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ON THE MATHEMATICAL MODELLING OF MICROBIAL
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Abstract. We propose a new approach to the mathematical modelling of
microbial growth. Our approach differs from familiar Monod type models by
considering two phases in the physiological states of the microorganisms and
makes use of basic relations from enzyme kinetics. Such an approach may
be useful in the modelling and control of biotechnological processes, where
microorganisms are used for various biodegradation purposes and are often
put under extreme inhibitory conditions. Some computational experiments
are performed in support of our modelling approach.

1. Introduction. In this work we present a new approach to the math-
ematical modelling of microbial growth. Our approach takes dynamically into
account inhibition on microbial growth caused by shortage or excess of nutrient
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substrate. It is hoped that such an approach can be useful in the modelling of
biotechnological processes, where microorganisms are used for various biodegra-
dation purposes.

It has been recognized since long that classical microbial growth models
using Monod function describe adequately bio-processes under favorable condi-
tions, when microorganisms actively produce specific enzymes for the degradation
and consumption of nutrient substrates and thus divide and grow at the maxi-
mal possible rate. However, the environment in bio-reactors sometimes becomes
unfavorable due to depletion of nutrient, or due to super-abundance of nutrient
substrate. In such cases microbial growth may be inhibited.

Under such extreme conditions Monod type models may fail to reflect
adequately the inhibition on microbial growth and thus the dynamics of the cor-
responding bio-processes. Modifications of these models in various directions have
been proposed in order to suitably reflect inhibition on microbial growth. One
possible direction is to allow some of the parameters in the model to depend on
the nutrient substrate and/or on other quantities. Within this direction Monod
function is replaced by other specific expressions [6]. Another modelling direc-
tion is based on the assumption that microorganisms of the same species behave
rather differently under favorable and unfavorable conditions actually changing
their physiological states. Hence microorganisms can be classified into two or
more groups corresponding to their physiological states/phases. Mathematically
this means assigning different variables to the bio-masses of microorganisms of
different states and considering the corresponding microbial populations as dif-
ferent species.

Our proposed approach can be viewed as a hybrid of the above-mentioned
two modelling directions. Microbial growth is tightly related to enzyme pro-
duction, so it is natural to use ideas from enzyme kinetics in the modelling of
bio-processes involving microbial populations. Recall that the Michaelis-Menten
differential equation describing the uptake of substrate by enzymes is integrated in
the Monod type models. Our idea is to use instead the Henri-Michaelis-Menten
system of ODE (under the Briggs-Haldane interpretation), which involves not
only the substrate dynamics, but also the dynamics of the enzyme concentration
(free and bounded). This idea allows us to introduce special variables correspond-
ing to microbial population in two different states/phases. In order to explain
and motivate our modelling approach to microbial growth we recall next some
known facts from enzyme kinetics in relation to Monod type models.
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2. Enzyme kinetics and microbial growth. Microorganisms pro-
duce enzymes so it is natural to look for analogies between models of microbial
growth and those of enzyme kinetics. Enzyme kinetics models in their simplest
form (when the enzymes possess just one active site) are usually met in the lit-
erature in two variants. In the first variant the dynamics of the substrate uptake
is presented by a single ODE for the substrate concentration, which we shall fur-
ther refer to as Michaelis-Menten ODE, or Michaelis-Menten law, MM-law for
short. The MM-law concentrates on the substrate dynamics and says nothing
about the dynamics of the remaining three counterparts: the two forms of the
enzyme (free and bounded) and the product. The second variant is presented by
four ODEs describing the dynamics of all four components: the substrate, the
two forms of the enzyme, and the product. This variant is further referred to
as Henri-Michaelis-Menten system of ODE’s, HMM-law for short. We wish to
emphasize that the MM-law for the substrate uptake is an approximation to the
HMM-law, see e.g. [11]. We shall next discuss the relation between the Monod
model and the MM-law, resp. the HMM-law.

