTATIONS: We denote by

- $D'_*(\mathbb{R}^d)$ the space of distributions on \mathbb{R}^d which are even with respect to the last variable. It is the topological dual of $\mathcal{D}_*(\mathbb{R}^d)$.
- $S'_*(\mathbb{R}^d)$ the space of tempered distributions on \mathbb{R}^d which are even with respect to the last variable. It is the topological dual of $S_*(\mathbb{R}^d)$.

DEFINITION 8.1. The Weinstein transform of a distribution S in $S'_*(\mathbb{R}^d)$ is defined by

$$\langle \mathcal{F}_W(S), \varphi \rangle = \langle S, \mathcal{F}_W(\varphi) \rangle, \quad \varphi \in S_*(\mathbb{R}^d).$$
 (8.1)

THEOREM 8.1. The Weinstein transform is a topological isomorphism from $S'_*(\mathbb{R}^d)$ onto itself. The inverse transform is given by

$$\langle \mathcal{F}_W^{-1}(S), \varphi \rangle = \langle S, \mathcal{F}_W^{-1}(\varphi) \rangle , \quad \varphi \in S_*(\mathbb{R}).$$

8.2. The Weinstein transform of homogeneous distributions

Let $\beta \in \mathbb{R}$. A function f defined on \mathbb{R}^d is homogeneous of degree β , if for all $\lambda > 0$, we have

$$f(\lambda x) = \lambda^{\beta} f(x). \tag{8.2}$$

Let f be a locally integrable function on \mathbb{R}^d with respect to the Lebesgue measure, and homogeneous of degree β . We consider the distribution $T_{fx_d^{2\alpha+1}}$ of $D'_*(\mathbb{R}^d)$ given by the function $fx_d^{2\alpha+1}$.

For all φ in $D_*(\mathbb{R}^d)$ and $\lambda > 0$ we have

$$\langle T_{fx_d^{2\alpha+1}}, \varphi_{\lambda} \rangle = \lambda^{-(d+2\alpha+\beta+1)} \langle T_{fx_d^{2\alpha+1}}, \varphi \rangle, \tag{8.3}$$

where $\varphi_{\lambda}(x) = \varphi(\lambda x)$ for all $x \in \mathbb{R}^d$. Since

$$\langle T_{fx_d^{2\alpha+1}}, \varphi_{\lambda} \rangle = \int_{\mathbb{R}^{d-1} \times [0, +\infty[} f(x) \varphi_{\lambda}(x) d\mu_{\alpha}(x)$$
$$= \int_{\mathbb{R}^{d-1} \times [0, +\infty[} f(x) \varphi(\lambda x) x_d^{2\alpha+1} dx_1 ... dx_d,$$

then by the substitution $u = \lambda x$ we obtain

$$\begin{split} \langle T_{f_{x_d}^{2\alpha+1}}, \varphi_{\lambda} \rangle &= \lambda^{-(d+2\alpha+\beta+1)} \int_{\mathbb{R}^{d-1} \times [0, +\infty[} f(u) \varphi(u) u_d^{2\alpha+1} du_1 ... du_d \\ &= \lambda^{-(d+2\alpha+\beta+1)} \langle T_{fx_d^{2\alpha+1}}, \varphi \rangle. \end{split}$$

The relation (8.2) implies that in the Weinstein theory's, we say that a distribution S in $D'_*(\mathbb{R}^d)$ is homogeneous of degree β , if for all φ in $D_*(\mathbb{R}^d)$ and $\lambda > 0$, we have

$$\langle S, \varphi_{\lambda} \rangle = \lambda^{-(d+2\alpha+\beta+1)} \langle S, \varphi \rangle.$$
 (8.4)

REMARK. All homogeneous distributions in $D'_*(\mathbb{R}^d)$ belong to $S'_*(\mathbb{R}^d)$ (see [5], p. 154).

PROPOSITION 8.1. Let S be in $D'_*(\mathbb{R}^d)$, homogeneous of degree β . Then its Weinstein transform is homogeneous of degree $-(d+2\alpha+\beta+1)$.

Proof. By the substitution $t = \lambda x$, we obtain, for all $y \in \mathbb{R}^d$:

$$\mathcal{F}_{W}(\varphi_{\lambda})(y) = \int_{\mathbb{R}^{d-1} \times [0,+\infty[} \varphi(t)e^{-i\langle \frac{t'}{\lambda}, y' \rangle} j_{\alpha}(\frac{t_{d}y_{d}}{\lambda}) \lambda^{-d-2\alpha-1} t_{d}^{2\alpha+1} dt$$
$$= \lambda^{-d-2\alpha-1} \mathcal{F}_{W}(\varphi)(\frac{y}{\lambda}).$$

From this relation and (8.4), we obtain

$$\langle \mathcal{F}_W(S), \varphi_{\lambda} \rangle = \langle S, \mathcal{F}_W(\varphi_{\lambda}) \rangle = \lambda^{-d-2\alpha-1} \langle S_y, \mathcal{F}_W(\varphi)(\frac{y}{\lambda}) \rangle.$$

Thus,

$$\langle \mathcal{F}_W(S), \varphi_{\lambda} \rangle = \lambda^{\beta} \langle S, \mathcal{F}_W(\varphi) \rangle.$$

This completes the proof.

