
Serdica J. Computing 5 (2011), 79–100

MODERNIZING LEGACY PHYSICS APPLICATIONS FOR

REUSE IN WEB AND SOA∗

Anna Malinova

Abstract. This paper concerns the application of recent information tech-
nologies for creating a software system for numerical simulations in the do-
main of plasma physics and in particular metal vapor lasers. The presented
work is connected with performing modernization of legacy physics software
for reuse on the web and inside a Service-Oriented Architecture environ-
ment. Applied and described is the creation of Java front-ends of legacy
C++ and FORTRAN codes. Then the transformation of some of the scien-
tific components into web services, as well as the creation of a web interface
to the legacy application, is presented. The use of the BPEL language for
managing scientific workflows is also considered.

ACM Computing Classification System (1998): D.2.12, D.2.13, D.2.11, H.3.5, I.6.8.
Key words: reengineering, wrapping, legacy software, JNI, SOA, BPEL, scientific workflows,

web services.
∗This article presents the principal results of the doctoral thesis “Software system for com-

puter simulation of metal vapor lasers” by Anna Malinova (Paisii Hilendarski University of
Plovdiv), successfully defended before the Specialized Academic Council for Informatics and
Mathematical Modelling on 2 November 2009. Additional research results and basic aspects of
future development are also presented.

This work was partially supported by the NSF of the Bulgarian Ministry of Education and
Science, project VU-MI-205/2006, and the RS-2009-M13 project of the Scientific Fund of the
Paisii Hilendarski University of Plovdiv, Bulgaria.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


80 Anna Malinova

1. Introduction. The intensive development of computer technology,
informatics, and information technologies gave a new meaning to the concepts of
scientific experiment and modern physics laboratory. An important direction of
physics research is solving the problems of plasma physics, which is in the basis of
studying the processes of a broad spectrum of technical devices, lasers and metal
vapor lasers in particular.

As a result of the growing interest in simulating metal vapor lasers, new
results for the improvement of the characteristics of the laser have been obtained
in recent years and many mathematical and statistical methods and correspond-
ing numerical algorithms have also been developed. For instance, some of our
group’s results are: In [13], [14] and [15] a new analytical formula for determin-
ing the gas temperature profile of the gas discharge in CuBr, ultraviolet CuBr and
He-SrBr2 lasers was obtained. These results are used to produce corresponding
codes for computer simulation of various temperature and cooling processes under
varying laser operating conditions. In [12] a numerical model for simulation of
the electric field intensity in copper bromide lasers was developed. The model is
applied in the created BPEL process for simulation of the electric field potential
and intensity [24], as discussed further in this paper. Most of these codes solve
particular concrete tasks of the entire process of computer simulation of metal
vapor lasers and have become a basis for searching solutions for integration and
reuse of legacy physics applications.

After a survey of a large number of existing software products in the
domain of plasma physics and laser simulations, several conclusions have been
pointed out [26]:

• A significant amount of resources has been invested toward the development
of high-performance scientific simulation software, including numerical li-
braries, visualization, software frameworks, and physics packages;

• Applications are based on complicated mathematics and physics results and
have been repeatedly tested and refined over the years;

• Developing such systems requires interdisciplinary teams;

• General-purpose physics software systems can serve only for a part of the
simulation process in contrast to specialized applications;

• Many of the applications developed and used for numerical simulations are
command-line or desktop applications written in FORTRAN, C or C++;



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 81

• Most of the applications are not designed for interoperability and reuse.
It is difficult to share these software packages among applications due to
differences in implementation language, programming style, or calling in-
terfaces.

These applications are often considered legacy code, because they are de-
veloped with technologies that precede contemporary approaches and best prac-
tices. For reasons of reliability and efficiency, it is highly desirable to be able
to reuse such large and complicated software packages without having to devote
much time to reengineering them.

It is obvious that as simulations become increasingly complex and inter-
disciplinary no single person or even single group can develop scientific software
in isolation. Development teams rarely have enough scientific expertise in all
required domains to successfully create a complex application from scratch. In
addition, contemporary scientific applications are expected to be distributed,
multiplatform, scalable, and to meet such requirements as reusability, flexibility,
and interoperability.

Awareness about these arguments in favour of reusing and modernization
led us to the idea of creating Java front-ends of the native legacy software. Native
software denotes code that is “implemented in platform-dependent code, typically
written in another programming language such as C, C++, FORTRAN, or as-
sembly language”, as stated in the Java language specification [16]. In order to
address the integration requirements involved in building connected applications
we decided to apply a web services–based approach and to convert some of the
created Java modules into web services. Next these web services may be chained
into a BPEL process for simulation [24].

This paper presents the principal results of the application of the above-
mentioned information technologies for creating software for numerical simula-
tions and in particular simulation of metal vapor lasers [23]. This work is con-
nected with performing modernization through wrapping of native legacy physics
software and with building a Service-Oriented Architecture (SOA) that allows,
through integration of modules developed by separate teams, for automation of
the design process to be achieved, as well as obtaining and evaluation of basic
laser characteristics, investigation and control over the laser generation, based on
well-known mathematical, statistical and optimization models.

