THE NONEXISTENCE OF $[132,6,86]_{3}$ CODES AND $[135,6,88]_{3}$ CODES

Yusuke Oya

Abstract. We prove the nonexistence of $\left[g_{3}(6, d), 6, d\right]_{3}$ codes for $d=86,87,88$, where $g_{3}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / 3^{i}\right\rceil$. This determines $n_{3}(6, d)$ for $d=86,87,88$, where $n_{q}(k, d)$ is the minimum length n for which an $[n, k, d]_{q}$ code exists.

1. Introduction. An $[n, k, d]_{q}$ code \mathcal{C} is a linear code of length n, dimension k and minimum weight d over \mathbb{F}_{q}, the field of q elements. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}. We only consider non-degenerate codes having no coordinate which is identically zero.

A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists. See [8] for the updated tables of $n_{q}(k, d)$ for some small q and k. For ternary linear codes, $n_{3}(k, d)$ is known for $k \leq 5$ for all $d([5])$, but the value of $n_{3}(6, d)$ is still unknown for many integer d although the Griesmer bound is attained for all $d \geq 352$. It is known that

[^0]$n_{3}(6, d)=g_{3}(6, d)$ or $g_{3}(6, d)+1$ for $d=86,87,88$, where $g_{3}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / 3^{i}\right\rceil$ is the Griesmer bound, see [9]. An $[n, k, d]_{q}$ code attaining the Griesmer bound is called a Griesmer code. Our purpose is to prove the following theorems.

Theorem 1.1. There exist no $[132,6,86]_{3}$ codes.
Theorem 1.2. There exist no $[135,6,88]_{3}$ codes.
Corollary 1.3. $n_{3}(6, d)=g_{3}(6, d)+1$ for $d=86,87,88$.
The code obtained by deleting the same coordinate from each codeword of \mathcal{C} is called a punctured code of \mathcal{C}. If there exist an $[n+1, k, d+1]_{q}$ code which gives \mathcal{C} as a punctured code, \mathcal{C} is called extendable. To prove Theorem 1.1, we show the that a putative $[132,6,86]_{3}$ code is extendable.
2. Preliminary results. We denote by $\mathrm{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. 0-flats, 1-flats, 2-flats, 3-flats, ($r-2$)-flats and ($r-1$)-flats are called points, lines, planes, solids, secundums and hyperplanes respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e. $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$. We set $\theta_{j}=0$ for $j<0$.

Let \mathcal{C} be a non-degenerate $[n, k, d]_{q}$ code. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$ denoted also by \mathcal{C}. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C}. Denote by γ_{0} the maximum multiplicity of a point from Σ in \mathcal{C} and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, as

$$
m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|,
$$

where $|T|$ denotes the number of elements in a set T. When the code is projective, i.e. when $\gamma_{0}=1$, the multiset \mathcal{C} forms an n-set in Σ and the above $m_{\mathcal{C}}(S)$ is equal to $|\mathcal{C} \cap S|$. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-solid and so on are defined similarly. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Conversely such a partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ as above gives an $[n, k, d]_{q}$ code in a natural manner. For an m-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m
$$

We write simply γ_{j} instead of $\gamma_{j}(\Sigma)$. It holds that $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. When \mathcal{C} is Griesmer, γ_{j} 's are uniquely determined [6] as follows.

$$
\begin{equation*}
\gamma_{j}=\sum_{u=0}^{j}\left[\frac{d}{q^{k-1-u}}\right] \text { for } 0 \leq j \leq k-1 \tag{2.1}
\end{equation*}
$$

Hence, every Griesmer $[n, k, d]_{q}$ code is projective if $d \leq q^{k-1}$. In this paper, we only consider projective codes. Denote by a_{i} the number of hyperplanes Π in Σ with $m_{\mathcal{C}}(\Pi)=i$. The list of a_{i} 's is called the spectrum of \mathcal{C}. We usually use τ_{j} 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C}. A simple counting of argument yields the following.

Lemma 2.1. A projective $[n, k, d]_{q}$ code satisfies
(1) $\sum_{i=0}^{n-d} a_{i}=\theta_{k-1}$,
(2) $\sum_{i=1}^{n-d} i a_{i}=n \theta_{k-2}$,
(3) $\sum_{i=2}^{n-d} i(i-1) a_{i}=n(n-1) \theta_{k-3}$.

