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Abstract

We study mixed Riemann-Liouville integrals of functions of two vari-
ables in Hölder spaces of different orders in each variables. We consider
Hölder spaces defined both by first order differences in each variable and
also by the mixed second order difference, the main interest being in the
evaluation of the latter for the mixed fractional integral in both the cases
where the density of the integral belongs to the Hölder class defined by usual
or mixed differences. The obtained results extend the well known theorem
of Hardy-Littlewood for one-dimensional fractional integrals to the case of
mixed Hölderness. We cover also the weighted case with power weights.
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1. Introduction

The mapping properties of the one-dimensional fractional Riemann-
Liouville operator

Iα
a+f(x) =

1
Γ(α)

x∫

a

f(t) dt

(x− t)1−α
, x > a, (1.1)
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are well studied both in weighted Hölder spaces or in generalized Hölder
spaces. A non-weighted statement on action of the fractional integral op-
erator from Hβ

0 into Hβ+α
0 is due to Hardy and Littlewood ([1], see [11],

Theorems 3.1 and 3.2), and it is known that the operator Iα
a+ with 0 <

α < 1 establishes an isomorphism between the Hölder spaces Hλ
0 ([a, b]) and

Hλ+α
0 ([a, b]) of functions vanishing at the point x = a, if λ + α < 1. The

weighted results with power weights were obtained in [9], [10], see their pre-
sentation in [11], Theorems 3.3, 3.4 and 13.13). For weighted generalized
Hölder spaces Hω

0 (ρ) of functions ϕ with a given dominant of continuity
modulus of ρϕ, mapping properties in the case of power weight were stud-
ied in [8], [7], [12], see also their presentation in [11], Section 13.6. Different
proofs were suggested in [3], [4], where the case of complex fractional orders
was also considered, the shortest proof being given in [3].

The case of weights more general than power ones, including in partic-
ular power-logarithmic type weights, in the spaces Hω

0 (ρ) was considered
in [13], where operators more general than just fractional integrals were
treated. We refer also to paper [2] where the mapping properties of frac-
tional integration operators were reconsidered in terms of the Matuszewska-
Orlich indices of the characteristic ω defining the generalized Hölder space
Hω. Finally, we mention also the papers [5], [6], where fractional integrals
were studied in spaces of Nikolsky type.

In the multidimensional case, statements on mapping properties in gen-
eralized Hölder spaces are known ([14]) for the Riesz fractional integrals

∫

Rn

ϕ(y) dy

|x− y|n−α
, x ∈ Rn

see [11], Theorem 25.5. Mixed Riemann-Liouville fractional integrals of
order (α, β):

(
Iα, β
0+,0+ϕ

)
(x, y) =

1
Γ(α)Γ(β)

x∫

0

y∫

0

ϕ(t, τ)dtdτ

(x− t)1−α(y − τ)1−β
, x > 0, y > 0,

(1.2)
were not studied either in the usual Hölder spaces, or in the Hölder spaces
defined by mixed differences. Meanwhile, there arise ”points of interest”
related to the investigation of the above mixed differences of fractional inte-
grals (1.2). For operators (1.2) in Hölder spaces of mixed order there arise
some questions to be answered in relation to the usage of these or those
differences in the definition of Hölder spaces. Such mapping properties in
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Hölder spaces of mixed order were not studied. This paper is aimed to fill
in this gap. We deal with both non-weighted and weighted spaces.

We consider the operator (1.2) in the rectangle

Q = {(x, y) : 0 < x < b, 0 < y < d}.

2. Preliminaries

2.1. Notation and a technical lemma

For a continuous function ϕ(x, y) on R2 we introduce the notation
(
∆1,0

h ϕ
)

(x, y) = ϕ(x+h, y)−ϕ(x, y),
(
∆0,1

η ϕ
)
(x, y) = ϕ(x, y+η)−ϕ(x, y),

(
∆1,1

h,ηϕ
)

(x, y) = ϕ(x + h, y + η)− ϕ(x + h, y)− ϕ(x, y + η) + ϕ(x, y),

so that

ϕ(x + h, y + η) =
(
∆1,1

h,ηϕ
)

(x, y) +
(
∆1,0

h ϕ
)

(x, y) +
(
∆0,1

η ϕ
)
(x, y) + ϕ(x, y).