Section 2 presents the process of wrapping native physics codes in or-
der for them to be used in a Java-based environment for conducting numerical
simulations of metal vapor lasers. The creation of the wrapping code includes
application of the basic principles of mixed language programming, the use of



82 Anna Malinova

methods through which a Java application communicates with legacy code that
is part of the same process—Java Native Interface, and wrapping an application
as a whole by launching it in a process that is external to the virtual machine.
The building of the wrapper code is surveyed from a point of view related to
the object-oriented design and design patterns [29]. Described are: the wrapping
of a solver for calculating the distribution of the potential and intensity of an
electric field [26], [25]; the wrapping of an entire legacy application—a finite ele-
ment mesh generator [25]; the wrapping of the basic functionality of Plasimo—a
software system for simulation of low-temperature plasma [28], [8].

Section 3 presents the application of Service-Oriented Architecture for
building a software system for simulation of metal vapor lasers. The use of the
Business Process Execution Language (BPEL) for building scientific workflows
is presented, as well as an analysis of the BPEL specification in the context of
the scientific workflow’s requirements [27]. Also described are: the building of
a BPEL process for simulation of the distribution of the electric field potential
and intensity [24]; the application in the Plasimo software system—building the
WebPlasimo prototype [8].

Section 4 presents the basic aspects of future development. Section 5
provides concluding remarks.

2. Integration through wrapping of legacy physics software.

In [30] an overview of the general approaches to legacy software moderniza-
tion is provided. These are considered in the context of the basic activities
related to system evolution, which are maintenance, modernization and replace-
ment. Discussed are black-box and white-box modernization strategies, wrapping
and reengineering, respectively. It is demonstrated that although white-box and
black-box approaches suggest wrapping as an alternative strategy to reengineering
and redevelopment, quite often wrapping is introduced as one of the techniques
to carry out the reengineering, or it is defined as a “black-box reengineering
task”. This assumes a broader understanding of the reengineering process that
depends on the level of abstraction at which wrapping has been performed. For
instance, the wrapping techniques and practical experience presented further in
the recent paper show that wrapping is most often not entirely a “black-box”
approach and requires some level of reverse engineering for better understanding
of the wrapped legacy interfaces, class hierarchy or objects interrelations. In this
process a need for re-documentation and design recovery may appear. In addi-
tion, in our work, after the completion of the wrapping process, a subsequent
process of forward engineering has been performed over the wrappers in order



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 83

to extend the functionality of the legacy system, add safety or new features in
wrappers by the use of the new technologies that became available as a result of
the overall reengineering process. Further, in [30] primary legacy modernization
techniques are outlined, such as automated migration, re-hosting, package imple-
mentation, reengineering/re-architecturing, SOA integration. Special attention
is paid to the modernization towards an SOA environment and its realization
through reengineering or wrapping.

This section presents the process of wrapping legacy scientific codes in
the domain of plasma physics and simulation of metal vapor lasers. Wrapping
was chosen as a preferred modernization strategy because this is the only ap-
proach that does not entail performing code changes to the legacy system and
because this technique allows for reusing on one hand, and adoption of modern
technologies on the other.

The aim of this work was to create Java front-ends of existing modules,
written in FORTRAN, C and C++, and thus enable them to be further rein-
tegrated into a web application or a Service-Oriented Architecture, as will be
shown in Section 3. Some of these native components were our legacy codes,
while others were created by disparate teams.

2.1. Methodology. Two approaches allowing for reusing without mod-
ification have been applied and evaluated in our work. These methods are not
mutually exclusive and the main reason for choosing one or the other is the level
of interaction with the legacy system. The first method uses the Java Native
Interface (JNI) which enables integration with native legacy code by providing
a programming interface to the native environment that a Java virtual machine
is running on. In this case the interaction between the wrapper and the target
system involves class instantiation, method invocation, and control over the cre-
ated objects’ lifecycle. The second method wraps an application as a whole and
is connected with invoking the precompiled executable by forking off a separate
process, external to the Java runtime environment. This method has many lim-
itations compared to JNI and is appropriate when the interaction requirements
are relatively simple.

2.1.1. Creating Java wrappers of legacy modules through JNI.

As a part of the Java virtual machine implementation, the JNI is a two-way in-
terface that allows Java applications to invoke native code and vice versa [17].
For instance, the Java code can invoke native methods written in programming
languages such as C and C++; also, native methods can create, update and in-
spect Java objects and call their methods. Java applications call native methods
in the same way they call methods implemented in the Java programming lan-



84 Anna Malinova

guage. Behind the scenes, however, native methods are implemented in another
language and reside in native libraries. We use JNI to write the “glue” code
between the two parts. Basic aspects of using JNI are: how a Java program
calls native methods; how a native method can access Java class members; how
the corresponding types are mapped; how exceptions are handled. These situa-
tions involve understanding of the use of opaque references, reflection support,
callback functions, and such operating system specifics as locating and loading
native libraries and linking native methods with native libraries that implement
them.

When wrapping C/C++ code the following procedure is applied [20],
[26]: 1) Define the Java wrapper with the declarations of native methods. This
Java class usually loads the native library and invokes the native methods; 2)
Generate the header file to be included into the intermediate C/C++ code; 3)
Create the native C/C++ implementation containing the JNI “glue” code; 4)
Compile the intermediate C/C++ code and generate dynamic (.dll) or shared
object (.so) library.

