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Abstract

The new result presented here is a theorem involving series in the three-
parameter Mittag-Leffler function. As a by-product, we recover some known
results and discuss corollaries. As an application, we obtain the solution of
a fractional differential equation associated with a RLC electrical circuit in
a closed form, in terms of the two-parameter Mittag-Leffler function.
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1. Introduction

The applications of the Mittag-Leffler function and its extensions are
discussed recently in a rapidly increasing number of papers, related to Frac-
tional Calculus and fractional order differential and integral equations and
systems, modeling various phenomena. Here, we mention only two results:
one of them — by Magin and Ovadia [15], proposes modeling the cardiac
tissue electrode interface using fractional calculus by means of a convenient
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three element electrical circuit. Camargo et al. [7] discuss the so-called tele-
graph equation in a fractional version whose solution is given in terms of a
three-parameter Mittag-Leffler function and present also two new theorems
involving the two- and three-parameter Mittag-Leffler functions.

On the other hand, in Hilfer’s book [10], several papers can be seen
as references, involving applications of the Mittag-Leffler functions associ-
ated with physical problems, in particular — problems involving fractional
reaction-diffusion equations. Also, in Mainardi and Gorenflo [17], the au-
thors present the solution of fractional diffusion equations in terms of the
two parameters Mittag-Leffler function and/or in terms of the Wright func-
tions, resp. [18].

In [6] it was discussed the calculation of several Green’s functions asso-
ciated with fractional differential equations by means of the juxtaposition of
the integral transforms, all of them presented in terms of the Mittag-Leffler
function. More recently, in [8] it was discussed the fractional Langevin equa-
tion, where the authors presented a solution in terms of the three-parameter
Mittag-Leffler function. Also, the corresponding relaxation function is pre-
sented in terms of the convenient Mittag-Leffler functions. On the other
hand, a new look at the fractional derivative by taking as starting point the
Cauchy derivative formulation was presented by Ortigueira [21].

Finally, we can mention that other important and useful special func-
tions that are related to the fractional calculus, as the Wright’s function
(called also Fox-Wright function), the Mainardi’s function [16], the “vec-
tor” and “multi-index” Mittag-Leffler functions [12, 13, 14] have been stud-
ied as particular cases of the Fox’s H-function [9], defined by means of the
Mellin-Barnes integral [23, Vol. III}, [19], [11].

In this paper, after a preliminaries of the Mittag-Leffler function, in
Section 3, we present our main result — a theorem for series involving three-
parameter Mittag-Leffler functions, and discuss some particular cases. In
Section 4, we illustrate an application of our theorem, discussing a RLC
electrical circuit and presenting the solution in a closed form. Concluding
remarks close the paper.

2. Preliminaries on the Mittag-Leffler function

The Mittag-Leffler function E, was introduced years ago in [20]. In the
fifthies, Agarwal [1] introduced the two-parameter Mittag-Leffler function
E, s as its generalization, usually referred to now as the (classical) Mittag-
Leffler (M-L) function. An interesting review on these two functions can be
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found in Mainardi-Gorenflo [17], where the authors recall the main proper-
ties of the M-L functions and discuss some fractional differential equations
whose solutions can be found in their terms. There are many other gener-
alizations of the classical Mittag-Leffler function but here we are interested
in only one of them, the so-called three-parameter Mittag-Leffler function,
introduced by Prabhakar [22], and studied recently by Kilbas et al., see e.g.
[11]:

o (o A
EP = _ Pk = 1
with Re(u) > 0, Re(r) > 0 and Re(p) > 0 and z € C. When the param-
eter p = 1, we get the two-parameter M-L function, as was introduced by
Agarwal, and with p = 1 = v we recover the M-L function as originally
introduced by Mittag-Leffler. The case p = 1 = v = pu reduces to the
exponential function. That is, the following relations are valid:

Ep (@) = Buo(x) By, (2) = Bu(), Biy(2) = Bra(e) = Bi(x) = exp(a).

To close these preliminaries, let us remind the pair of the Laplace in-
tegral transform and the respective inverse, of the three-parameter M-L
function (see for example in [11]), which will be used to discuss the RLC
electrical circuit as illustration for applications of our results:

Sap_ﬁ

B—1 p ay] — —1
ST EL N = g {

Sap_ﬂ
(s> F NP
with Re(a)) > 0, Re(8) > 0, Re(p) > 0 and X € C.

} — 1PLED (M),

3. Some results for series in 3-parameter Mittag-Leffler function

In this section, first we derive a result involving the argument of the
three-parameter M-L function in a product form related with an argument
in a sum form. Then, we calculate explicitly this sum by presenting it
in terms of two-parameter Mittag-Lefller functions. A corollary and some
particular cases are discussed.

