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Abstract

The new result presented here is a theorem involving series in the three-
parameter Mittag-Leffler function. As a by-product, we recover some known
results and discuss corollaries. As an application, we obtain the solution of
a fractional differential equation associated with a RLC electrical circuit in
a closed form, in terms of the two-parameter Mittag-Leffler function.
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1. Introduction

The applications of the Mittag-Leffler function and its extensions are
discussed recently in a rapidly increasing number of papers, related to Frac-
tional Calculus and fractional order differential and integral equations and
systems, modeling various phenomena. Here, we mention only two results:
one of them – by Magin and Ovadia [15], proposes modeling the cardiac
tissue electrode interface using fractional calculus by means of a convenient
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three element electrical circuit. Camargo et al. [7] discuss the so-called tele-
graph equation in a fractional version whose solution is given in terms of a
three-parameter Mittag-Leffler function and present also two new theorems
involving the two- and three-parameter Mittag-Leffler functions.

On the other hand, in Hilfer’s book [10], several papers can be seen
as references, involving applications of the Mittag-Leffler functions associ-
ated with physical problems, in particular – problems involving fractional
reaction-diffusion equations. Also, in Mainardi and Gorenflo [17], the au-
thors present the solution of fractional diffusion equations in terms of the
two parameters Mittag-Leffler function and/or in terms of the Wright func-
tions, resp. [18].

In [6] it was discussed the calculation of several Green’s functions asso-
ciated with fractional differential equations by means of the juxtaposition of
the integral transforms, all of them presented in terms of the Mittag-Leffler
function. More recently, in [8] it was discussed the fractional Langevin equa-
tion, where the authors presented a solution in terms of the three-parameter
Mittag-Leffler function. Also, the corresponding relaxation function is pre-
sented in terms of the convenient Mittag-Leffler functions. On the other
hand, a new look at the fractional derivative by taking as starting point the
Cauchy derivative formulation was presented by Ortigueira [21].

Finally, we can mention that other important and useful special func-
tions that are related to the fractional calculus, as the Wright’s function
(called also Fox-Wright function), the Mainardi’s function [16], the “vec-
tor” and “multi-index” Mittag-Leffler functions [12, 13, 14] have been stud-
ied as particular cases of the Fox’s H-function [9], defined by means of the
Mellin-Barnes integral [23, Vol. III], [19], [11].

In this paper, after a preliminaries of the Mittag-Leffler function, in
Section 3, we present our main result – a theorem for series involving three-
parameter Mittag-Leffler functions, and discuss some particular cases. In
Section 4, we illustrate an application of our theorem, discussing a RLC
electrical circuit and presenting the solution in a closed form. Concluding
remarks close the paper.

2. Preliminaries on the Mittag-Leffler function

The Mittag-Leffler function Eα was introduced years ago in [20]. In the
fifthies, Agarwal [1] introduced the two-parameter Mittag-Leffler function
Eα,β as its generalization, usually referred to now as the (classical) Mittag-
Leffler (M-L) function. An interesting review on these two functions can be
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found in Mainardi-Gorenflo [17], where the authors recall the main proper-
ties of the M-L functions and discuss some fractional differential equations
whose solutions can be found in their terms. There are many other gener-
alizations of the classical Mittag-Leffler function but here we are interested
in only one of them, the so-called three-parameter Mittag-Leffler function,
introduced by Prabhakar [22], and studied recently by Kilbas et al., see e.g.
[11]:

Eρ
µ,ν(z) =

∞∑

k=0

(ρ)k

Γ(µk + ν)
zk

k!
, (1)

with Re(µ) > 0, Re(ν) > 0 and Re(ρ) > 0 and z ∈ C. When the param-
eter ρ = 1, we get the two-parameter M-L function, as was introduced by
Agarwal, and with ρ = 1 = ν we recover the M-L function as originally
introduced by Mittag-Leffler. The case ρ = 1 = ν = µ reduces to the
exponential function. That is, the following relations are valid:

E1
µ,ν(x) ≡ Eµ,ν(x) , E1

µ,1(x) ≡ Eµ(x) , E1
1,1(x) ≡ E1,1(x) ≡ E1(x) = exp(x).