We get the following from the three equalities of Lemma 2.1:

$$
\begin{equation*}
\sum_{i=0}^{n-d-2}\binom{n-d-i}{2} a_{i}=\binom{n-d}{2} \theta_{k-1}-n(n-d-1) \theta_{k-2}+\binom{n}{2} \theta_{k-3} \tag{2.2}
\end{equation*}
$$

Lemma 2.2 ([10]). Let Π be an i-hyperplane through a t-secundum δ. Then
(1) $t \leq \gamma_{k-2}-(n-i) / q=\left(i+q \gamma_{k-2}-n\right) / q$.
(2) $a_{i}=0$ if an $\left[i, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq i-\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ does not exist, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
(3) $\gamma_{k-3}(\Pi)=\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ if an $\left[i, k-1, d_{1}\right]_{q}$ code satisfying $d_{1} \geq i-\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor+1$ does not exist.
(4) Let c_{j} be the number of j-hyperplanes through δ other than Π. Then

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=i+q \gamma_{k-2}-n-q t \tag{2.3}
\end{equation*}
$$

(5) For a γ_{k-2}-hyperplane Π_{0} with spectrum $\left(\tau_{0}, \ldots, \tau_{\gamma_{k-3}}\right)$, $\tau_{t}>0$ holds if $i+q \gamma_{k-2}-n-q t<q$.

Theorem 2.3 ([11]). Let \mathcal{C} be a Griesmer $[n, k, d]_{p}$ code, p a prime. If p^{e} divides d, then p^{e} is a divisor of all nonzero weights of \mathcal{C}.

Let \mathcal{C} be an $[n, k, d]_{3}$ code with $k \geq 3, \operatorname{gcd}(3, d)=1$. The diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} was defined in [12] as the pair of integers:

$$
\Phi_{0}=\frac{1}{2} \sum_{3 \mid n-i} a_{i}, \quad \Phi_{1}=\frac{1}{2} \sum_{i \neq n, n-d(\bmod 3)} a_{i}
$$

where the notation $x \mid y$ means that x is a divisor of y. Let

$$
\begin{aligned}
& F_{0}=\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \equiv n \quad(\bmod 3)\right\} \\
& F_{1}=\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \not \equiv n, n-d \quad(\bmod 3)\right\} \\
& F_{2}=\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \equiv n-d \quad(\bmod 3)\right\}
\end{aligned}
$$

Then we have $\Phi_{s}=\left|F_{s}\right|$ for $s=0,1$.
The diversity can be applied to the dual space Σ^{*} of Σ. A t-flat Π of Σ^{*} with $\left|\Pi \cap F_{0}\right|=i,\left|\Pi \cap F_{1}\right|=j$ is called an $(i, j)_{t}$ flat. An $(i, j)_{1}$ flat is called an (i, j)-line. An (i, j)-plane, an (i, j)-solid and so on are defined similarly. We denote by \mathcal{F}_{j}^{*} the set of j-flats of Σ^{*}. Let Λ_{t} be the set of all possible (i, j) for which an $(i, j)_{t}$ flat exists in Σ^{*}. Then we have

$$
\begin{aligned}
\Lambda_{1}= & \{(1,0),(0,2),(2,1),(1,3),(4,0)\} \\
\Lambda_{2}= & \{(4,0),(1,6),(4,3),(4,6),(7,3),(4,9),(13,0)\} \\
\Lambda_{3}= & \{(13,0),(4,18),(13,9),(10,15),(16,12),(13,18),(22,9),(13,27),(40,0)\} \\
\Lambda_{4}= & \{(40,0),(13,54),(40,27),(31,45),(40,36),(40,45),(49,36),(40,54),(67,27) \\
& (40,81),(121,0)\} \\
\Lambda_{5}= & \{(121,0),(40,162),(121,81),(94,135),(121,108),(112,126),(130,117) \\
& (121,135),(148,108),(121,162),(202,81),(121,243),(364,0)\}
\end{aligned}
$$

see [12]. Let $\Pi_{t} \in \mathcal{F}_{t}$. Let $\varphi_{s}{ }^{(t)}=\left|\Pi_{t} \cap F_{s}\right|, s=0,1 .\left(\varphi_{0}{ }^{(t)}, \varphi_{1}{ }^{(t)}\right)$ is called the diversity of Π_{t}.