2.1. Microbial growth models and MM-law. Consider a classical
model of microbial growth involving a single microbial species in a batch mode
chemostat/bioreactor of the form

ds/dt = −αµ(s)x,(1)

dx/dt = µ(s)x− kdx,(2)

with initial conditions s(0) = s0 > 0, x(0) = x0 > 0. Here x = x(t) is the
biomass, s = s(t) is the concentration of the substrate in the chemostat, kd is a
decay (death rate) constant and µ(s) is a function depending on the substrate s,
see e.g. [1], [2], [5], [14]. A commonly used function µ(s) is the Monod function:

(3) µ(s) = µmax

s

Ks + s
,

where Ks is a positive constant.
The solutions for x, s of (1)–(2) using Monod function (3) are visualized

in Figure 1. One can see that the biomass x initially increases, then reaches
its maximum and after that the biomass x starts to decrease due to depletion
of nutrient substrate. Note that µ(s) −→ 0 with s −→ 0 so that equation (2)
becomes approximately dx/dt ≈ −kdx for small s. Hence x −→ 0 with t −→ ∞.
This shows that model (1)–(3) does reflect the inhibition on microbial growth due
to shortage of nutrient substrate. Nevertheless, it has been pointed out in the
literature that Monod type models of the form (1)–(2) do not model sufficiently
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realistically inhibition on microbial growth even when other specific functions
µ(s) are used, see e.g. [6].

Fig. 1. Solutions for x, s of Monod model (1), (2), (3)

Let us consider the substrate uptake (1) in the Monod model using Monod
function (3) in a batch mode chemostat/bioreactor:

(4)
ds

dt
= −αµmax

s

Ks + s
x.

During the initial (lag) phase the biomass x is nearly constant, x ≈ const = c,
so that we have approximately

(5)
ds

dt
≈ −αcµmax

s

Ks + s
,

This shows that for time intervals when the biomass is nearly constant, x ≈ const ,
the Monod model (5) describes the nutrient uptake similarly to the MM-law;
recall that the latter reads [11]:

(6)
ds

dt
= −Vmax

s

Km + s
.

The recognition of the close relation between Monod growth models and
those of enzyme kinetics allows us to make a step further in this direction. Next we
intend to explore some relations between microbial growth models and the HMM-
law instead of the MM-law. This will give us a possibility to introduce additional
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inhibition factors. We shall thus look in the sequel for analogies between enzyme-
substrate dynamics described by the HMM-law and microbial growth dynamics.

2.2. Basic enzyme kinetics: MM-law and HMM-law. We can
speculate that before the invention of enzyme kinetics some hundred years ago,
cf.[13], the transition of substrate S into product P under a catalyst enzyme E
was thought to happen according to the following “false” kinetic scheme:

“False” kinetic scheme: S + E
k1
−→P + E.

Applying the mass action law, the above kinetic scheme leads to a simple
differential equation for the substrate concentration s:

(7)
ds

dt
= −k1es, s(0) = s0,

where e = const = e0. The solution of (7) is an exponential decay function, which
is visualized in Figure 2 (see lower graphic). The exponential decay contradicts
the experimentally observed uptake of s, with almost constant rate in a certain
time interval (see upper graphic). The experimentally observed discrepancy be-
tween the empirical data and expected theoretical solution based on the “false”
kinetic scheme has lead to the discovery of the Henri-Michaelis-Menten kinetic
equation.

Fig. 2. Substrate dynamics according to the “false” scheme (below) and the
HMM-scheme (above)
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Remark. The “false” kinetic scheme is applicable to large classes of
catalytic chemical reactions, so it has been believed that the same scheme applies
to enzymatic reactions.

We next briefly recall the HMM-law of enzyme kinetics. The HMM-law
is presented by the following kinetic scheme:

HMM kinetic scheme: S + E
k1
−→
←−
k
−1

SE
k2
−→ P + E.