When wrapping FORTRAN code additional C/C++ code is needed
around the legacy FORTRAN module. Integrating C and FORTRAN codes
has been practised since the advent of the first C compilers. FORTRAN–C
interactions are two-way and do not require an additional interface like the JNI.
A C/C++ function calls a FORTRAN function or subroutine like any other C
function taking into account the mixed-language programming issues.

There are several key issues that should be of concern when applying
mixed-language programming ([4], [32], [20]). Usually there are important
differences in the way languages implement the following: calling conventions;
naming conventions; passing by value or by reference; handling data types in mul-
tiple languages. These issues are important to both interactions—Java-C/C++
and FORTRAN-C/C++. For instance, calling conventions vary for different na-
tive languages. In addition, different implementations of the same language may
follow different calling conventions, but generally we may say that C++ follows
the cdecl calling convention, while FORTRAN follows the stdcall calling con-
vention. In [20] it is discussed that the JNI requires the native methods to be
written in a specified standard calling convention in a given host environment.
Thus the JNI follows the C calling convention under UNIX and the stdcall

convention under Win32.

Since the JNI wrapping adds an additional layer around the native code,
the impact of that layer on the overall system performance should be con-
sidered. Writing critical portions of a Java application in native code is usually



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 85

intended to improve performance. In [38] it is argued that after the appearance of
the JIT compilers this is no longer a good solution. It is shown that the overhead
of crossing the Java/C boundary may be severe enough to compensate the per-
formance gains that could be obtained by moving code to C. Similar conclusions
are reached in [19]: for native methods with very small amounts of computing,
the additional invocation overhead can exceed the performance benefits. In our
work concerning simulations, the transitions Java–native code were reduced to
the possible minimum number, i.e., native invocations are “coarse-grained” and
connected with native code that represents a basic step of the simulation process
and involves intensive calculations. This way, by reducing the number of JNI calls
and by leaving the cpu-intensive operations into the compiled native libraries, the
efficiency of the real simulation practically does not depend on the wrapper layer.

2.1.2. Wrapping an entire application. This method wraps the na-
tive application at operating system level by invoking it as an external to the
Java runtime environment process. Hence, interaction is limited to sending ar-
guments to the executable via the standard input and reading results via the
standard output. The wrapping process generally includes the use of two Java
classes—java.lang.Runtime and java.lang.Process. Every Java application
has a single instance of the class Runtime that allows the application to interface
with the environment in which the application is running. A reference to the
current runtime can be obtained from the getRuntime method. We use that ref-
erence to run external programs by invoking the Runtime.execmethod [25]. This
invocation creates a Process object—actually an object of the Process subclass
is created, since the Process class is an abstract class and a specific subclass of
it exists for each operating system.

This is the most straightforward way for a Java application to interact
with standalone applications written in other languages. The Java API provides
methods for performing input from a process, performing output to the process,
waiting for the process to complete, checking the exit status of the process, and
destroying the process. This approach, of course, sacrifices the low level integra-
tion for ease of use. Actually, ease of use may be regarded as a disadvantage of
this method—in practice there are hidden problems. For instance, in the JDK
Javadoc documentation it is stated that because some native platforms only pro-
vide limited buffer size for standard input and output streams, failure to promptly
write the input stream or read the output stream of the subprocess may cause
the subprocess to block and even deadlock. Hence buffering of the above opera-
tions is necessary. Other disadvantages of this method are that a predetermined
knowledge of the name and location of the wrapped application is required and



86 Anna Malinova

that the Runtime.exec method does not accept every shell command as could
be mistakenly inferred from the documentation.

2.2. Application for simulations of metal vapour lasers.

2.2.1. Design of the wrapper code. In [29] different design approaches
to the process of Java wrapping of native legacy scientific codes in the domain
plasma physics and simulation of metal vapor lasers are presented. There are two
integration options when encapsulating a native legacy application, as discussed
in [5]. There could be either one wrapper for the entire application or several,
one per a needed functionality. These wrappers can be used to form a library
of wrapper classes, corresponding to different native classes or base services.
Both approaches allow replacement of legacy services when the new application
no longer needs a native legacy application to provide a service. In this case, if
a new implementation of this functionality is provided, one method invocation
would simply be replaced with another inside the wrapper class [29].

In the context of creating Java wrappers of native legacy applications,
some well-known object-oriented techniques can be discussed, such as design
patterns. The design patterns considered in [29] are the GoF’s Adapter and
Proxy [11]. Both are not directly applicable since the client and the adapted
code are written in different languages, but can help with further understanding
of the wrapping process and better structuring of the wrapper code. In addition,
since it is often a question of adapting non-object-oriented legacy software, the
Wrapper Facade design pattern [36] is also considered.

The most straightforward way to create wrapper classes through JNI is
the one-to-one mapping [17], [20]. This approach requires us to write one
stub function for each legacy native function we want to wrap. Hence, each
Java method declared as native maps to a single native stub function, which in
turn maps to a single legacy native method definition. The stub serves two pur-
poses: adaptation of the native function’s argument calling convention to what
is expected by the Java virtual machine; conversion between the Java program-
ming language types and native types. The object version of the Adapter design
pattern could be related to the process of JNI wrapping of native legacy codes—
the client sends a request to the Java wrapper class; then the JNI stub functions,
implementing the Java methods declared as native, make the corresponding invo-
cations of the underlying native functions. As a result, the legacy native interface
is adapted to a Java interface.