THEOREM 3.1. Consider the parameters Re(«) > 0 and Re((3) > 0, and
z,y € C. Then, for the three-parameter M-L function El; ,(-) we have the

relation
0

x
S @) By a(—ay) = (—ay) EELL s+ ). (2)
r=0 k=0
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P r o o f. Substituting definition (1) in Eq.(2) and changing the sums,
which are absolutely convergent, we have

()t & (r+ 1L .
A:kZ:O k! ;F(2ak+ar+ﬂ)($+y)’

where (+)g is the Pochhammer symbol.
Using the well-known relation

(r+1) Tr+k+1) T(k+r+1) (k+1),

K KT(er+1) rTk+1) ol

we can write then:

oo

N (k+1)r  (z+y)
kzz:o 4 ; D(ar +2ak+3) 7!

Using again definition (1), we obtain
oo
A=) (—ay) B s+ y)
k=0

which is exactly the second member of Eq.(2). The proof is complete. [ ]

This result implies that: we can change a sum involving a three-parameter
Mittag-Lefler function whose argument is a product to the another three-
parameter Mittag-LefHer function whose argument can be written as a sum.
This can be called as a particular sum rule. When we calculate the sum, we
really have this sum rule, as can be seen below.

THEOREM 3.2. For the three-parameter Mittag-Leffler functions with
Re(a) > 0 and Re(3) > 0 and z,y € C, x # y, we have the following explicit
representation of the series

oo

Eap(7) — yEaps(y)
D () Bl gl ) = T IR (3)
k=0

in terms of the two-parameter Mittag-LefHler function E,, ,(-), defined as in
(1) with p = 1.

P r o o f. To demonstrate this result, we first consider the binomial
expansion

( + )Z_zg: E' l—n,. n
Y= n!(ﬁ—n)!x Y

n=0
and substitute the definition of three-parameter M-L function in the second
member of Eq. (2) to obtain:
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9 [ ¢

(k + 1), 0 B
A= k l—n, n
kzzo —y) ;Faﬁ—i-%zk—kﬁ) z%n!(ﬁ—n)!x v

which can also be written as follows

Fk+{+n+1) xf
I(al 4 an 4+ 2ak + 3) 0!

nl

where in the last step, we have substituted £ — ¢ + n.
Another convenient change of indices, n — n — k and ¢ — ¢ — k permit
us to write

2! P (1R (- k)
A= T;)yz a£+an+ﬁ)zo K (n— R — k) (4)

which for n < k and ¢ < k is equal to zero.

Thus, the last sum in Eq. (4) is equal to one (see e.g. in [23, Vol. 1],
and then we obtain

A= ZZ a€+an+ﬁ) (5)

n=0 (=0
which can be put in the following form

0 ¢ l
e N}
— (ol + B) A
Using the well-known expansion (e.g. [23, Vol. 1))
¢ n 0+1 01
Z (g) = u , T 75 Yy,
x x—y

n=0
Eq. (5) can be written explicitly in the form

A 1 > xﬂ > yf
- x%r(auﬁ)_y%r(auﬁ)

r—y

To conclude the proof, we substitute in the last expression the two-parameter
Mittag-Leffler function, obtained from (1) with p = 1. [

Equation (3) is our main result. To discuss the case y = z, one must
take the limit y — = and use the 'Hopital rule, which is presented in the
following corollary.
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COROLLARY 3.3. Let the parameters Re(a) > 0 and Re(8) > 0, and
x € R. Then, the following representation holds:

oo

S (a2 B 5(20) = Fap(a) + 2 B (), 0
k=0

in terms of the two-parameter M-L function E,,,(-).

P r oo f. To prove this result, it is sufficient to take the limit y — z in
Eq. (3) and to use the I'Hopital rule. [

On the other hand, taking the limit y — —x in Eq. (3), we get

1
Z T B 5(0) = 5 [Bap(@) + Eap(—a)] ,

which can be ertten as follows:

Zx%Eig}ka 0) = Eaa,5(2?) .

This is an identity for the two-parameter Mittag-Leffler function.

Particular cases
Here we discuss the particular case a = 1. Putting a = 1 in Eq. (3), we
can write

= 2B15(z) = yF15(0)
> () Bl oo 4 y) = TR TR

k=0
Using the relation

C(p)EY (x) = 1F1(p; p; )

where 1 F(p; pu; x) is the confluent hypergeometric function, we get

Bk L2k + Biaty)  xBip(x) — yEis(y)
kzzo( ) I'(2k + B) B T —y '

In the subcase 8 = 1, this gives

0© k T _ Y
Z( xy)' IR+ 12k Lo ty) = 20 fory £,
(2k)! Ty

Using the I’Hopital rule to calculate the limit y — x, we obtain
00 ok
k=0
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On the other hand, the subcase § = 2 furnishes

o0

Z(—xy)k 1Filk+ 152k + 252+ y) _ e —eY ’
— I'(2k + 2) T —y
and taking the limit y — x, we have
i(—xz)k 1F1(k + 152k 4 2; 2x) _
rar T(2k +2)

These two latter results have been obtained in a recent paper [7].

Finally, setting § = 2a in Eq. (3), we recover the results associated
with the telegraph equation which have been discussed also in [7].