The HMM-law says that during the transition of the substrate S into
product P the enzyme E bounds the substrate into a complex SE.

The basic enzyme kinetics HMM-law is mathematically presented by a
system of ODEs for the concentrations: s = [S], e = [E], c = [SE], p = [P ].
Applying the Law of Mass Action we formulate the HMM-law in the form of the
following system of ODEs:

ds

dt
= −k1es + k−1c,

de

dt
= −k1es + (k−1 + k2)c,

dc

dt
= k1es− (k−1 + k2)c,

dp

dt
= k2c.

(8)

with initial conditions s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0.
The upper graphics in Figure 2 presents the solution for the substrate s to

system (8) and demonstrates the basic properties of the HMM-scheme discovered
by V. Henri (1901–1902) [7]–[9] and A. J. Brown (1902) [4], and experimentally
confirmed by L. Michaelis, M. Menten (1913) [10]. The solutions for s, e, c, p to
system (8) are visualized in Figure 3. Note that the graphics for s in Figure 2
(HMM model) and in Figure 3 are the same.

To explain the relation between the HMM-law (8) and the MM-law (6)
as far as the substrate dynamics is considered we next recall the Briggs-Haldane
derivation of MM-uptake [3] following [11].

From (8) using that de/dt + dc/dt = 0 implies e(t) + c(t) = e0 and thus
e = e0 − c, system (8) reduces to two equations for s and c:

ds/dt = −k1e0s + (k1s + k−1)c,

dc/dt = k1e0s− (k1s + k−1 + k2)c,

with initial conditions s(0) = s0, c(0) = 0.
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Fig. 3. Graphics of the solutions of system (8)

Assuming s0 ≫ e0 and dc/dt ≈ 0 (concentration c is at equilibrium), we
have approximately:

c(t) ≈
e0s(t)

s(t) + Km

, Km =
k−1 + k2

k1

,

which on substituting into the first equation (for s) gives the MM-law (6):

ds

dt
≈ −

k2e0s

s + Km

= −
Vmaxs

Km + s
.

The graphics of the substrate dynamics according to the MM-law (upper
graphic) and to the HMM-law (lower graphic) presented in Figure 4 show that
the two models produce different solutions. The upper graphic corresponding
to the MM-law is an approximation of the lower graphic which originates from
the true kinetic HMM-law. It can be proved that the difference between the two
solutions for s does not exceed e0.

It is to be noted that the substrate variable s participates in the denom-
inator in (6), whereas there are no terms with denominators in system (8). This
suggests that the equations modelling microbial growth that involve s in the de-
nominators of similar terms, may be considered as approximations of systems of
larger dimension with no denominators involving s.

We emphasize that the model (3) using Monod function involves the (ap-
proximate) MM-law. Our idea developed in the next section is to involve the
(true) HMM-law instead.
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Fig. 4. Graphics of the substrate dynamics according to the MM-law and HMM-law

3. Microbial growth models and the HMM-law. As demon-
strated in Figure 4, the MM-law (6) for the substrate uptake is an approximation
of the HMM-law. This approximation is good when the ratio e0/s0 is small [12].
Note that a small ratio e0/s0 is typical for laboratory experiments (in vitro), but
may be rather big in vivo [12].

Our idea is, instead of relating the microbial growth model to the (ap-
proximate) MM-law, to relate it to the original HMM-law which is the exact
mathematical description of the Henri-Michaelis-Menten kinetic equation and
should not depend on the ratio e0/s0. Besides, this will give us the freedom to
classify microorganisms into two sub-populations, and consequently, to introduce
a more effective inhibitory mechanism.

We next discuss the necessity of introducing phases in the modelling of
microbial growth.

3.1. Phases in microbial growth. Bacterial growth in batch culture
can be modelled using four different phases, cf. e. g. [6], [15]:

(A) lag phase: During the lag phase, bacteria adapt themselves to
growth conditions. It is the period where the individual bacteria are matur-
ing and not yet able to divide. During the lag phase of the bacterial growth
cycle, synthesis of RNA, enzymes and other molecules occurs.