One-to-one mapping addresses the problem of wrapping native functions.
However, if an instance of a C++ class is created in a JNI stub function, another
problem arises: how can C++ classes be used by a Java program and keep objects



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 87

around while the program is running. One way to handle this situation is to define
a Java class called “peer class” that corresponds to the C++ class [17], [20].
Peer classes directly correspond to native data structures. Each instance of the
peer class corresponds to a C++ object, tracking the state of that object. The
Proxy design pattern can be considered when creating Java peer classes that wrap
native structures. In [11] the Proxy is defined as a surrogate or placeholder for
another object in order to control the access to it. Thus the Proxy pattern makes
the client of an object communicate with a representative of this object rather
then the object itself. Such a representative can serve many purposes determined
by its pre- and post-processing of requests. Java peer classes that wrap native
data structures apply both Adapter and Proxy design patterns. On one hand
the existing C++ interface is adapted to a Java interface and on the other—the
peer class serves as a proxy to the native C++ class it represents, taking care of
creating and deleting the instances of this class, and providing interface that is
identical to or a subset of the wrapped one.

Integration with non-object-oriented code, written in such languages
as C and FORTRAN, is discussed in [31]. The object-oriented re-architecturing
technique presented there implies using object-oriented architecture (wrapper)
around internal elements that are not object-oriented. The Wrapper Façade
design pattern, presented in [36], encapsulates the functions and data provided
by the non-object-oriented legacy native API within more concise, portable and
maintainable object-oriented class interfaces. As far as the Java wrapping is
concerned, the Wrapper Façade pattern corresponds to creating a C++ class
that invokes the non-object-oriented code. That class is then wrapped through
JNI. This additional C++ class (classes) provides a higher-level object-oriented
interface that is easier to maintain and reuse. The alternative to the Wrapper
Facade is to create a Java class that directly accesses the non-object code through
the JNI stubs. This is the approach we have used in our work because of the
small amount of the wrapped non-object-oriented code. This implies that all
methods declared as native in it are also static. However, the Wrapper Façade
can simplify the wrapping if there is a large amount of native functions to wrap.

2.2.2. Wrapping a legacy electric field intensity solver. This sec-
tion describes the creation of a Java wrapper of a legacy FORTRAN solver we use
to calculate the distribution of the electric field potential and intensity as part of
the process of simulation of metal vapor lasers [26], [24]. Electric field intensity is
one of the most important discharge parameters—its value has a direct influence
on the current flow, space distribution of electric power, temperature profile of
the gas discharge, electron energy, and ionization processes of gas molecules.



88 Anna Malinova

The solver is used under Windows and has a relatively simple interface—
it receives arrays of input data and returns tables of numbers, written in external
text files. The implementation of the wrapper code consists of: creating a C/C++
wrapper of the FORTRAN code; creating the JNI “glue” code; creating a Java
wrapper class. In our work, however, the additional C++ wrapper and the JNI
code were merged. Here an additional step to the procedure of wrapping C/C++
code is compiling both the FORTRAN and the C++ code into a dynamic link
library which can be loaded and linked into the Java Virtual Machine.

As for mixed language issues, when wrapping FORTRAN code, it can be
pointed out that the C/C++ code hides the various symbol-naming conventions
used by FORTRAN compiler vendors. For instance, FORTAN symbols are some-
times uppercase, sometimes lowercase (or mixed as in C) and there may be one
or two trailing underscores appended. In addition the C/C++ wrapper hides the
name mangling of FORTRAN module symbols. In order for C++ compliers to
recognize code generated by the FORTRAN compiler, name mangling must be
switched off for these routines [7].

2.2.3. Wrapping a finite element mesh generator. This section
describes the wrapping of an entire application through starting it as external
to the Java virtual machine process, as discussed in Section 3.1.2. Our aim was
to provide a web service interface to an existing application [25]. This way a
web service can wrap an entire application, enclosing it and invoking it without
having to modify the application. We have used the QMG 2.0 code [35] as an
example. It is written in C++, but we didn’t want to wrap it directly using
the JNI. Instead, we invoked the precompiled QMG executable by forking off a
separate process.

The QMG package generates finite element meshes in two and three di-
mensions. The mesh generator takes as input a “brep”, which is a boundary
representation of a two- and three-dimensional geometric object, and produces
as output triangulation of that “brep”. The user of QMG invokes the functions
through a console interface. QMG does not have its own console interface—
instead it relies on the scripting capabilities of other software packages (Matlab
and Tcl/Tk). The QMG uses the scripting language as a front end for all the
geometric modeling routines and the mesh generator itself.

We have created a Matlab script that uses the QMG programming inter-
face to describe a geometry representing a cross section of a He-Cd laser. The
laser is manufactured from two tubes: an internal Al2O3 tube, inserted in an
external quartz tube and equipped by two outer longitudinal electrodes. Then
we used the exec method of the Runtime class to run the Matlab application



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 89

as a separate process. This returns a Process object to control the process and
obtain information from it. The Java class containing the above code was easily
converted into an Apache Axis web service. In [25] a sample Java server page that
acts as a client to invoke the Web service is presented. The web service produces
as output a triangulation of the boundary representation that was provided by
the user.