To close these preliminaries, let us remind the pair of the Laplace in-
tegral transform and the respective inverse, of the three-parameter M-L
function (see for example in [11]), which will be used to discuss the RLC
electrical circuit as illustration for applications of our results:

L[tβ−1Eρ
α,β(±λtα)] =

sαρ−β

(sα ∓ λ)ρ
, L−1

[
sαρ−β

(sα ∓ λ)ρ

]
= tβ−1Eρ

α,β(±λtα),

with Re(α) > 0, Re(β) > 0, Re(ρ) > 0 and λ ∈ C.

3. Some results for series in 3-parameter Mittag-Leffler function

In this section, first we derive a result involving the argument of the
three-parameter M-L function in a product form related with an argument
in a sum form. Then, we calculate explicitly this sum by presenting it
in terms of two-parameter Mittag-Leffler functions. A corollary and some
particular cases are discussed.

Theorem 3.1. Consider the parameters Re(α) > 0 and Re(β) > 0, and
x, y ∈ C. Then, for the three-parameter M-L function Eρ

µ,ν(·) we have the
relation

∞∑

r=0

(x + y)rEr+1
2α,αr+β(−xy) =

∞∑

k=0

(−xy)kEk+1
α,2αk+β(x + y) . (2)
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P r o o f. Substituting definition (1) in Eq.(2) and changing the sums,
which are absolutely convergent, we have

Λ ≡
∞∑

k=0

(−xy)k

k!

∞∑

r=0

(r + 1)k

Γ(2αk + αr + β)
(x + y)r,

where (·)k is the Pochhammer symbol.
Using the well-known relation

(r + 1)k

k!
=

Γ(r + k + 1)
k!Γ(r + 1)

=
Γ(k + r + 1)
r!Γ(k + 1)

=
(k + 1)r

r!
,

we can write then:

Λ ≡
∞∑

k=0

(−xy)k
∞∑

r=0

(k + 1)r

Γ(αr + 2αk + β)
(x + y)r

r!
.

Using again definition (1), we obtain

Λ ≡
∞∑

k=0

(−xy)kEk+1
α,2αk+β(x + y)

which is exactly the second member of Eq.(2). The proof is complete.

This result implies that: we can change a sum involving a three-parameter
Mittag-Leffler function whose argument is a product to the another three-
parameter Mittag-Leffler function whose argument can be written as a sum.
This can be called as a particular sum rule. When we calculate the sum, we
really have this sum rule, as can be seen below.

Theorem 3.2. For the three-parameter Mittag-Leffler functions with
Re(α) > 0 and Re(β) > 0 and x, y ∈ C, x 6= y, we have the following explicit
representation of the series

∞∑

k=0

(−xy)kEk+1
α,2αk+β(x + y) =

xEα,β(x)− yEα,β(y)
x− y

, (3)

in terms of the two-parameter Mittag-Leffler function Eµ,ν(·), defined as in
(1) with ρ = 1.

P r o o f. To demonstrate this result, we first consider the binomial
expansion

(x + y)` =
∑̀

n=0

`!
n!(`− n)!

x`−nyn

and substitute the definition of three-parameter M-L function in the second
member of Eq. (2) to obtain:
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Λ =
∞∑

k=0

(−xy)k
∞∑

`=0

(k + 1)`

Γ(α` + 2αk + β)`!

∑̀

n=0

`!
n!(`− n)!

x`−nyn,

which can also be written as follows

Λ =
∞∑

k=0

(−xy)k

k!

∞∑

n=0

yn

n!

∞∑

`=0

Γ(k + ` + n + 1)
Γ(α` + αn + 2αk + β)

x`

`!
,

where in the last step, we have substituted ` → ` + n.
Another convenient change of indices, n → n− k and ` → `− k permit

us to write

Λ =
∞∑

n=0

yn
∞∑

`=0

x`

Γ(α` + αn + β)

n∑

k=0

(−1)k

k!
(` + n− k)!

(n− k)!(`− k)!
(4)

which for n < k and ` < k is equal to zero.
Thus, the last sum in Eq. (4) is equal to one (see e.g. in [23, Vol. I],

and then we obtain

Λ =
∞∑

n=0

∞∑

`=0

x`yn

Γ(α` + αn + β)
, (5)

which can be put in the following form

Λ =
∞∑

`=0

x`

Γ(α` + β)

∑̀

n=0

(y

x

)n
.