(2.1)
Everywhere in the sequel by C,C1, C2 etc we denote positive constants

which may different values in different occurrences, and even in the same
line.

We introduce two types of mixed Hölder spaces by the following defini-
tions.

Definition 2.1. I. Let λ, γ ∈ (0, 1]. We say that ϕ ∈ Hλ,γ(Q), if

|ϕ(x1, y1)− ϕ(x2, y2)| ≤ C1 |x1 − x2|λ + C2 |y1 − y2|γ (2.2)

for all (x1, y1), (x2, y2) ∈ Q. Condition (2.2) is equivalent to the couple of
the separate conditions

∣∣∣
(
∆1,0

h ϕ
)

(x, y)
∣∣∣ ≤ C1|h|λ,

∣∣(∆0,1
η ϕ

)
(x, y)

∣∣ ≤ C2|η|γ (2.3)

uniform with respect to another variable. By Hλ,γ
0 (Q) we define a subspace

of functions f ∈ Hλ,γ(Q), vanishing at the boundaries x = 0 and y = 0 of
Q.

II. Let λ = 0 and\or µ = 0. We put H0,0(Q) = L∞(Q) and

Hλ,0(Q) = {ϕ ∈ L∞(Q) :
∣∣∣
(
∆1,0

h ϕ
)

(x, y)
∣∣∣ ≤ C1|h|λ}, λ ∈ (0, 1]
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H0,γ(Q) = {ϕ ∈ L∞(Q) :
∣∣∣
(
∆0,1

h ϕ
)

(x, y)
∣∣∣ ≤ C1|h|γ}, γ ∈ (0, 1].

Definition 2.2. We say that ϕ(x, y) ∈ H̃λ,γ(Ω), where λ, γ ∈ (0, 1], if

ϕ ∈ Hλ,γ(Q) and
∣∣∣
(
∆1,1

h,ηϕ
)

(x, y)
∣∣∣ ≤ C3|h|λ|η|γ .

We say that ϕ ∈ H̃λ,γ
0 (Q), if ϕ ∈ H̃λ,γ(Q) and ϕ(0, y) ≡ ϕ(x, 0) ≡ 0.

These spaces become Banach spaces under the standard definition of
the norms:

‖ϕ‖Hλ,γ := ‖ϕ‖C(Q)+ sup
x,x+h∈[0,b]

y∈[0,d]

∣∣∣
(
∆1,0

h ϕ
)

(x, y)
∣∣∣

|h|λ + sup
y,y+η∈[0,d]

x∈[0,b]

∣∣∣
(
∆0,1

η ϕ
)

(x, y)
∣∣∣

|η|γ ,

‖ϕ‖
H̃λ,γ = ‖ϕ‖Hλ,γ + sup

x,x+h∈[0,b],
y,y+η∈[0,d]

∣∣∣
(
∆1,1

h,ηϕ
)

(x, y)
∣∣∣

|h|λ|η|γ .

Note that

ϕ ∈ Hλ,γ(Q) =⇒
∣∣∣
(
∆1,1

h,ηϕ
)

(x, y)
∣∣∣ ≤ Cθ|h|θλ|η|γ(1−θ) (2.4)

for any θ ∈ [0, 1], where Cθ = 2Cθ
1C1−θ

2 , so that

H̃λ,γ(Q) ↪→ Hλ,γ(Q) ↪→
⋂

0≤θ≤1

H̃θλ,(1−θ)γ(Q), (2.5)

where ↪→ stands for the continuous embedding, and the norm for⋂
0≤θ≤1

H̃θλ,(1−θ)γ(Q) is introduced as the maximum in θ of norms for

H̃θλ,(1−θ)γ(Q). Since θ ∈ [0, 1] is arbitrary, it is not hard to see that the
inequality in (2.4) is equivalent (up to the constant factor C) to∣∣∣

(
∆1,1

h,ηϕ
)

(x, y)
∣∣∣ ≤ C min{|h|λ, |η|γ}. (2.6)

We will also make use of the following weighted spaces. Let %(x, y) be
a non-negative function on Q (we will only deal with degenerate weights
%(x, y) = %1(x)%2(y)).