Because of the limitations of this method compared to JNI we haven’t
used it any further. It can be concluded that this method is useful for simpler
integration solutions.

2.2.4. Wrapping the basic functionality of Plasimo—a framework

for modelling low-temperature plasma sources. This section presents the
process of creating Java front-ends for a part of the basic functionality of the
Plasimo simulation software [34], [9]. The Plasimo code is a multi-physics code
for simulating a variety of plasma sources with various degrees of equilibrium,
electromagnetic field configurations, flow regimes and geometries [8]. Plasimo is
a framework written in C++ and the application of different wrapping techniques
was investigated. The Java Native Interface was used to produce a class library
that wraps a set of Plasimo’s functions and classes. The aim of this wrapping
was to give the legacy code access to new web technologies and best practices.
For details we refer to [28], [8] and [29].

The techniques “one-to-one mapping” and creating Java peer classes were
applied. In addition, such issues like exception handling and reflection support
provided by the JNI are also discussed in [28]. We have created a number of Java
peer classes that correspond to basic Plasimo classes. The native methods are
called within the peer classes and are the link between the peer classes and the
C++ classes. Furthermore, we have created an abstract Java peer class that all
peer classes extend. This class provides some common functionality and contains
a 64-bit field that refers to the corresponding C++ instance of a PLASIMO class.
Subclasses of the abstract peer class assign specific meaning to that field. If we
are on a platform with 32-bit pointers, we can simply store this pointer in an
int; if we are on a platform that uses 64-bit pointers, we store it in a long.

Figure 1 presents the dependency relationships between different Plasimo
components after the Java front-end was created. The application JPlasimo is
a test application that invokes the native methods of the created Java wrapper
classes. The implementation of the native methods is provided by a set of libraries
consisting of JNI stub functions, which in turn invoke the Plasimo functions inside
the Plasimo compiled libraries.



90 Anna Malinova

3. Application of the service-oriented architecture for sci-

entific software. The increasing use of distributed applications in different
scientific and academic organizations has replaced traditional desktop applica-
tions. The contemporary virtual physics laboratory has to meet more and more
the requirements of contemporary business applications, i.e., to be a reliable and
scalable application used by multiple users.

Fig. 1. UML component diagram showing the dependency relations between different

Plasimo components after the Java wrapping

In order to address the integration requirements involved in building con-
nected applications we have applied a web services-based approach with the aim
of adopting Service-Oriented Architecture. According to [33] the term SOA refers
to a style of building reliable distributed systems that deliver functionality as ser-
vices, with the additional emphasis on loose coupling between interacting services.
In [33] a service is defined as a software component that can be accessed via a
network to provide functionality to a service requester. Loose coupling implies
that the interacting software components minimize their inbuilt knowledge of
each other: they discover the information they need at the time they need it [37].
SOA and web services are two different things, but web services are the preferred
standards-based way to implement SOA [22].

The Business Process Execution Language (BPEL) [7] is an XML-based
language used for integration of a number of web services into more complex
composite services. Thus BPEL enables the top-down realization of SOA through



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 91

composition, orchestration, and coordination of web services. The BPEL compos-
ite services are called business processes and are managed by a workflow engine.

3.1. Using BPEL for managing scientific processes. The spectrum
of what might be called scientific workflow is wide and includes scientific discovery
workflows, workflows that automate manual procedures or reengineer custom
tools, and data and compute-intensive workflows. In this section we provide
a number of common requirements of scientific workflows: service composition
and reuse, scalability, detached execution, reliability and fault tolerance, user
interaction, monitoring, “smart” re-runs, data provenance, etc. These are also
discussed in [1], [18], [21].

In general, the BPEL vocabulary is tailored more to the requirements of
business processes, which often have different requirements compared to scientific
workflows. For example, in [21] it is shown that business workflow approaches
focus on control-flow patterns and events, whereas dataflow is often a secondary
issue. Scientific workflow systems, on the other hand, tend to have execution
models that are much more dataflow-oriented.

In [27] we provide an analysis of the BPEL specification in the context of
the requirements above listed. We do this also in the context of the implementa-
tion technology we have adopted—the Oracle BPEL Process Manager that is a
part of the Oracle SOA Suite.

• Service composition and reuse: Web services can be combined in
two ways: orchestration and choreography. BPEL supports two different ways of
describing business processes that support orchestration and choreography: Ex-
ecutable processes—they follow the orchestration paradigm and can be executed
by an orchestration engine; Abstract business protocols—they allow specification
of the public message exchange between parties only. They do not include the
internal details of process flows and are not executable. They follow the chore-
ography paradigm.

• Scalability: Some scientific workflows involve large volumes of data
and/or require high-end computational resources, e.g., running many parallel
jobs on a cluster computer. Concurrency is provided in BPEL with the ¡flow¿
activity. BPEL also provides features to support handling of multiple requests—
by creating multiple instances of the process, one for each interaction, and by
declaring a correlation set in order to identify a particular instance of among a
set of instances of that process.