We use the following extension theorem to prove Theorem 1.1.
Theorem $2.4([3])$. Let \mathcal{C} be an $[n, k, d]_{3}$ code with $\operatorname{gcd}(d, 3)=1$ whose diversity satisfies $\Phi_{1}=0$. Then \mathcal{C} is extendable.

The following Lemma gives the set of all possible diversities of nonextendable $[n, k, d]_{3}$ codes for $k=5,6$, which is needed later.

Lemma 2.5 ([7]). Let \mathcal{C} be an $[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1$. If \mathcal{C} is not extendable, then
(1) when $k=5$, $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{5}^{+}=\{(40,27),(31,45),(40,36),(40,45),(49,36)\}$,
(2) when $k=6$, $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{6}^{+}=\{(121,81),(94,135),(121,108)$, $(112,126),(130,117),(121,135),(148,108)\}$.

The following Lemmas 2.6 and 2.7 can be derived from Theorems 3.12, $3.13,3.16$ in [12].

Lemma 2.6 ([12]). Let Π be a $\left(\varphi_{0}, \varphi_{1}\right)_{4}$ flat with $\left(\varphi_{0}, \varphi_{1}\right) \in \mathcal{D}_{5}^{+}$.
(1) For any point P of $F_{0} \cap \Pi$, the numbers of (i, j)-lines through P in Π, denoted by $p_{i, j}$, is as in Table 2.1.

Table 2.1

φ_{0}	φ_{1}	$p_{1,0}$	$p_{2,1}$	$p_{4,0}$	$p_{1,3}$
40	27	18	0	13	9
		9	27	4	0
31	45	15	0	10	15
		6	27	1	6
40	36	6	27	4	3
40	45	3	27	4	6
49	36	12	0	16	12
		3	27	7	3

(2) For any point Q of $F_{1} \cap \Pi$, the numbers of (i, j)-lines through Q in Π, denoted by $q_{i, j}$, is as in Table 2.2.

Table 2.2

φ_{0}	φ_{1}	$q_{1,3}$	$q_{0,2}$	$q_{2,1}$
40	27	4	18	18
31	45	13	18	9
40	36	10	15	15
40	45	16	12	12
49	36	13	9	18

Table 2.3

φ_{0}	φ_{1}	$r_{1,0}$	$r_{2,1}$	$r_{0,2}$
40	27	22	9	9
31	45	13	9	18
40	36	16	12	12
40	45	10	15	15
49	36	13	18	9

(3) For any point R of $F_{2} \cap \Pi$, the numbers of (i, j)-lines through R in Π, denoted by $r_{i, j}$, is as in Table 2.3.

Lemma $2.7([12]) . \quad$ Let Π be $a\left(\varphi_{0}, \varphi_{1}\right)_{5}$ flat with $\left(\varphi_{0}, \varphi_{1}\right) \in \mathcal{D}_{6}^{+}$.
(1) For any point Q of $F_{1} \cap \Pi$, there are at most $54(2,1)$-lines through Q in Π.
(2) For any point R of $F_{2} \cap \Pi$, the number of $(1,0)$-lines or $(0,2)$-lines through R in Π is at most 94 .
3. Spectra of some $[\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{d}]_{\boldsymbol{3}}$ codes. In this section, we give some results on ternary linear codes, which are needed in the next sections. Table 3.1 can be obtained from the known results [2].