PROPOSITION 8.2. Let H be in H_n^{α} and $s \in \mathbb{C}$. Then the function $G_s(x) = \frac{H(x)}{\|x\|^s}$ is homogeneous of degree n-s.

PROPOSITION 8.2. The Weinstein transform of the function G_S with $n < Res < n + 2\alpha + d + 1$ is given by

$$\mathcal{F}_W(G_s)(y) = M_{\alpha,n,s} \frac{H(y)}{\|y\|^{2n+2\alpha+1+d-s}}, \quad y \in \mathbb{R}^d,$$

where

$$M_{\alpha,n,s} = \frac{c_{\alpha,n}}{\Gamma(s/2)} 2^{n+\alpha+\frac{d}{2}-s+\frac{1}{2}} \Gamma(n+\alpha+\frac{d}{2}-s+\frac{1}{2}), \tag{8.5}$$

and $c_{\alpha,n}$ is given by (5.2).

Proof. We suppose first that

$$n + \alpha + \frac{1}{2} + \frac{d}{2} < Res < n + 2\alpha + 1 + d.$$

We write G_s in the form

$$G_s(x) = G_s(x)\mathbf{1}_{B(0,1)}(x) + G_s(x)\mathbf{1}_{B^c(0,1)}(x),$$

where B(0,1) is the closed unit ball of \mathbb{R}^d and $B^c(0,1)$ its complementary domain, and $\mathbf{1}_{B(0,1)}, \mathbf{1}_{B^c(0,1)}$ are their characteristic functions.

It is clear that $G_s(x)\mathbf{1}_{B(0,1)}(x)$ is in $L^1_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[))$ and $G_s(x)\mathbf{1}_{B^c(0,1)}$ is in $L^2_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[))$.

By applying to these functions Theorems 7.1 and 7.2, we deduce that

$$\mathcal{F}_W(G_s)(y) = \mathcal{F}_W\left(\frac{H(x)}{\|x\|^s}\right)(y) = g(\|y\|)H(y), \quad y \in \mathbb{R}^d, \tag{8.6}$$

with a function g defined (a.e) on $[0, +\infty[$. As from Propositions 8.1, 8.2, the function $\mathcal{F}_W(G_s)$ is homogeneous of degree $-d - 2\alpha - n + s - 1$, then the function g is homogeneous of degree $-d - 2\alpha - 1 - 2n + s$. Thus it is necessarily of the form

$$g(||y||) = \frac{M_{n,\alpha,s}}{||y||^{2n+2\alpha+d+1-s}},$$
(8.7)

where $M_{n,\alpha,s}$ is a constant. On the other hand, from (8.6), (8.7), for all φ in $S_*(\mathbb{R}^d)$ we have

$$\langle G_S, \mathcal{F}_W(\varphi) \rangle = \langle \mathcal{F}_W(G_s), \varphi \rangle$$

$$= \int_{\mathbb{R}^{d-1} \times [0, +\infty[} \frac{H(x)}{\|x\|^s} \mathcal{F}_W(\varphi)(x) d\mu_{\alpha}(x)$$

$$= \int_{\mathbb{R}^{d-1} \times [0, +\infty[} \frac{M_{n,\alpha,s}}{\|x\|^{2n+2\alpha+d-s}} H(x) \varphi(x) d\mu_{\alpha}(x).$$
(8.8)

To obtain the value of $M_{n,\alpha,s}$ we consider the function $\varphi(x) = e^{-\frac{\|x\|^2}{2}}H(x)$. Then from (5.1) the relation (8.8) takes the form

$$c_{\alpha,n} \int_{\mathbb{R}^{d-1} \times [0,+\infty[} \frac{H(x)}{\|x\|^s} e^{-\frac{\|x\|^2}{2}} H(x) d\mu_{\alpha}(x)$$

$$= M_{n,\alpha,s} \int_{\mathbb{R}^{d-1} \times [0,+\infty[} \frac{H^2(x) e^{-\frac{\|x\|^2}{2}}}{\|x\|^{2n+2\alpha+d+1-s}} d\mu_{\alpha}(x).$$

By using spherical coordinates and Fubini's theorem, we deduce that

$$c_{\alpha,n} \int_0^{+\infty} e^{-\frac{r^2}{2}} r^{2n+2\alpha+d-s} dr = M_{n,\alpha,s} \int_0^{+\infty} e^{-\frac{r^2}{2}} r^{s-1} dr.$$

The definition of the function gamma implies the relation (8.5).