• Detached execution: Long-running scientific workflows require an
execution node that allows the workflow control engine to run in the background
on a remote server, without necessarily staying connected to a user’s client ap-



92 Anna Malinova

plication that has started and is controlling the workflow execution. In a BPEL
process a web service can be invoked as a synchronous or asynchronous opera-
tion. Asynchronous web services do not block the BPEL process and are useful for
environments in which a service can take a long time to process a client request.

• Reliability and fault tolerance: A scientific workflow might incor-
porate a service that “fails” often, changes its interface, or just becomes un-
acceptably slow. Thus the workflow definition should support the definition of
failure-handling mechanisms. BPEL provides a flexible structure for dealing with
failures. Fault and compensation handlers are used to reverse the effects of par-
tially completed interactions. The execution of these handlers is tied in with the
concept of scopes.

• User interaction: Many scientific workflows require user decisions and
interactions at various steps. BPEL 1.1 and 2.0 do not include human interactions
and are limited to service orchestration. The Oracle BPEL Process Manager that
we have used provides a manual task web service to integrate people and manual
tasks into BPEL processes [6].

• Monitoring: Scientific workflows are potentially long-running activi-
ties and it is of importance for scientists to be able to observe and monitor the
ongoing execution of a workflow. The Oracle BPEL Manager provides sensors to
monitor BPEL activities, variables, and faults during runtime [6]. The following
types of sensors can be defined, either through the BPEL Designer or manually
by providing sensor configuration files: activity sensors; variable sensors; fault
sensors.

While the above list of requirements for scientific workflow systems is
not complete, it captures many of the core characteristics and we conclude that
BPEL is fully applicable for managing scientific services. Other requirements may
include “smart” re-computations, data provenance, and the use of an intuitive
GUI to allow the user to compose a workflow visually from smaller components
in order to animate workflow execution, to inspect intermediate results, etc., but
these are not related to the BPEL specification itself. Rather, they are BPEL
Designer and engine dependant.

3.2. Application of BPEL for building scientific processes for
simulation of metal vapour lasers. In this section an example workflow for
simulating the distribution of the electric field potential and intensity is presented.
In [24] a detailed problem formulation, graphical representation of the created
BPEL process, and description of the participating web services are provided.

The web services we have developed and orchestrated are: GetInput-
Service, ParametersApproval, ElectrodeService, and PoissonService. The BPEL



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 93

process waits for an incoming message from the client, which starts the execution
of the simulation process. At the beginning of the process execution, the flow
takes a SimulationOrder XML document as input. In a BPEL process everything
is XML, including the messages that are passed into and returned from the BPEL
process, the messages that are exchanged with external services, and any local
variables used by the flow itself. The input XML file is the body of the generated
SOAP request that initiates the simulation.

The flow gets the specified laser type as a string from the input XML file
and then invokes the synchronous GetInputService service to request the relevant
parameter set for this particular laser device. With a parameter set we denote a
group of related parameters (physics constants, variables, etc.) with additional
metadata describing various aspects of the parameters, such as help information,
valid ranges (e.g., min, max, etc.), default values, whether the parameters are
required or optional, etc. Thus we can manage different parameter sets relevant
to different laser types, as well as have different parameter set instances of a
particular laser type. Each of those XML files is an instance of an XML schema
file we have created to describe the parameter types.

Once the required parameter set is obtained, the simulation process starts
a human task, the service ParametersApproval, for a customer representative to
manually approve the parameter values. This enables the user to change some of
the predefined values of the physical constants, geometrical parameters, etc.

When the parameters have their approved values, the processing becomes
automated. First the ElectrodeService is invoked synchronously. This is our
legacy FORTRAN component wrapped as a web service. This component gen-
erates the appropriate mesh for discretization and classifies the points in the
different sub-regions: outer electrodes, laser tube, etc. basic input parameter
is the voltage applied to the electrodes, which is then used to determine the
boundary conditions. Then the PoissonService is invoked. This is also one of our
FORTRAN legacy codes, wrapped as web service, which is used to calculate the
electric field potential and intensity distributions by solving a two-dimensional
quasi-stationary Poisson equation. The service generates an output file with re-
sults.

3.3. Building the WebPlasimo prototype. The WebPlasimo pro-
totype provides new interfaces to the Plasimo framework for modelling low-
temperature plasma sources [8]. The main tasks we have set while building the
WebPlasimo prototype were: 1) to create a web interface to the Plasimo frame-
work; 2) to expose certain Plasimo functionalities as web services for use by other
scientific teams. Both tasks involve creating Java wrappers of basic Plasimo func-



94 Anna Malinova

tionality as was shown in Section 3.2.4. The basic components of WebPlasimo
are: the server-side part of the application developed through the Apache Struts
2 framework [3]; a web-based client that is a Rich Internet Application devel-
oped using the Dojo framework [10]; web services developed through the Apache
Axis 2 framework [2]; Java wrappers of Plasimo modules created through the JNI
interface.

The following tools have been developed as parts of the WebPlasimo pro-
totype:

• Generator of XML files: generates an initial XML file based on a spec-
ified XML Schema file describing the necessary configuration data. This
tool’s purpose is to alleviate the creation of the simulation input file which
would contain the mandatory parameters, the default and fixed values, and
other related initial configuration data.