Table 3.1. The spectra of some ternary linear codes.

parameters	possible spectra
$[7,4,3]_{3}$	$\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(14,9,9,8)$
	$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(2,9,12,10,7)$
	$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(4,4,15,11,6)$
	$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(3,8,9,15,5)$
$[8,4,4]_{3}$	$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(3,4,10,12,11)$
	$\left.\left(a_{0}, a_{2}, a_{3}, a_{4}\right)\right)=(4,16,8,12)$
	$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(2,8,4,16,10)$
$[9,4,5]_{3}$	$\left(a_{0}, a_{1}, a_{3}, a_{4}\right)=(1,9,12,18)$
$[15,4,9]_{3}$	$\left(a_{3}, a_{6}\right)=(15,25)$
	$\left(a_{0}, a_{3}, a_{6}\right)=(1,13,26)$
$[10,5,5]_{3}$	$\left(a_{1}, a_{2}, a_{4}, a_{5}\right)=(10,45,30,36)$
$[16,5,9]_{3}$	$\left(a_{1}, a_{4}, a_{7}\right)=(6,57,58)$
$[19,5,11]_{3}$	$\left(a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{8}\right)=(1,9,9,27,30,45)$

Lemma 3.1 ([2]). The spectrum of a projective $[15,4,9]_{3}$ code is $\left(a_{3}, a_{6}\right)=(15,25)$.

The following information about the classification of some ternary codes was supplied by I. Bouyukliev via T. Maruta.

Lemma 3.2 (cf.[1]).
(1) The spectrum of $a[25,5,15]_{3}$ code is either $\left(a_{1}, a_{4}, a_{7}, a_{10}\right)=(1,12$, $43,65)$ or $\left(a_{4}, a_{7}, a_{10}\right)=(15,40,66)$.
(2) The spectrum of a projective $[28,5,17]_{3}$ code is $\left(a_{1}, a_{5}, a_{8}, a_{10}, a_{11}\right)=$ $(1,18,18,39,45)$.
(3) The spectrum of $a[37,5,23]_{3}$ code is either $\left(a_{1}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}\right)=$ $(1,18,9,9,30,54)$ or $\left(a_{2}, a_{7}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}\right)=(1,4,14,5,13,31,53)$.
(4) The spectrum of $a[47,5,30]_{3}$ code is either $\left(a_{5}, a_{8}, a_{11}, a_{14}, a_{17}\right)=$ $(1,4,10,23,83)$ or $\left(a_{2}, a_{11}, a_{14}, a_{17}\right)=(1,18,18,84)$.
(5) Every $[29,5,18]_{3}$ code is not projective.

Lemma 3.3. Every $[46,5,29]_{3}$ code is extendable.
Proof. Let \mathcal{C} be a $[46,5,29]_{3}$ code and let Δ be a γ_{3}-solid, which gives a $[17,4,10]_{3}$ by Lemma 2.2. So we have $a_{3}=a_{6}=a_{12}=0$ by Lemma 2.2 and the known $n_{3}(4, d)$ table. Now, $F_{1}=\{0$-solids, 9 -solids, 15 -solids $\}$. From (2.2), we obtain

$$
\begin{align*}
& 136 a_{0}+120 a_{1}+105 a_{2}+78 a_{4}+66 a_{5}+45 a_{7}+36 a_{8} \\
& \quad+28 a_{9}+21 a_{10}+15 a_{11}+6 a_{13}+3 a_{14}+a_{15}=471 \tag{3.1}
\end{align*}
$$

since \mathcal{C} is projective. And a 15 -solid in $\Sigma=\mathrm{PG}(4,3)$ gives a $[15,4,9]_{3}$ code by Lemma 2.2, which is also projective. Hence it has only 3 -planes or 6 -planes by Lemma 3.1.

Suppose $a_{0}>0$ and let Δ_{1} be a 0 -solid in Σ. For $i=0$, the maximum possible contribution of c_{j} 's in (2.3) to the LHS of (3.1) is $\left(c_{13}, c_{16}, c_{17}\right)=(1,1,1)$ for $t=0$. Estimating the LHS of (3.1) we get $471 \leq 6 \cdot 40+136=376$, a contradiction. Hence $a_{0}=0$.

Now, \mathcal{C} is not extendable by (4) of Lemma 3.2 if $a_{9}+a_{15}>0$. Then, the diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} satisfies $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{5}^{+}$by Lemma 2.5 .