Definition 2.3. By Hλ,γ(Q, %) and H̃λ,γ(Q, %) we denote the spaces
of functions ϕ(x, y) such that %ϕ ∈ Hλ,γ(Q), %ϕ ∈ H̃λ,γ(Q, %), respectively,
equipped with the norms

‖ϕ‖Hλ,γ(Q,%) = ‖%ϕ‖Hλ,γ(Q), ‖ϕ‖
H̃λ,γ(Q,%)

= ‖%ϕ‖
H̃λ,γ(Q)
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By Hλ,γ
0 (%) and H̃λ,γ

0 (Q, %) we denote the corresponding subspaces of func-
tions ϕ such that %ϕ|x=a ≡ %ϕ|y=c ≡ 0.

Below we follow some technical estimations suggested in [3] for the case
of one-dimensional Riemann-Liouville fractional integrals. We denote

B(x, y; t, τ) =
%(x, y)− %(t, τ)

%(t, τ)(x− t)1−α(y − τ)1−β
, (2.7)

where 0 < α, β < 1, a < t < x < b, c < τ < y < d, and

B1(x, t) =
%1(x)− %1(t)

%1(t)(x− t)1−α
, B2(y, τ) =

%2(y)− %2(τ)
%2(τ)(y − τ)1−β

. (2.8)

In the case %(x, y) = %1(x)%2(y) we have

B(x, y; t, τ) = B1(x, t)B2(y, τ) +
B1(x, t)

(y − τ)1−β
+

B2(y, τ)
(x− t)1−α

,

Let also

D1(x, h, t) = B1(x + h, t)−B1(x, t), t, x, x + h ∈ [0, b], h > 0,

D2(y, η, τ) = B2(y + η, τ)−B2(y, τ), τ, y, y + η ∈ [0, d], η > 0.

Remark 2.4. All the weighted estimations of fractional integrals in the
sequel are based on inequalities (2.9)-(2.10). Note that the right-hand sides
of these inequalities have the exponent max(µ− 1, 0), which means that in
the proof it suffices to consider only the case µ ≥ 1, evaluations for µ < 1
being the same as for µ = 1.

Lemma 2.5. ([3]) Let %1(x) = xµ, µ ∈ R1, 0 < α < 1. Then

|B1(x, t)| ≤
(x

t

)max(µ−1,0) (x− t)α

t
, (2.9)

|D1(x, h, t)| ≤
(

x + h

t

)max(µ−1,0) h

t(x + h− t)1−α
. (2.10)

Similar estimates hold for B2(y, τ) and D2(y, η, τ) with %(y) = yν .

2.2. A one-dimensional statement

The following statement is known, being first proved in [9], see also
the presentation of this proof in [11], p. 57; a shorter proof was given in
[3]. Nevertheless we recall the scheme of the proof from [3] to make the
presentation easier for the two-dimensional case.
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Theorem 2.6. Let 0 < λ < 1, λ+α < 1 and %(x) = xµ. The operator(
Iα
a+f

)
(x) maps the space Hλ

0 ([0, b]; %) into the space Hλ+α
0 ([0, b]; %), if

µ < λ + 1.

P r o o f. Let f ∈ Hλ
0 ([0, b]; %) and ψ = %(x)f(x), where ψ(x) ∈

Hλ([0, b]), ψ(0) = 0. We have

(
%Iα

0+f
)
(x)=

(
Iα
0+ψ

)
(x)+

(
Jα

a+ψ
)
(x),

(
Jα

0+ψ
)
(x)=

1
Γ(α)

x∫

0

B(x, t)ψ(t)dt.

Let h > 0 and x, x+h ∈ [0, b]. The estimation of
(
Iα
0+ψ

)
(x+h)−(

Iα
0+ψ

)
(x)

is the same as in [11], pp. 54-55. For Jα
0+ψ we have

(
Jα

0+ψ
)
(x + h)− (

Jα
0+ψ

)
(x) = F1(x, h)− F2(x, h),

where

F1(x, h) =

x+h∫

x

B(x + h, t)ψ(t)dt, F2(x, h) =

x+h∫

x

D1(x, h, t)ψ(t)dt.

By Remark 2.4, it suffices to consider only the case µ ≥ 1. By (2.9) we have

|F1| ≤ C(x + h)µ−1

x+h∫

x

(x + h− t)α

tµ−λ
dt ≤ Chα(x + h)µ−1

x+h∫

x

tλ−µdt

≤ Chα+1(x + h)λ−1 ≤ Chα+λ.