• Web-based XML editor: its purpose is to provide a user-friendly inter-
face for editing XML files. For this purpose a number of utility functions
for processing XML files have been created. A related tool for generating a
GUI representation of an XML element being edited is developed as well.
Views of the web-based XML editor are shown in Figure 2 and Figure 3.

• Controller of the Plasimo simulation model being executed: pro-
vides an interface for controlling the executed simulation model, e.g., install
the model, start the model, perform one step of the simulation, pause, and
stop the execution. The controller uses the corresponding JNI wrapped
Plasimo classes.

• Tool for a web visualisation of the results of the simulation: the
Plasimo visualizing capabilities have been extended with C++ classes al-
leviating the web browser visualization of the textual and graphical repre-
sentation of some Plasimo data types. These C++ classes have also been
wrapped through JNI in order to be used by the WebPlasimo application
as shown in Figure 4 and Figure 5.

Different aspects of the web services applications to the Plasimo
framework and other physics software have been discussed in [8], such as: pro-
viding web services based access points to Plasimo as a whole, as well as to
its individual building blocks; providing a web services-based post-processing on
data servers in order for them to serve derived data rather than just “raw” data
sets.



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 95

Fig. 2. WebPlasimo—view of the XML
editor

Fig. 3. WebPlasimo—visualizing XML
content

Fig. 4. The prototype after one step of
the simulation—textual representation

Fig. 5. The prototype after one step of the
simulation—graphical representation



96 Anna Malinova

The web services we have created with testing purposes provide: oper-
ations for converting Plasimo-specific configuration files into XML format, and
vice versa; an operation for obtaining the final results of the simulation—the
results are in textual representation and step-by-step execution and pausing are
not provided since the created web services do not manage state. In perspective,
the next step is to develop stateful asynchronous web services in order to expose
as a web service a fully functional simulation involving obtaining intermediate or
partial results and step-by-step execution.

4. Future work. The future work in the domain of reuse and mod-
ernization of legacy physics codes and building linked applications in an SOA
environment will focus on the following aspects:

• The ongoing research on the methods to process and share physics data,
e.g., physics data servers to do some processing in order to provide derived
quantities, not just “raw” data sets, as discussed in [8]; providing web
services-based access to this additional functionality of the data servers.

• The ongoing development of the created XML schemas describing the pa-
rameter types.

• Development of stateful asynchronous web services using the session man-
agement provided by the SOAP frameworks used.

• Development of web services that provide access points to legacy physics
functionality that can be used outside the context of simulation of metal
vapor lasers and plasma physics.

• Transforming the created tool Web-based XML editor into a web services
test console.

Although the above list is by no means complete, it shows our belief that
future research on the adoption of SOA in scientific applications is important and
needed because of the increasing requirements that a modern physics laboratory
has to meet.

5. Conclusions. A significant amount of high-performance simulation
software in the domain of plasma physics, created during the last two decades,
is written in native languages, such as C, C++, and FORTRAN. Reasons of re-
liability and efficiency make it highly desirable to be able to reuse these large



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 97

and complicated software packages. In the process of modernization towards web
and SOA such a modernization technique as wrapping native codes continues to
be a question of present interest. The approaches presented in this paper, wrap-
ping an entire application at operating system level and wrapping a particular
legacy functionality through the Java Native Interface, showed that this tech-
nique is not entirely a “black-box” modernization effort and includes a number
of reengineering tasks.

The main conclusion from the presented work is that the choice of SOA
and web services provides a unique opportunity to handle a complex simulation
process involving multiple applications developed by disparate teams. In addi-
tion, it is shown that web and SOA enabling, which involves JNI wrapping, is
feasible and does not affect the legacy application’s performance, nor does it alter
its function.

REFERE NC ES

[1] Akram A., D. Meredith, R. Allan. Application of Business Process
Execution Language to scientific workflows. Int. Trans. on Systems Science
and Applications, 1 (2006), No 3, 289–302.

[2] Apache Axis 2. http://ws.apache.org/axis2/.

[3] Apache Struts 2 framework. http://struts.apache.org/2.x/.

[4] Arnholm A. Mixed language programming using C++ and Fortran 77,
version 1.1., 1997. http://arnholm.org/software/index.htm

[5] Asman P. Legacy Wrapping.
http://www.hillside.net/plop/plop2k/proceedings/Asman/Asman.pdf

[6] Bradshaw D., M. Kennedy. Oracle R© BPEL Process Manager Developer’s
Guide10g. http://download-east.oracle.com/docs/cd/B31017 01/

integrate.1013/b28981/toc.htm

[7] Business Process Execution Language. http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/.

[8] Van Dijk J., A. Malinova, V. Yordanov, J. van der Mullen. New
Interfaces for the Plasimo Framework. In: AIP Conf. Proc., 6th Int. Conf. on
Atomic and Molecular Data and Their Applications, Beijing, China, 27–31
Oct. 2008, Vol. 1125, 2009, 176–187.



98 Anna Malinova

[9] Van Dijk J. Modelling of Plasma Light Sources: an object oriented ap-
proach. PhD thesis, Eindhoven University of Technology, The Netherlands,
2001.