Suppose $a_{9}>0$. Let Δ_{2} be a 9 -solid in Σ and let Δ_{2}^{*} be the corresponding point of F_{1} in Σ^{*}. Then Δ_{2} gives a $[9,4,5]_{3}$ code by Lemma 2.2. Hence the spectrum of Δ_{2} is $\left(\tau_{0}, \tau_{1}, \tau_{3}, \tau_{4}\right)=(1,9,12,18)$. For $i=9, t=4$, the equation (2.3) has the unique solution $\left(c_{16}, c_{17}\right)=(2,1)$ corresponding to a $(2,1)$-line through Δ_{2}^{*}. And for $i=9$, a t-solid with the solution of (2.3) corresponding to a $(1,3)$-line exists only when $t=3$, because a 15 -solid in Σ has only 3 -planes or 6 -planes. Hence, there are at least $\tau_{4}=18(2,1)$-lines through Δ_{2}^{*} and there are at most $\tau_{3}=12(1,3)$-lines through Δ_{2}^{*}. Therefore $\left(\Phi_{0}, \Phi_{1}\right)=(40,27), \gamma_{1,3}=4$, $\gamma_{0,2}=18, \gamma_{2,1}=18$ by Table 2.2, where $\gamma_{i, j}$ denotes the number of (i, j)-lines through Δ_{2}^{*} in Σ^{*}. And then one 0 -plane and nine 1-planes, eight 3 -planes in Δ_{1} correspond to $(0,2)$-lines through Δ_{2}^{*} in Σ^{*}. For $i=9, t=0,1,3$ in Lemma 2.2 , the equation (2.3) has the solution corresponding to a (0,2)-line as Table 3.2. Hence, estimating the LHS of (3.1) we get $471 \leq 43 \cdot 1+31 \cdot 9+4 \cdot 8+2 \cdot 4+28=390$, a contradiction. Thus $a_{9}=0$.

Suppose $a_{15}>0$ and $a_{7}>0$. Let π_{1} be a 7 -solid in Σ and let P be the corresponding point of F_{0} in Σ^{*}. Then π_{1} gives a $[7,4,3]_{3}$ code by Lemma 2.2. Hence the spectrum of π_{1} satisfies $\tau_{3} \leq 15$. For $i=7$, the equation (2.3) has no solution corresponding to a $(1,3)$-line through P in Σ^{*} and a t-solid with the solution of (2.3) corresponding to a $(2,1)$-line exists only when $t=3$, since a 15 -solid in Σ has only 3 -planes or 6 -planes. Hence, $\gamma_{1,3}=0, \gamma_{2,1} \leq 15$. But there
exists no diversity satisfying this condition in Table 2.1, a contradiction. Thus $a_{15}>0$ implies $a_{7}=0$.

Next, suppose $a_{15}>0$ and $a_{8}>0$. Let π_{2} be a 8 -solid in Σ and let R be the corresponding point of F_{2} in Σ^{*}. Then π_{2} gives a $[8,4,4]_{3}$ code by Lemma 2.2 , and the spectrum of π_{2} satisfies $\tau_{3} \leq 16$. For $i=8$, a t-solid with the solution of (2.3) corresponding to a $(0,2)$-line or a $(2,1)$-line through R exists only when $t=3$, since a 15 -solid in Σ has only 3 -planes or 6 -planes. Hence, $\gamma_{0,2}+\gamma_{2,1} \leq 16$, contradicting Table 2.3. Hence, $a_{15}>0$ implies that $a_{7}=a_{8}=0$.

Suppose $a_{15}>0$. Since \mathcal{C} is projective, the spectrum of a 15 -solid is $\left(\tau_{3}, \tau_{6}\right)=(15,25)$ by Lemma 3.1. Then, for $i=15$, the maximum possible contributions of c_{j} 's in (2.3) to the LHS of (3.1) are $\left(c_{10}, c_{13}, c_{17}\right)=(1,1,1)$ for $t=3$ and $\left(c_{15}, c_{17}\right)=(1,2)$ for $t=6$, since $a_{7}=a_{8}=0$. Estimating the LHS of (3.1) we get $471 \leq 27 \cdot 15+1 \cdot 25+1=431$, a contradiction. Hence $a_{15}=0$.

Now, our assertion follows from Theorem 2.4.