Using the well-known expansion (e.g. [23, Vol. I])

∑̀

n=0

(y

x

)n
=

x`+1 − y`+1

x− y
, x 6= y ,

Eq. (5) can be written explicitly in the form

Λ =
1

x− y

[
x
∞∑

`=0

x`

Γ(α` + β)
− y

∞∑

`=0

y`

Γ(α` + β)

]
.

To conclude the proof, we substitute in the last expression the two-parameter
Mittag-Leffler function, obtained from (1) with ρ = 1.

Equation (3) is our main result. To discuss the case y = x, one must
take the limit y → x and use the l’Hôpital rule, which is presented in the
following corollary.
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Corollary 3.3. Let the parameters Re(α) > 0 and Re(β) > 0, and
x ∈ R. Then, the following representation holds:

∞∑

k=0

(−x2)kEk+1
α,2αk+β(2x) = Eα,β(x) + x

d

dx
Eα,β(x) , (6)

in terms of the two-parameter M-L function Eµ,ν(·).
P r o o f. To prove this result, it is sufficient to take the limit y → x in

Eq. (3) and to use the l’Hôpital rule.

On the other hand, taking the limit y → −x in Eq. (3), we get
∞∑

k=0

x2kEk+1
α,2αk+β(0) =

1
2

[Eα,β(x) + Eα,β(−x)] ,

which can be written as follows:
∞∑

k=0

x2kEk+1
α,2αk+β(0) = E2α,β(x2) .

This is an identity for the two-parameter Mittag-Leffler function.

Particular cases

Here we discuss the particular case α = 1. Putting α = 1 in Eq. (3), we
can write ∞∑

k=0

(−xy)k Ek+1
1,2k+β(x + y) =

xE1,β(x)− yE1,β(y)
x− y

.

Using the relation

Γ(µ)Eρ
1,µ(x) = 1F1(ρ; µ; x) ,

where 1F1(ρ; µ; x) is the confluent hypergeometric function, we get

∞∑

k=0

(−xy)k 1F1(k + 1; 2k + β;x + y)
Γ(2k + β)

=
xE1,β(x)− yE1,β(y)

x− y
.

In the subcase β = 1, this gives

∞∑

k=0

(−xy)k

(2k)! 1F1(k + 1; 2k + 1; x + y) =
x ex − y ey

x− y
, for y 6= x .

Using the l’Hôpital rule to calculate the limit y → x, we obtain
∞∑

k=0

(−x2)k

(2k)! 1F1(k + 1; 2k + 1; 2x) = (1 + x) ex.
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On the other hand, the subcase β = 2 furnishes
∞∑

k=0

(−xy)k 1F1(k + 1; 2k + 2; x + y)
Γ(2k + 2)

=
ex − ey

x− y
,

and taking the limit y → x, we have
∞∑

k=0

(−x2)k 1F1(k + 1; 2k + 2; 2x)
Γ(2k + 2)

= ex.

These two latter results have been obtained in a recent paper [7].

Finally, setting β = 2α in Eq. (3), we recover the results associated
with the telegraph equation which have been discussed also in [7].

4. Illustrating application

To illustrate our results, as an application we discuss a particular RLC
electrical circuit, as below. In this electrical circuit, the capacitor and the
inductor are connected in parallel and this set is connected with a resistor
in series. A source is considered of the Heaviside type. We remember that
a similar electrical circuit was recently studied by Magin and Ovadia [15],
but in that paper the authors substitute the inductor by an impedance.

4.1. RLC Electrical circuit

In this section we present a RLC electrical circuit with a capacitor and
an inductor are connected in parallel and this set is connected in series with
a resistor, and a voltage. The capacitance, C, the inductance, L and the
resistance, R, are considered positive constants and θ(t) is the Heaviside
function.

The constitutive equations associated with the three-elements of the

RLC electrical circuit are: the voltage drop UL(t) = L
d
dt

I(t), across an

inductor; the voltage drop UR(t) = R I(t), across a resistor; the voltage
drop UC(t) = 1

C

∫ t
I(ξ)dξ, across a capacitor, and where I(t) is the current.