We have proved the relation (8.8) in the case $n + \alpha + \frac{1}{2} + \frac{d}{2} < Res < n + 2\alpha + 1 + d$. But the two members of this relation are analytic functions of the complex variable s in the strip $n < Res < n + 2\alpha + 1 + d$.

The identity (8.8) is then true in this strip.

This completes the proof of the theorem.

We consider now the function

$$G(x) = \frac{H(x)}{\|x\|^{n+2\alpha+1+d}},$$
(8.9)

where H is in H_n^{α} , with $n \geq 1$.

Lemma 8.1. We denote also by G, the distribution defined by the relation

$$\langle G, \varphi \rangle = vp \int_{\mathbb{R}^d} G(x) \varphi(x) d\mu_{\alpha}(x)$$

$$= \lim_{\varepsilon \to 0} \int_{\|x\| > \varepsilon > 0} G(x) \varphi(x) d\mu_{\alpha}(x), \quad \varphi \in S_*(\mathbb{R}^d).$$
(8.10)

Then this distribution belongs to $S'_*(\mathbb{R}^d)$.

Proof. We have

$$\int_{\mathbb{R}^d} G(x)\varphi(x)d\mu_{\alpha}(x) = \int_{B(0,1)} G(x)\varphi(x)d\mu_{\alpha}(x) + \int_{B^c(0,1)} G(x)\varphi(x)d\mu_{\alpha}(x),$$
(8.11)

where B(0,1) is the unit closed ball of \mathbb{R}^d and $B^c(0,1)$ its complementary domain. As the function $G(x)\mathbf{1}_{B^c(0,1)}(x)$ with $\mathbf{1}_{B^c(0,1)}$ the characteristic function of $B^c(0,1)$, belongs to $L^2_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[)$, then we deduce that there exist $\ell\in\mathbb{N}\setminus\{0\}$ and a positive constant c_1 such that

$$\left| \int_{B^c(0,1)} G(x)\varphi(x)d\mu_{\alpha}(x) \right| \le c_1 P_{\ell,0}(\varphi). \tag{8.12}$$

On the other hand, as the degree of H is greater than one, then by using spherical coordinates and Fubini's theorem and the orthogonality of the polynomials H, we obtain

$$\int_{\varepsilon \le ||x|| \le 1} G(x) d\mu_{\alpha}(x) = \int_{\varepsilon}^{1} \frac{1}{r} \left(\int_{S_{+}^{d-1}} H(u) d\sigma_{d}(u) \right) dr = 0.$$

Thus

$$\int_{\varepsilon \le ||x|| \le 1} G(x)\varphi(x)d\mu_{\alpha}(x) = \int_{\varepsilon \le ||x|| \le 1} G(x)[\varphi(x) - \varphi(0)]d\mu_{\alpha}(x).$$

From Taylor's formula we deduce that

$$|\varphi(x) - \varphi(0)| \le ||x|| \sup_{x \in \mathbb{R}^d} |\frac{\partial}{\partial x_1} \varphi(x) + \dots + \frac{\partial}{\partial x_d} \varphi(x)|.$$
 (8.13)

As the function $||x||G(x)\mathbf{1}_{B(0,1)}(x)$ belongs to $L^1_{\alpha}(\mathbb{R}^{d-1}\times[0,+\infty[),$ then

$$\int_{\varepsilon \le ||x|| \le 1} |G(x)| |\varphi(x) - \varphi(0)| d\mu_{\alpha}(x) \le c_2 \sup_{x \in \mathbb{R}^d} |\frac{\partial}{\partial x_1} \varphi(x) + \ldots + \frac{\partial}{\partial x_d} \varphi(x)|,$$

with

$$c_2 = \int_{B(0,1)} ||x|| G(x) d\mu_{\alpha}(x).$$

Using (8.10), (8.11), (8.12), (8.13), we deduce that there exists a positive constant C such that

$$|\langle G, \varphi \rangle| \le CP_{\ell,1}(\varphi).$$

Thus the distribution G belongs to $S'_*(\mathbb{R}^d)$.

THEOREM 8.3. The Weinstein transform of the distribution G given by (8.10) is the distribution T_F in $S'_*(\mathbb{R}^d)$ given by the function F, with

$$F(y) = M_{n,\alpha}^0 \frac{H(y)}{\|y\|^n}, \quad y \in \mathbb{R}^d,$$
 (8.14)

where

$$M_{n,\alpha}^{0} = C_{\alpha} 2^{-\alpha - \frac{1}{2} - \frac{d}{2}} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n+2\alpha+1+d}{2})},$$
(8.15)

where C_{α} is the constant given by (2.12).