Table 3.2. Solutions of (2.3) for $i=9$ corresponding to a (0,2)-line

t	c_{1}	c_{2}	c_{4}	c_{5}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{13}	c_{14}	c_{15}	c_{16}	c_{17}
0							1		1			-		1
							1				2	-		
1							1				1	-		1
3											1	1		1

Corollary 3.4. The spectrum of $a[46,5,29]_{3}$ code satisfies

$$
a_{i}=0 \text { for all } i \notin\{1,2,4,5,7,8,10,11,13,14,16,17\}
$$

4. Proof of Theorems 1.1 and 1.2.

Lemma 4.1. There exists no $[133,6,87]_{3}$ code.
Proof. Let \mathcal{C} be a putative $[133,6,87]_{3}$ code and let Π be a γ_{4}-hyperplane in $\Sigma=\operatorname{PG}(5,3)$. Then Π satisfies $\tau_{i}=0$ for all $i \notin\{1,2,4,5,7,8,10,11,13,14,16$, $17\}$ by Corollary 3.4 , so $a_{i}=0$ for all $i \notin\{1,10,16,19,25,28,34,37,43,46\}$ by Theorem 2.3, Lemma 2.2 and the known $n_{3}(5, d)$-table. From (2.1), we obtain

$$
\begin{equation*}
35 a_{1}+22 a_{10}+15 a_{16}+12 a_{19}+7 a_{25}+5 a_{28}+2 a_{34}+a_{37}=112 \tag{4.1}
\end{equation*}
$$

since \mathcal{C} is projective.
Suppose $a_{1}>0$ and let π_{1} be a 1-hyperplane. The spectrum of π_{1} is $\left(\tau_{0}, \tau_{1}\right)=(81,40)$. Then the solutions of (2.3) for $i=1$ are $\left(c_{43}, c_{46}\right)=(2,1)$ for $t=0$ and $\left(c_{43}, c_{46}\right)=(1,2)$ for $t=1$. Hence $a_{1}=1$ and $a_{i}=0$ for $10 \leq i \leq 37$, contradicting (4.1). Thus $a_{1}=0$.

Suppose $a_{10}>0$ and let π_{2} be a 10 -hyperplane. Then π_{2} gives a $[10,5,5]_{3}$ code by Lemma 2.2. The spectrum of π_{2} is $\left(\tau_{1}, \tau_{2}, \tau_{4}, \tau_{5}\right)=(10,45,30,36)$ by Table 3.1. For $i=10$, the maximum possible contributions of c_{j} 's in (2.3) to the LHS of (4.1) are $\left(c_{34}, c_{46}\right)=(1,2)$ for $t=1$ and $\left(c_{37}, c_{46}\right)=(1,2)$ for $t=2$ and $\left(c_{43}, c_{46}\right)=(1,2)$ for $t=4$ and $c_{46}=3$ for $t=5$. Estimating the LHS of (4.1) we get $112 \leq 2 \cdot 10+1 \cdot 45+22=87$, a contradiction. Hence $a_{10}=0$.

Similarly, for $i=16,19$, considering the maximum possible contributions of c_{j} 's in (2.3) to the LHS of (4.1) gives a contradiction. Hence $a_{16}=a_{19}=0$.

Suppose $a_{25}>0$ and let π_{3} be a 25 -hyperplane. Then π_{3} gives a $[25,5,15]_{3}$ code by Lemma 2.2. Hence there are two possible spectra for π_{5} by Lemma 3.2. We first assume that the spectrum of π_{3} is $\left(\tau_{1}, \tau_{4}, \tau_{7}, \tau_{10}\right)=(1,12,43,65)$. For $i=25$, the maximum possible contributions of c_{j} 's in (2.3) to the LHS of (4.1) are $\left(c_{25}, c_{43}\right)=(1,2)$ for $t=1$ and $\left(c_{34}, c_{43}\right)=(1,2)$ for $t=4$ and $\left(c_{37}, c_{46}\right)=(1,2)$ for $t=7$ and $c_{46}=3$ for $t=10$, since $c_{28}=0$ when $t=4$ by Lemma 3.2. Estimating the LHS of (4.1) we get $112 \leq 7 \cdot 1+2 \cdot 12+1 \cdot 43+7=81$, a contradiction. We get a contradiction similarly for the other spectrum of π_{5}. Hence $a_{25}=0$.