4. Illustrating application

To illustrate our results, as an application we discuss a particular RLC
electrical circuit, as below. In this electrical circuit, the capacitor and the
inductor are connected in parallel and this set is connected with a resistor
in series. A source is considered of the Heaviside type. We remember that
a similar electrical circuit was recently studied by Magin and Ovadia [15],
but in that paper the authors substitute the inductor by an impedance.

4.1. RLC Electrical circuit

In this section we present a RLC' electrical circuit with a capacitor and
an inductor are connected in parallel and this set is connected in series with
a resistor, and a voltage. The capacitance, C, the inductance, L and the
resistance, R, are considered positive constants and 6(t) is the Heaviside
function.

The constitutive equations associated with the three-elements of the

d
RLC electrical circuit are: the voltage drop Ur(t) = L&I (t), across an

inductor; the voltage drop Ur(t) = RI(t), across a resistor; the voltage
drop U (t) = % ft I1(£)dg, across a capacitor, and where I(t) is the current.

Using the Kirchhoff’s voltage law and the constitutive equations asso-
ciated with the three elements, we can write the non-homogeneous second
order ordinary differential equation

d? d R d
RC@Uc(t) + &Uc(t) + fUc(t) = aﬁ(t) ; (7)

where Uc(t) is the voltage on the capacitor which is the same on the induc-
tor, as we can see in Figure 1, because they are connected in parallel.
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Fig.1: Three-Element Electrical Circuit

On the other hand, we obtain another non-homogeneous second order

ordinary differential equation associated with the current on the inductor,
2

RLC%iL(t) + L%iL(t) b Rig(t) = 60(b). (8)

Again, using the constitutive equation for the inductor, these two non-
homogeneous second order ordinary differential equations can be led to the
correspondent integro-differential equations,

Ric(t) + Giclt) + 76 [ ic(€)ds = Zow Q
and
t
ROGULO + U0+ T [ Vnl)ae =000, (10)

respectively. We note that, these integro-differential equations have the
same form. Here we consider only the first one. The classical methodology
to discuss this integro-differential equation is the Laplace transform. To
this end, we consider the initial condition ¢¢(0) = 0 and the solution can
be found in terms of an exponential function, see e.g. [24].

4.2. Fractional integro-differential equation

In this subsection we discuss the fractional version of Eq. (9), i.e., a
fractional integro-differential equation associated with the current on the
capacitor,
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o t

Riic(t)+ ict) + o (4= 0" ol de = Fow )
with 0 < o < 1, and the fractional derivative is taken in the Caputo sense,
where 0(t) is the Heaviside function. In this case, one can thought that i¢(t)
can be interpreted as a Green’s function because the second member is a
delta function. We also consider i(0) = 0, i.e., the initial current on the
capacitor is zero. We note that this equation is a possible generalization of
the classical integro-differential equation associated with the RLC' electrical
circuit, because for o« = 1 we recover the results obtained in Subsection 4.1.
This replacement can be useful in discussing the corresponding numerical
problem, for a particular value of the parameter, because the solution is
presented in terms of a closed expression.

To solve this fractional integro-differential equation, we introduce the
Laplace integral transform, defined by

Llic(t)] = F(s) = /OOO e i (t)dt

with Re(s) > 0, and we obtain the following algebraic equation

F(s) R/LC B
- + o F(s)=1,

Rs“F(s) +

whose solution is given by
Fls) — 1 5%
(s) = Rs2 +as*+b’
where we have introduced the positive parameters ¢ = 1/RC and b = 1/LC.
To recover the solution of the fractional integro-differential equation, we
proceed with the inverse Laplace transform

. 1.4 s%
ic(t) = 5£ {MJ

Using the relation (from [3])

-1 5P _ ja—p = ry(a—0B)r pr+1 o
< [so‘ AP 1 B] =1 ZO(_A) B E, ai—pr(a-pyr (T BEY)
valid for |[As” /(s + B)| < 1 and a > 3, we can write
- ta_l . TLar T (6%
ic(t) = = (—a)"t E5) L 4 o (—bE2)0(1) (12)

r=0
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where Ef ,(-) is the three-parameter Mittag-Leffler function (1), and () is
the Heaviside function.

To evaluate explicitly this sum, we use Theorem 3.2 and get
B ol pPEqo(pttY) — vEqy o (V)
R w—v

ic(t) 0(t), (13)
where p and v are the roots of the algebraic system p+ v = —1/RC and
wr =1/LC.

5. Concluding remarks

In this paper we propose new results for series in three-parameter Mittag-
Leffler functions, presenting them explicitly in terms of the two-paramater
(classic) Mittag-Leffler functions. To illustrate the possible applications of
our results, we obtain a closed form to the solution of the fractional integro-
differential equation associated with a particular RLC' electrical circuit, in
terms of the two-parameter Mittag-Leffler function E, g.

Our main result is interesting with respect to simplifying several other
results, for example, as one can see in [5] where we discussed the frac-
tional telegraph equation, and in [4], where the anomalous diffusion was
presented. The results in both papers are given in terms of the three-
parameter Mittag-Leffler function. A natural continuation of this paper is
to discuss the gamma distribution whose density function is known. This
study is in progress [2].
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