(B) log phase: Exponential or log phase is a period characterized by cell
doubling. The number of new bacteria appearing per unit time is proportional
to the present population. If growth is not limited, doubling will continue at
a constant growth rate so both the number of cells and the rate of population
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Fig. 5. Solutions to Verhulst-Pearl DE with five different initial values

increase doubles with each consecutive time period.
(C) stationary phase: During the stationary phase, the growth rate

slows down as a result of nutrient depletion and accumulation of toxic products.
This phase is reached as the bacteria begin to exhaust the resources that are
available to them. This phase is a constant value as the rate of bacterial growth
is equal to the rate of bacterial death.

(D) death phase: At the death phase, bacteria run out of nutrient
substrate and die.

The first three of the above four phases of microbial growth are modelled
by the logistic curves which solve the well-known Verhulst-Pearl ODE: dx/dt =
ax(1 − x/k), see the two lower graphics in Figure 5. (The upper three curves
show the behavior of microbial growth when the initial state x(0) is close to the
carrying capacity k.)

Note that Verhulst-Pearl ODE describes the variation of the biomass x,
but does not involve the dynamics of the substrate nutrient. Monod type models
involve both the substrate and the biomass, but do not make use of microbial
phases.

3.2. Introducing phases in microbial growth model. Our idea
is to introduce phases in the microbial growth model suitably interpreting and
slightly modifying the HMM-law. Aiming at as simple a model as possible we
subdivide the microbial population into two subgroups:

— microorganisms in phases (A) and (C) are grouped into one subclass
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Fig. 6. Solutions to system (9)–(11)

with biomass denoted x. All microorganisms in that class experience extreme
conditions (fasting or overfed), they are not able to immediately produce enzymes;

— active (viable) microorganisms in phase (B), which possess a complete
active set of enzymes, denoted by y.

In this work we shall not assign a special subgroup to bacteria in dying
state (D).

Under these assumptions it seems useful to look for certain analogies be-
tween a microbial–nutrient system and an enzyme-substrate system. We shall
relate the subpopulation of microorganisms under stress x to free enzymes e and
the subpopulation of active microorganisms y to bounded enzymes c. Thus a pos-
sibly plausible dynamic model of a batch mode bio-reactor constructed in analogy
to the HMM-law of enzyme kinetics (8), after ignoring the reverse reaction with
rate constant k−1 in the HMM-scheme, that is assuming k−1 = 0 in system (8),
looks as follows:

ds

dt
= −k1xs,

dx

dt
= −k1xs + k2y,

dy

dt
= k1xs− k2y,

with initial conditions s(0) = s0, x(0) = x0, y(0) = y0. Adding appropriate
additional terms we obtain a variety of models. Below we present two such
models.



On the Mathematical Modelling of Microbial Growth . . . 163

Fig. 7. Solutions to system (9)–(11) in a longer time interval

3.3. Two microbial growth models using phases.

Model 1. Consider the following system of ODE’s as a model of a
microbial-nutrient batch mode bio-reactor:

ds

dt
= −k1xs− βys,(9)

dx

dt
= −k1xs + k2y − kdx

2,(10)

dy

dt
= k1xs− k2y + βys,(11)

with the initial conditions s(0) = s0, x(0) = x0, y(0) = y0. One may com-
pare systems (8) and (9)–(11) to see that some terms reflect direct analogies,
while others reflect specific characteristics of the particular system. The terms
participating in system (9)–(11) have the following meaning:

k1xs — models the consume of s by bacteria x and the transition of
(fasting) bacteria x into (viable, active) bacteria y;

βys — models the consume of s by bacteria y and the increase of bacteria
biomass y due to nutrition and reproduction;

k2y — models the transition of bacteria y into x due to depletion of s;
kdx

2 — models the competition and decay of (starving) bacteria x.
The meaning of the coefficients k1 and k2 is similar to that in the en-

zymatic HMM system (8). kd is a decay rate, whereas β is reproduction rate;
assumed is β < k1.
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In our numerical experiments we have assumed y0 is a small quantity (or
zero), meaning that at t = 0 most (all) of the microorganisms are in starving
phase.