Suppose $a_{28}>0$ and let π_{4} be a 28 -hyperplane. Then π_{4} gives a $[28,5,17]_{3}$ code by Lemma 2.2. The spectrum of π_{4} is $\left(\tau_{1}, \tau_{5}, \tau_{8}, \tau_{10}, \tau_{11}\right)=(1,18,18,39,45)$ by Lemma 3.2. For $i=28$, the equation (2.3) has the solutions as in Table 4.1.

Table 4.1

t	c_{28}	c_{34}	c_{37}	c_{43}	c_{46}
1	1	1			1
	1		1	1	
		1	2		
5	1		-		2
		1	-	2	
8			1		2
				3	
10				1	2
11					3

Since there are one 1-solid and 185 -solids in π_{4}, we get $a_{28}+a_{34} \leq \tau_{1} \cdot 2+\tau_{5} \cdot 1=20$
by Table 4.1. Similarly, we also get $a_{28}+a_{34}+a_{37} \leq \tau_{1} \cdot 3+\tau_{5} \cdot 1+\tau_{8} \cdot 1=39$ by Table 4.1. Hence, we get $73-4 a_{28} \leq a_{34} \leq 20-a_{28}$ from these two inequalities and (4.1). Hence, if $a_{28}>0$, then it holds that $a_{28} \geq 18$ and there exists a 46hyperplane which has a 5 -solid. (Otherwise, estimating the maximum possible LHS of (4.1) we get $112 \leq 7 \cdot 1+2 \cdot 18+1 \cdot 18+5=66$, a contradiction.) Now, let Π^{\prime} be a 46 -hyperplane containing a 5 -solid. Then Π^{\prime} gives a $[46,5,29]_{3}$ code by Lemma 2.2. For $i=46$, the solutions of the equation (2.3) satisfy $c_{28} \leq 2$ when $t=5$ and $c_{28} \leq 1$ when $7 \leq t \leq 11$. Since the spectrum of Π^{\prime} satisfies $\tau_{5}=1, \tau_{7}+\tau_{8}=4, \tau_{10}+\tau_{11}=10$ by Lemma 3.3 and Lemma 3.2 (4), we get $a_{28} \leq \tau_{5} \cdot 2+\left(\tau_{7}+\tau_{8}\right) \cdot 1+\left(\tau_{10}+\tau_{11}\right) \cdot 1=16$, a contradiction. Hence $a_{28}=0$. Now, we get $2 a_{34}+a_{37}=112$ from (4.1), and $4 a_{34}+3 a_{37}+a_{43}=217$ from (1) and (2) of Lemma 2.1, whence $a_{37}+a_{43}=-7$, a contradiction. This completes the proof.

Proof of Theorem 1.1. Let \mathcal{C} be a putative $[132,6,86]_{3}$ code and let Π be a γ_{4}-hyperplane in $\Sigma=\operatorname{PG}(5,3)$. Then Π satisfies $\tau_{i}=0$ for all $i \notin\{1,2,4,5,7,8,10,11,13,14,16,17\}$ by Corollary 3.4 , so $a_{i}=0$ for all $i \notin$ $\{0-2,6,9-11,15,16,18-20,24,25,27-29,33,34,36-38,42,43,45,46\}$ by Lemma 2.2 and the known $n_{3}(5, d)$-table. Suppose $a_{29}>0$ and let π_{1} be a 29 -hyperplane in Σ. Then π_{1} gives a $[29,5,18]_{3}$ code by Lemma 2.2. By Lemma 3.2 (5), $\gamma_{0}\left(\pi_{1}\right) \neq 1$, which contradicts the fact that \mathcal{C} is projective. Hence $a_{29}=0$.
Since \mathcal{C} is not extendable by Lemma 4.1, the diversity (Φ_{0}, Φ_{1}) of \mathcal{C} satisfies $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{6}^{+}$by Lemma 2.5. And it holds that $F_{1}=\{i$-hyperplanes $\mid i \in$ $\{2,11,20,38\}\}$. Let π be an i-hyperplane in F_{1} and let π^{*} be the point of F_{1} in Σ^{*} corresponding to π. Then there are at most $54(2,1)$-lines through π^{*} in Σ^{*} by (1) of Lemma 2.7. If $i=2, \pi$ has 540 -solids, 541 -solids and 132 solids. Setting $i=2$ in Lemma 2.2, the equation (2.3) has the unique solution $\left(c_{42}, c_{43}, c_{45}\right)=(1,1,1)$ corresponding to a $(2,1)$-line through π^{*} for $t=0$, and $\left(c_{45}, c_{46}\right)=(2,1)$ corresponding to a $(2,1)$-line through π^{*} for $t=2$. Hence, there are at least $67(2,1)$-lines through π^{*}, a contradiction. Similarly, we can get a contradiction for $i=11,20,38$. Thus $a_{2}=a_{11}=a_{20}=a_{38}=0$.