Making use of (2.10), we obtain

|F2| ≤ Ch(x + h)µ−1

x∫

0

tλ−µ

(x + h− t)1−α
dt

= Ch(x + h)λ+α−1

x
x+h∫

0

ξλ−µdξ

(1− ξ)1−α
≤ Chα+λ

1∫

0

ξλ−µdξ

(1− ξ)1−α
= Chλ+α,

which completes the proof.

3. Mapping properties of the mixed fractional integration
operator in the mixed type Hölder spaces

Lemma 3.1. Let ϕ(x, y) ∈ Hλ,γ(Q), 0 ≤ λ, γ ≤ 1, 0 < α, β < 1.
Then for the mixed fractional integral operator (1.2) the representation
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(
Iα,β
0+,0+ϕ

)
(x, y) =

ϕ(0, 0)xαyβ

Γ(1 + α)Γ(1 + β)
+

ψ1(x)yβ

Γ(1 + β)
+

xαψ2(y)
Γ(1 + α)

+ψ(x, y) (3.1)

holds, where

ψ1(x) =
1

Γ(α)

x∫

0

ϕ(t, 0)− ϕ(0, 0)
(x− t)1−α

dt, ψ2(y) =
1

Γ(β)

y∫

c

ϕ(0, τ)− ϕ(0, 0)
(y − τ)1−β

dτ,

ψ(x, y) =
1

Γ(α)Γ(β)

x∫

0

y∫

0

(
∆1,1

t,τ ϕ
)

(0, 0)

(x− t)1−α(y − τ)1−β
dtdτ,

and

|ψ1(x)| ≤ C1x
λ+α, |ψ2(y)| ≤ C2y

γ+β, (3.2)

|ψ(x, y)| ≤ C min
θ∈[0,1]

xα+θλyβ+(1−θ)γ = Cxαyβ min{xλ, yγ}. (3.3)

P r o o f. Representation (3.1) itself is easily obtained by means of (2.1).
Since ϕ ∈ Hλ,γ(Q), inequalities (3.2) are obvious. Estimate (3.3) is obtained
by means of (2.4) and (2.6).

Theorem 3.2. Let 0 ≤ λ, γ < 1. The operator Iα,β
0+,c+ is bounded from

Hλ,γ
0 (Q) to Hλ+α,γ+β

0 (Q), if λ + α < 1 and γ + β < 1.

P r o o f. Since ϕ(x, y) ∈ Hλ,γ
0 (Q), by (3.1) we have

(
Iα,β
0+,0+ϕ

)
(x, y) = ψ(x, y).

We denote
g(t, τ) =

(
∆1,1

t,τ ϕ
)

(0, 0) (3.4)

for brevity. Note that (
∆1,1

t,τ ϕ
)

(0, 0) = ϕ(t, τ)

for ϕ ∈ Hλ,γ
0 , but we prefer to keep the notation for g(t, τ) via the mixed

difference as in (3.4). By (2.4) we have

|g(t, τ)| ≤ Ctθλτ (1−θ)γ ≤ min{tλ, τγ}. (3.5)

For h > 0, x, x + h ∈ Q1 = [0, b], we consider the difference
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ψ(x + h, y)− ψ(x, y) =
1

Γ(α)Γ(β)




h∫

x

y∫

0

g(x + t, y − τ)
(h− t)1−ατ1−β

dtdτ

−
x∫

0

y∫

0

g(x− t, y − τ)
t1−ατ1−β

dtdτ


 =

(x + h)α − xα

Γ(1 + α)Γ(β)

y∫

0

g(x, y − τ)
τ1−β

dτ

+
1

Γ(α)Γ(β)

h∫

0

y∫

0

g(x + t, y − τ)− g(x, y − τ)
(h− t)1−ατ1−β

dtdτ

+
1

Γ(α)Γ(β)

x∫

0

y∫

0

[g(x− t, y − τ)− g(x, y − τ)]·[(t + h)α−1 − tα−1
]
τβ−1dtdτ

= ∆1 + ∆2 + ∆3. (3.6)

We make use of (3.5) with θ = 1 and obtain

|∆1| ≤ C |(x + h)α − xα|xλ ≤ Chα+λ.

For ∆2 in view of (2.4), we have

|g(x− t, y − τ)− g(x, y − τ)| =
∣∣∣
(
∆1,1
−t,y−τϕ

)
(x, 0)

∣∣∣ ≤ C|t|λ, (3.7)

and then

∆2 ≤ Chλ.