P r o o f. We shall see that to obtain (8.14) it suffices to take $s = n + 2\alpha + 1 + d$ in Theorem 8.2.

In the proof of Theorem 8.2 we have shown that for $n < Res < n + 2\alpha + 1 + d$, we have

$$\forall \varphi \in S(\mathbb{R}^d) , M_{n,\alpha,s} \int_{\mathbb{R}^d} \frac{H(y)\varphi(y)}{\|y\|^{2n+2\alpha+1+d-s}} d\mu_{\alpha}(y) = \int_{\mathbb{R}^d} \frac{H(y)}{\|y\|^s} \mathcal{F}_W(\varphi)(y) d\mu_{\alpha}(y).$$
(8.16)

It is clear that in the left hand side, when s tends to $n+2\alpha+1+d,$ we obtain $M_{n,\alpha}^0\int_{\mathbb{R}^d}\frac{H(y)}{\|y\|^n}d\mu_\alpha(y)$ with $M_{n,\alpha}^0$ given by (8.15). On the other hand, by using the fact that $\int_{S_+^{d-1}} H(u) d\sigma_d(u) = 0$, and by considering the function $\psi = \mathcal{F}_W(\varphi)$ in the right handside of (8.16), we obtain

$$\lim_{s \to n+2\alpha+1+\alpha} \int_{\mathbb{R}^d} \frac{H(y)}{\|y\|^s} \mathcal{F}_W(\varphi)(y) d\mu_{\alpha}(y)$$

$$= \lim_{s \to n+2\alpha+1+d} \left[\int_{B(0,1)} \frac{H(y)}{\|y\|^s} [\psi(y) - \psi(0)] d\mu_{\alpha}(y) + \int_{B_{(0,1)}^c} \frac{H(y)}{\|y\|} \psi(y) d\mu_{\alpha}(u) \right]$$

$$= \int_{B(0,1)} G(y) [\psi(y) - \psi(0)] d\mu_{\alpha}(y) + \int_{B^c(0,1)} G(y) \psi(y) d\mu_{\alpha}(y)$$

$$= vp \int_{\mathbb{R}^d} G(y) \psi(y) d\mu_{\alpha}(y) = \langle G, \psi \rangle.$$

Thus we obtain (8.14).

References

- 1. I.A. Aliev and B. Rubin, Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions. *Analysis and Applications* 1 (2003), 81-109.
- 2. Z. Ben Nahia and N. Ben Salem, On a mean value property associated with the Weinstein operator. *Potential Theory-ICPT 94*. Proc. International Conference on Potential Theory held in Kouty, Czech Republic, August 12-13, 1994.
- 3. M. Brelot, Equation de Weinstein et potentiels de Marcel Riesz. Semin. Theor. Potent. Paris No 3, Lect. Notes Math. 681 (1978), 18-38.
- 4. Yu.A. Brychkov, H.J. Glaeske, Yu.P. Prudnikov and Vu Kim Tuan, *Multidimensional Integral Transformations*. Gordon and Breach, Philadelphia, 1992.
- 5. W.F. Donoghue, *Distributions and Fourier Transforms*. Academic Press, 1969.
- 6. P. Eymard, Analyse de Fourier Euclidienne. Ecole d'été "Analyse Harmonique" Cimpa, Université de Nancy I, 1980.

- 7. J. Faraut, K. Harzallah, *Deux cours d'Analyse Harmonique*. Ecole d'été d'Analyse Harmonique de Tunis de 1984, Birkhäuser, 1987.
- 8. I.A. Kiprijanov, Singular Elliptic Boundary Problems. Nauka-Fizmatlit. Moscow, 1997 (In Russian).
- 9. Y. Othmani and K. Trimèche, Real Paly-Wiener theorems associated with the Weinstein operator. *Mediterr. J. Math.* **3** (2006), 105-118.
- 10. B. Rubin, Note on Radon transforms in integral geometry. Fract. Calc. Appl. Anal. 6, No 1, (2003), 25-72.
- 11. K. Trimèche, Generalized Harmonic Analysis and Wavelet Packets. Gordon and Breach Sciences Publishers, 2001.
- K. Trimèche, Generalized Bochner-Hecke theorems and application to homogeneous distributions in Dunkl's theory. *Comm. in Math. Anal.* 3, No 2 (2007), 54-68.
- 13. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed. Cambridge Univ. Press, London New York, 1966.
- 14. Y. Xu, Funk-Hecke formula for orthogonal polynomials on spheres and on balls. *Bull. London Math. Soc.* **32** (2000), 447-457.

1,2 Department of Mathematics
Faculty of Sciences of Tunis – Campus
1060 – Tunis, TUNISIA Received: March 14, 2010

e-mail: \(^1\) Chirine. Chettatoui@insat.rnu.tn

e-mail: 2 khlifa.trimeche@fst.rnu.tn (Corresponding author)