Hence we get $\Phi_{1}=\left|F_{1}\right|=0$, which implies that \mathcal{C} is extendable by Theorem 2.4. But there exists no $[133,6,87]_{3}$ code by Lemma 4.1, a contradiction. This completes the proof.

Lemma 4.2 ([4]). There exists no $[136,6,89]_{3}$ code.
Proof of Theorem 1.2. Let \mathcal{C} be a putative $[135,6,88]_{3}$ code and let Π be a γ_{4}-hyperplane in $\Sigma=\mathrm{PG}(5,3)$. Then Π gives a $[47,5,30]_{3}$ code by Lemma 2.2. By Lemma 3.2, Π satisfies $\tau_{i}=0$ for all $i \notin\{2,5,8,11,14,17\}$, so
$a_{i}=0$ for all $i \notin\{2,9-11,18-20,27-29,36-38,45-47\}$ by Lemma 2.2 and the known $n_{3}(5, d)$-table. Since \mathcal{C} is not extendable by Lemma 4.2, the diversity $\left(\Phi_{0}, \Phi_{1}\right)$ of \mathcal{C} satisfies $\left(\Phi_{0}, \Phi_{1}\right) \in \mathcal{D}_{6}^{+}$by Lemma 2.5. Now, let Σ^{*} be the dual space of Σ. Let Π^{*} be the point of F_{2} corresponding Π in Σ^{*} and let $r_{i, j}$ be the number of (i, j)-lines through Π^{*}. Then, for $i=47, t=14,17$, the equation (2.3) has no solution corresponding to a $(2,1)$-line through Π^{*}. Thus, by Lemma 3.2, we get

$$
r_{1,0}+r_{0,2} \geq \tau_{14}+\tau_{17} \geq 102
$$

which contradicts (2) of Lemma 2.7. This completes the proof.

REFERENCES

[1] Bouyukliev I., J. Simonis. Some new results for optimal ternary linear codes. IEEE Trans. Inform. Theory 48 (2002), 981-985.
[2] Eupen M. van, P. Lisonek. Classification of some optimal ternary linear codes of small length. Des. Codes Cryptogr. 10 (1997), 63-84.
[3] Hill R. An extension theorem for linear codes. Des. Codes Cryptogr. 17 (1999), 151-157.
[4] Jones C. M. Optimal ternary linear codes. PhD thesis, University of Salford, 2000.
[5] Landjev I. N. The nonexistence of some optimal ternary linear codes of dimension five. Des. Codes Cryptogr. 15 (1998), 245-258.
[6] Maruta T. On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr. 22 (2001), 165-177.
[7] Maruta T. Extendability of ternary linear codes. Des. Codes Cryptogr. 35 (2005), 175-190.
[8] Maruta T. Griesmer bound for linear codes over finite fields. http://www.geocities.jp/mars39geo/griesmer.htm.
[9] Maruta T., Y. Oya. On optimal ternary linear codes of dimension 6. Adv. Math. Commun., (to appear).
[10] Takenaka M., K. Okamoto, T. Maruta. On optimal non-projective ternary linear codes. Discrete Math. 308 (2008), 842-854.
[11] Ward H. N. Divisibility of codes meeting the Griesmer bound. J. Combin. Theory Ser. A 83 (1998), 79-93.
[12] Yoshida Y., T. Maruta. Ternary linear codes and quadrics. Electronic J. Combin. 16 (2009) \#R9.

Yusuke Oya
Department of Mathematics and Information Sciences
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
e-mail: yuu.vim-0319@hotmail.co.jp

[^0]: ACM Computing Classification System (1998): E.4.
 Key words: ternary linear codes, optimal codes, projective geometry.