The solutions are visualized in Figures 6, 7. The parameters in system
(9)–(11) are chosen as follows: k1 = 0.05; k2 = 0.1; kd = 0.3; β = 0.05; and the
initial conditions are: s0 = 10; x0 = 10; y0 = 0. Observed is a fast growth of
the population of active bacteria during a sufficient supply of substrate nutrient
s. The decay in the total amount of biomass x + y due to substrate depletion is
also clearly seen in Figure 7.

Fig. 8. Solutions to system (12)–(14) with α = 0.01, β = 0.04 and kd = 0.1

Model 2. Consider next the following system of ODE’s:

ds

dt
= −k1xs− (α + β)ys,(12)

dx

dt
= −k1xs + k2y + αys− kdx,(13)

dy

dt
= k1xs− k2y + (β − α)ys− kdy,(14)

with the initial conditions s(0) = s0, x(0) = x0, y(0) = y0 = 0.
The new terms involved in system (12)–(14) have the following meaning:

kdx — models the decay of bacteria x;
kdy — models the decay of bacteria y.
The meaning of the remaining terms and coefficients is similar to that in

the system (9)–(11) with one difference: in equation (13) the term αys with α ≤ β
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Fig. 9. Solutions to system (12)–(14) with α = 0.01, β = 0.04 and kd = 0.3

models a part of (overfed, poisoned) bacteria y which pass from compartment y
to compartment x. In what follows we assume β ≤ k1.

In Fig. 8 the solutions of model (12)–(14) are visualized for values of the
coefficients: k1 = 0.05, k2 = 0.03, α = 0.01, β = 0.04 and kd = 0.1.

In Fig. 9 all coefficients are same as in Fig. 8 except that the decay rate
is bigger (kd = 0.3 against kd = 0.1). It can be observed that when the decay
rate is bigger, the bacteria may die before the substrate has been utilized.

In our next numerical experiment we exchange the values for the coef-
ficients α and β. The parameters in system (12)–(14) are chosen as follows:
k1 = 0.05; k2 = 0.03; kd = 0.1; α = 0.04; β = 0.01 and the initial conditions
are: s0 = 10; x0 = 2; y0 = 0.0. The solutions are visualized in Figure 10. The
decrease in the total amount of biomass x+ y due to substrate depletion is again
clearly observed.

Our numerical simulations show that the two models (9)–(11) and (12)–
(14) adequately reflect the inhibition on microbial growth due to nutrient deple-
tion. The presence of more parameters and terms allows us the freedom to tune
the model better to particular realistic situations. The behavior of the computed
solutions is close to the experimentally observed behavior of microbial growth.

3.4. Relation to Monod type models. Here we analyze the relation
between the proposed microbial growth models and the Monod models of the type
(1)–(2). To this end consider the simplified system (9)–(11) where the mortality
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Fig. 10. Solutions to (12)–(14) with α = 0.04, β = 0.01 and kd = 0.1

rate of bacteria x is taken to be kd = 0, that is:

ds

dt
= −k1xs− βys,(15)

dx

dt
= −k1xs + k2y,(16)

dy

dt
= k1xs− k2y + βys,(17)

with the initial conditions s(0) = s0, x(0) = x0, y(0) = y0 = 0.
Adding equations (16)–(17) we obtain x′ + y′ = βys, which after integra-

tion gives: x(t) = x0 − y + φ, with φ = β
∫

t

0
ysdτ .