For ∆3 by (3.7) and (2.4) we obtain

∆3≤C

x−a∫

0

tλ|tα−1−(t+h)α−1|dt ≤ C0h
α+λ, C0 =

∞∫

0

tλ|tα−1−(t+1)α−1|dt < ∞.

Gathering the estimates for ∆1,∆2, ∆3 we obtain

|ψ(x + h, y)− ψ(x, y)| ≤ Chλ+α.

Rearranging symmetrically representation (3.6), we can similarly obtain
that

|ψ(x, y + h)− ψ(x, y)| ≤ Chγ+β,

which proves the theorem.
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Theorem 3.3. The mixed fractional integral operator Iα,β
0+,0+ is bounded

from the space H̃λ,γ
0 (Q), 0 ≤ λ, γ ≤ 1 into the space H̃α+λ, β+γ

0 (Q), if
λ + α, γ + β ≤ 1.

P r o o f. Let ϕ ∈ H̃λ,γ
0 (Q). By Theorem 3.2 and embedding (2.5), for

f(x, y)=
(
Iα,β
0+,0+ϕ

)
(x, y) it satisfies to estimate the difference

(
∆1,1

h,ηf
)
(x, y).

Since ϕ(x, y)|x=0,y=0 = 0, according to (3.1) we have f(x, y) = ψ(x, y),
where ψ(x, y) is the function from (3.1). The main moment in the estima-
tions is to find the corresponding splitting which allows to derive the best
information in each variable not losing the corresponding information in
another variable. The suggested splitting runs as follows

(
∆1,1

h,ηf
)

(x, y) =
(
∆1,1

h,ηψ
)

(x, y) =
9∑

k=1

Tk :

=
g(x, y)

Γ(1 + α)Γ(1 + β)
[(x + h)α − xα] [(y + η)β − yβ] +

(y + η)β − yβ

Γ(α)Γ(1 + β)

×
h∫

0

g(x + t, y)− g(x, y)
(h− t)1−α

dt +
(x + h)α − xα

Γ(1 + α)Γ(β)

η∫

0

g(x, y + τ)− g(x, y)
(η − τ)1−β

dτ

+
(y + η)β − yβ

Γ(α)Γ(1 + β)

x∫

0

[g(x− t, y)− g(x, y)] · [(t + h)α−1 − tα−1
]
dt

+
(x + h)α − xα

Γ(1 + α)Γ(β)

y∫

0

[g(x, y − τ)− g(x, y)] ·
[
(τ + η)β−1 − τβ−1

]
dτ

+
1

Γ(α)Γ(β)

h∫

0

η∫

0

(
∆1,1

t,τ g
)

(x, y)

(h− t)1−α(η − τ)1−β
dtdτ

+
1

Γ(α)Γ(β)

h∫

0

y∫

0

(
∆1,1

t,−τg
)

(x, y)

(h− t)1−α

[
(τ + η)β−1 − τβ−1

]
dtdτ

+
1

Γ(α)Γ(β)

x∫

0

η∫

0

(
∆1,1
−t,τg

)
(x, y)

(η − τ)1−β

[
(t + h)α−1 − tα−1

]
dtdτ

+
1

Γ(α)Γ(β)

x∫

0

y∫

0

(
∆1,1
−t,−τg

)
(x, y)

[
(t+h)α−1−tα−1

] ·
[
(τ +η)β−1−τβ−1

]
dtdτ,
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where h > 0, η > 0; x, x + h ∈ [0, b]; y, y + η ∈ [0, d] and g(x, y) is the
function from (3.4). The validity of this representation may be checked
directly.

Since ϕ ∈ H̃λ,µ, we have |g(x, y)| = |∆x,yϕ(0, 0)| ≤ Cxλyγ and then

|T1| ≤ Cxλyγ |(x + h)α − xα|
∣∣∣(y + η)β − yβ

∣∣∣ ,

|T2| ≤ Cyγ
∣∣∣(y + η)β − yβ

∣∣∣
h∫

0

tλdt

(h− t)1−α
,

|T3| ≤ Cxλ |(x + h)α − xα|
h∫

0

τγdτ

(η − τ)1−β
,

|T4| ≤ Cyγ
∣∣∣(y + η)β − yβ

∣∣∣
x∫

0

tλ
∣∣(h + t)α−1 − tα−1

∣∣ dt,

|T5| ≤ Cxλ |(x + h)α − xα|
y∫

0

τγ
∣∣∣(η + τ)β−1 − τβ−1

∣∣∣ dt.