Using the Kirchhoff’s voltage law and the constitutive equations asso-
ciated with the three elements, we can write the non-homogeneous second
order ordinary differential equation

RC
d2

dt2
UC(t) +

d
dt

UC(t) +
R

L
UC(t) =

d
dt

θ(t) , (7)

where UC(t) is the voltage on the capacitor which is the same on the induc-
tor, as we can see in Figure 1, because they are connected in parallel.
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Fig.1: Three-Element Electrical Circuit

On the other hand, we obtain another non-homogeneous second order
ordinary differential equation associated with the current on the inductor,

RLC
d2

dt2
iL(t) + L

d
dt

iL(t) + RiL(t) = θ(t). (8)

Again, using the constitutive equation for the inductor, these two non-
homogeneous second order ordinary differential equations can be led to the
correspondent integro-differential equations,

R
d
dt

iC(t) +
1
C

iC(t) +
R

LC

∫ t

0
iC(ξ) dξ =

d
dt

θ(t) (9)

and

RC
d
dt

UL(t) + UL(t) +
R

L

∫ t

0
UL(ξ) dξ = θ(t) , (10)

respectively. We note that, these integro-differential equations have the
same form. Here we consider only the first one. The classical methodology
to discuss this integro-differential equation is the Laplace transform. To
this end, we consider the initial condition iC(0) = 0 and the solution can
be found in terms of an exponential function, see e.g. [24].

4.2. Fractional integro-differential equation

In this subsection we discuss the fractional version of Eq. (9), i.e., a
fractional integro-differential equation associated with the current on the
capacitor,
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R
dα

dtα
iC(t) +

1
C

iC(t) +
R/LC

Γ(α)

∫ t

0
(t− ξ)α−1 iC(ξ) dξ =

d
dt

θ(t) (11)

with 0 < α ≤ 1, and the fractional derivative is taken in the Caputo sense,
where θ(t) is the Heaviside function. In this case, one can thought that iC(t)
can be interpreted as a Green’s function because the second member is a
delta function. We also consider iC(0) = 0, i.e., the initial current on the
capacitor is zero. We note that this equation is a possible generalization of
the classical integro-differential equation associated with the RLC electrical
circuit, because for α = 1 we recover the results obtained in Subsection 4.1.
This replacement can be useful in discussing the corresponding numerical
problem, for a particular value of the parameter, because the solution is
presented in terms of a closed expression.

To solve this fractional integro-differential equation, we introduce the
Laplace integral transform, defined by

L[iC(t)] ≡ F (s) =
∫ ∞

0
e−stiC(t) dt

with Re(s) > 0, and we obtain the following algebraic equation

RsαF (s) +
F (s)
C

+
R/LC

sα
F (s) = 1 ,

whose solution is given by

F (s) =
1
R

sα

s2α + asα + b
,

where we have introduced the positive parameters a ≡ 1/RC and b ≡ 1/LC.
To recover the solution of the fractional integro-differential equation, we

proceed with the inverse Laplace transform

iC(t) =
1
R

L−1

[
sα

s2α + asα + b

]
.

Using the relation (from [3])

L−1

[
sρ−1

sα + Asβ + B

]
= tα−ρ

∞∑

r=0

(−A)rt(α−β)rEr+1
α,α+1−ρ+(α−β)r(−Btα)

valid for |Asβ/(sα + B)| < 1 and α ≥ β, we can write

iC(t) =
tα−1

R

∞∑

r=0

(−a)rtαrEr+1
2α,α+αr(−bt2α)θ(t) , (12)
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where Eρ
µ,ν(·) is the three-parameter Mittag-Leffler function (1), and θ(t) is

the Heaviside function.
To evaluate explicitly this sum, we use Theorem 3.2 and get

iC(t) =
tα−1

R

µEα,α(µ tα)− νEα,α(ν tα)
µ− ν

θ(t) , (13)

where µ and ν are the roots of the algebraic system µ + ν = −1/RC and
µν ≡ 1/LC.

5. Concluding remarks

In this paper we propose new results for series in three-parameter Mittag-
Leffler functions, presenting them explicitly in terms of the two-paramater
(classic) Mittag-Leffler functions. To illustrate the possible applications of
our results, we obtain a closed form to the solution of the fractional integro-
differential equation associated with a particular RLC electrical circuit, in
terms of the two-parameter Mittag-Leffler function Eα,β.

Our main result is interesting with respect to simplifying several other
results, for example, as one can see in [5] where we discussed the frac-
tional telegraph equation, and in [4], where the anomalous diffusion was
presented. The results in both papers are given in terms of the three-
parameter Mittag-Leffler function. A natural continuation of this paper is
to discuss the gamma distribution whose density function is known. This
study is in progress [2].
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