We shall next do some simple calculations based on the approximation
y′ ≈ 0, which is often a realistic assumption at least for the time period when y
is close to its maximum. From y′ = 0 and (17) we calculate y in terms of s from
k1(x0 − y + φ)s− k2y + βys = 0, obtaining thus:

y =
k1(x0 + φ)s

k2 + (k1 − β)s
.

Substituting this into (15) (which due to y′ = 0 can be written as s′ = −k2y)
gives:

s′ = −k1xs− βys = −k2y = −
k1k2(x0 + φ)s

k2 + (k1 − β)s
,
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which can be written as:

s′ = −
k2(x0 + φ)s

k2/k1 + (1− β/k1)s
.

Noticing that x0 + φ = x + y is the total biomass we see that the above DE
coincides (up to some parameters) with the MM-uptake which is characteristic
for Monod type models (1)–(3).

4. Conclusions. It has been noted [6] that Monod type models are
most adequate when microorganisms are in active states, which explains why once
disturbed bio-reactors often go out of control. Our proposed approach to bacterial
growth modelling provides various possibilities to flexibly account for specific
microbial competence under various types of environmental conditions and thus
may be suitable for the reliable modelling and control of certain bio-reactors.
We formulate two particular models involving microbial phases and show that
the computed solutions adequately reflect practically observed inhibition effects.
For the construction of our models we make substantial use of ideas inspired by
enzyme kinetics mechanisms.

Acknowledgements. The author is grateful to the referees for their
useful comments and valuable recommendations.

REFERE NC ES

[1] Burhan N., Ts. Sapundzhiev, V. Beschkov. Mathematical modelling of
cyclodestrin-glucano-transferase production by batch cultivation. Biochemi-

cal Engineering J., 24 (2005), 73–77.

[2] Burhan N., Ts. Sapundzhiev, V. Beschkov. Mathematical modelling of
cyclodestrin-glucano-transferase production by immobilised cells of Bacillus
circulans ATCC21783 at batch cultivation. Biochemical Engineering J., 35

(2007), 114–119.

[3] Briggs, G. E., J. B. S. Haldane. A note on the kinetic of enzyme action.
Biochem. J., 19 (1925), 338–339.

[4] Brown A. J. Enzyme action. J. Chem. Soc., 81 (1902), 373–386.



168 Svetoslav M. Markov

[5] Dimitrova N. Local Bifurcations in a Nonlinear Model of a Bioreactor.
Serdica Journal of Computing, 3 (2009), No 2,107–132.

[6] Gerber M., R. Span. An Analysis of Available Mathematical Models for
Anaerobic Digestion of Organic Substances for Production of Biogas. proc.
IGRC, Paris, 2008.

[7] Henri V. Recherches sur la loi de laction de la sucrase. C. R. Hebd. Acad.

Sci., 133 (1901), 891–899.

[8] Henri V. Ueber das Gesetz der Wirkung des Invertins. Z. Phys. Chem., 39

(1901), 194–216.

[9] Henri V. Theorie generale de laction de quelques diastases. C. R. Hebd.

Acad. Sci., 135 (1902), 916–919.

[10] Michaelis L., M. L. Menten. Die Kinetik der Invertinwirkung. Biochem.

Z., 49 (1913), 333–369.

[11] Murray J. D. Mathematical Biology: I. An Introduction, Third Edition,
Springer, 2002.

[12] Schnell S., P. K. Maini. Enzyme kinetics at high enzyme concentration.
Bull. Math. Biol., 62 (2000), 483–499.

[13] Schnell S., P. K. Maini. A century of enzyme kinetics: Reliability of
the KM and vmax estimates. Comments on Theoretical Biology, 8 (2003),
169–187.

[14] Smith H. L., P. Waltman. The theory of the chemostat. Dynamics of
microbial competition. Cambridge University Press, 1995.

[15] http://en.wikipedia.org/wiki/Bacterial growth

Svetoslav M. Markov

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: smarkov@bio.bas.bg

Received March 10, 2011

Final Accepted May 5, 2011