For T6 − T9 we similarly, make use of
∣∣∣
(
∆1,1
−t,−τg

)
(x, y)

∣∣∣ =
∣∣∣
(
∆1,1
−t,−τϕ

)
(x, y)

∣∣∣ ≤ c|t|λ|τ |γ ,

and obtain

|T6| ≤ C

h∫

0

η∫

0

tλτγdtdτ

(h− t)1−α(η − τ)1−β
,

|T7| ≤ C

h∫

0

y∫

0

tλτγ
∣∣(η + τ)β−1 − τβ−1

∣∣
(h− t)1−α

dtdτ,

|T8| ≤ C

x∫

0

η∫

0

tλτγ
∣∣(h + t)α−1 − tα−1

∣∣
(η − τ)1−β

dtdτ,

|T9| ≤ C

x∫

0

y∫

0

tλτγ
∣∣(h + t)α−1 − tα−1

∣∣
∣∣∣(η + τ)β−1 − τβ−1

∣∣∣ dtdτ,

after which every term is estimated in the standard way, and we get∣∣∣
(
∆1,1

h,ηf
)

(x, y)
∣∣∣ ≤ C3h

λ+αηγ+β.

This completes the proof.
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4. Extension to the weighted case

In this section we give a generalization of Theorem 3.3 to the weighted
case with the weight

%(x, y) = xµyν , µ < λ + 1, ν < γ + 1 (4.1)

Theorem 4.1. Let α, β ∈ (0, 1), λ, γ ∈ [0, 1), λ + α < 1, γ + β < 1
and % be weight (4.1). Then the mixed fractional integral operator Iα,β

0+,0+

is bounded from the space H̃λ,γ
0 (%) to H̃λ+α,γ+β

0 (%).

P r o o f. By Remark 2.4, it suffices to deal with the case µ, ν ≥ 1.
Let ϕ ∈ H̃λ,γ

0 (%), so that ϕ(x, y) = ϕ0(x,y)
%(x,y) , where ϕ0(x, y) ∈ H̃λ,γ and

ϕ0(x, y)|x=0,y=0 = 0. For

Φ(x, y) :=

x∫

a

y∫

c

%(x, y)ϕ0(t, τ)dtdτ

%(t, τ)(x− t)1−α(y − τ)1−β

we have to show that Φ ∈ H̃λ+α,γ+β
0 and ‖Φ‖

H̃λ+α,γ+β ≤ C‖ϕ0‖H̃λ,γ . We
represent Φ(x, y) in the form

Φ(x, y) = Φ1(x, y) + Φ2(x, y)

:=

x∫

a

y∫

c

ϕ0(t, τ)dtdτ

(x− t)1−α(y − τ)1−β
+

x∫

a

y∫

c

B(x, y; t, τ)ϕ0(t, τ)dtdτ, (4.2)

where notation (2.7) has been used. Here Φ1(x, y) ∈ H̃λ+α,β+γ
0 (Q) by The-

orem 3.3. To estimate the term Φ2(x, y), we note that the weight being
degenerate, we have

%(x, y)−%(t, τ)=[%(x)−%(t)] [%(y)−%(τ)]+%(τ) [%(x)−%(t)]+%(t) [%(y)−%(τ)] ,

which leads to the following representation

Φ2(x, y) =

x∫

0

y∫

0

B1(x, t)B2(y, τ)ϕ0(t, τ)dtdτ +

x∫

0

y∫

0

B1(x, t)
ϕ0(t, τ)

(y − τ)1−β
dtdτ

+

x∫

0

y∫

0

B2(y, τ)
ϕ0(t, τ)

(x− t)1−α
dtdτ,

where the notation (2.8) has been used. For the difference
(
∆1,0

h Φ2

)
(x, y)

with h > 0 and x, x + h ∈ (0, b), we have
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(
∆1,0

h Φ2

)
(x, y) =

x+h∫

x

y∫

0

B1(x + h, t)B2(y, τ)ϕ0(t, τ)dtdτ

+

x∫

0

y∫

0

D(x, h, t)B2(y, τ)ϕ0(t, τ)dtdτ +

x+h∫

x

y∫

0

B1(x + h, t)
ϕ0(t, τ)

(y − τ)1−β
dtdτ

+

x∫

0

y∫

0

D1(x, h, t)
ϕ0(t, τ)

(y − τ)1−β
dtdτ +

x+h∫

x

y∫

0

B2(y, τ)
ϕ0(t, τ)dtdτ

(x + h− t)1−α

+

x∫

0

y∫

0

B2(y, τ)
[
(x + h− t)α−1 − (x− t)α−1

]
ϕ0(t, τ)dtdτ.

Since ϕ ∈ H̃λ,γ
0 , we have

|ϕ0(t, τ)| ≤ Ctλτγ , |ϕ0(t, τ)− ϕ0(x, 0)| ≤ C(t− x)λτγ ,

and then

∣∣∣
(
∆1,0

h Φ2

)
(x, y)

∣∣∣ ≤ C

{( x+h∫

x

|B1(x + h, t)|tλdt +

x∫

0

|D1(x, h, t)|tλdt

+

x+h∫

x

(t− x)λdt

(x + h− t)1−α
+

x∫

0

∣∣(x + h− t)α−1 − (x− t)α−1
∣∣ (t− x)λdt

)
yν−1

×
y∫

0

(y−τ)β

τν−γ
dτ+

( x+h∫

x

B1(x+h, t)tλdt +

x∫

0

|D1(x, h, t)tλdt

) y∫

0

τγ

(y−τ)1−β
dτ

}
.

Hence, by inequalities (2.9)-(2.10), via standard estimations can easily arrive
at ∣∣∣

(
∆1,0

h Φ2

)
(x, y)

∣∣∣ ≤ Chα+λ.

The estimate ∣∣∣
(
∆1,0

h Φ2

)
(x, y)

∣∣∣ ≤ Cηβ+γ

is symmetrically obtained.
For the mixed difference with

(
∆1,1

h,ηΦ2

)
(x, y) with h, η > 0, x, x + h ∈

[0, b], y, y +η ∈ [0, d] the appropriate representation leading to the separate
evaluation in each variable without losses in another variable is as follows:
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(
∆1,1

h,ηΦ2

)
(x, y) =

x+h∫

x

y+η∫

y

B1(x + h, t)B2(y + η, τ)ϕ0(t, τ)dtdτ

+

x∫

a

y∫

c

D1(x, h, t)D2(y, η, τ)ϕ0(t, τ)dtdτ+

x+h∫

x

y∫

0

B1(x+h, t)D2(y, η, τ)ϕ0(t, τ)dtdτ

+

x∫

0

y+η∫

y

D1(x, h, t)B2(y + η, τ)ϕ0(t, τ)dtdτ +

x+h∫

x

y+η∫

y

B1(x + h, t)
(y + η − τ)1−β

×ϕ0(t, τ)dtdτ +

x+h∫

x

y∫

0

B(x+h, t)
[
(y + η − τ)β−1 − (y − τ)β−1

]
ϕ0(t, τ)dtdτ

+

x∫

0

y+η∫

y

D1(x, h, t)(y + η − τ)β−1ϕ0(t, τ)dtdτ

+

x∫

0

y∫

0

D1(x, h, t)
[
(y + η − τ)β−1 − (y − τ)β−1

]
ϕ0(t, τ)dtdτ

+

x+h∫

x

y+η∫

y

(x + h− t)α−1B2(y + η, τ)ϕ0(t, τ)dtdτ

+

x∫

0

y+η∫

y

[
(x + h− t)α−1 − xα−1

]
B2(y + η, τ)ϕ0(t, τ)dtdτ

+

x+h∫

x

y∫

0

(x + h− t)α−1D2(y, η, τ)ϕ0(t, τ)dtdτ

+

x∫

0

y∫

0

[
(x + h− t)α−1 − xα−1

]
D2(y, η, τ)ϕ0(t, τ)dtdτ.

We omit the details of evaluation of each term in the above representation,
it is standard via Lemma 2.5 and yields∣∣∣

(
∆1,1

h,ηΦ2

)
(x, y)

∣∣∣ ≤ Chλ+αηγ+β.

Finally, it remains to note that

Φ(x, 0) = Φ(0, y) ≡ 0, since |Φ(x, y)| ≤ Cxλ+αyγ+β

under the conditions µ < λ + 1, ν < γ + 1.
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