[10] Dojo Toolkit. http://dojotoolkit.org/.

[11] Gamma E., R. Helm, R. Johnson, J. Visslides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] Gocheva-Ilieva S., I. Iliev. Mathematical modeling of the electric field in
copper bromide laser. In: Proceedings of the Int. Conf. of Numerical Analysis
and Applied Mathematics, Sept. 16–20, 2007, Corfu, Greece, Vol. CP936,
527–530.

[13] Iliev I., S. Gocheva-Ilieva, N. Sabotinov. Analytic study of the tem-
perature profile in a copper bromide laser. Quantum Electron, 38 (2008), No
4, 338–342.

[14] Iliev I., S. Gocheva-Ilieva, K. Temelkov, N. Vuchkov, N. Saboti-

nov. Modeling of the radial heat flow and cooling processes in a deep ultra-
violet Cu+ Ne-CuBr laser. Mathematical Problems in Engineering, Hindawi
Publ. Corp., Vol. 2009, ID 582732.

[15] Iliev I., S. Gocheva-Ilieva, K. Temelkov, N. Vuchkov, N. Saboti-

nov. Analytical model of temperature profile for a He-SrBr2 laser. Journal
of Optoelectronics and Advanced Materials (JOAM), 11 (2009), No 7, 1025–
1032.

[16] Java Language Specification,
http://java.sun.com/docs/books/jls/third edition/html/j3TOC.html.

[17] Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html.

[18] Joncheere N., W. Vanderperren, R. Straeten. Requirements for a
Workflow System for Grid Service Composition. In: Proceedings of the 2nd
Int. Workshop on Grid and Peer-to-Peer Based Workflows (GPWW 2006),
Vienna, Austria, September 2006, Lecture Notes in Computer Science, Vol.
4103, Springer-Verlag, 2006, 365–374.

[19] Kurziniec D., V. Sunderam. Efficient cooperation between Java and Na-
tive Codes-JNI Performance Benchmark. In: Proceedings of the 2001 Int.



Modernizing Legacy Physics Applications for Reuse in WEB and SOA 99

Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA 2001), 2001.

[20] Liang S. The Java Native Interface: Programmer’s Guide and Specification,
Addison-Wesley, 1999.

[21] Ludascher B., I. Altintas, C. Berrkley, D. Higgins, E. Jaeger,

M. Jones, E. Lee, J. Tao Y. Zhao. Scientific workflow management and
the Kepler system. Concurrency and Computation: Practice & Experience,
18 (2006), 1039–1065.

[22] Mahmoud Q. Service-Oriented Architecture (SOA) and Web Services: The
Road to Enterprise Application Integration (EAI). 2005.
http://java.sun.com/developer/technivcalArticles/WebServices/

soa/index.html

[23] Malinova A. Software system for computer simulation of metal vapor
lasers, Abstract of PhD thesis, Plovdiv University Press, 2009 (in Bulgarian).

[24] Malinova A., S. Gocheva-Ilieva. Application of the Business Process
Execution Language for building scientific processes for simulation of metal
vapor lasers. In: Proceedings of the 3rd Balkan Conf. in Informatics, Sofia,
Bulgaria, 27–29 Sept., 2007, Volume 2, 75–86.

[25] Malinova A., S. Gocheva-Ilieva, I. Iliev. Web services—based simu-
lation of metal vapor lasers. In: Proceedings of the IX Int. Conf. on Laser &
Laser Inf. Techn. & V Int. Symp. on Laser Techn. & Lasers ILLA/LTL’2006,
Smolyan, Bulgaria, October 4–7, 2006, 315–321.

[26] Malinova A., S. Gocheva-Ilieva, I. Iliev. Wrapping legacy codes for
Numerical simulation applications, In: Proceedings of the III International
Bulgarian-Turkish Conf. Computer science, Istanbul, Turkey, October 12–15,
2006, Part II, 202–207.

[27] Malinova A., S. Gocheva-Ilieva. Using the Business Process Execution
Language for managing scientific processes. International Journal “Informa-
tion Technologies and Knowledge”, 2 (2008), 257–261.

[28] Malinova A., V. Yordanov, J. van Dijk. Leveraging existing plasma
simulation codes. International Book Series “Information Science & Comput-
ing”, No 5, Suppl. to the Int. J. “Information Technologies & Knowledge”,
2 (2008), 136–142.



100 Anna Malinova

[29] Malinova . Design Approaches to Wrapping Native Legacy Codes, Scien-
tific Works, Plovdiv University, Vol. 36, Book 3, 2009, 89–100.

[30] Malinova A. Approaches and Techniques for Legacy Software Mod-
ernization. Scientific Works, Plovdiv University, Vol. 37, Book 3, 2010-
Mathematics, 77–85.

[31] Meyer B. Object Oriented Software Construction. 2nd ed., Prentice Hall,
1988.

[32] Mixed-Language Programming. http://msdn.microsoft.com/library.

[33] OGSA Glossary Terms v 1.5. http://www.ogf.org/documents/GFD.81.pdf.

[34] Plasimo simulation software. http://plasimo.phys.tue.nl

[35] QMG 2.0 Mesh generation software.
http://www.cs.cornell.edu/home/vavasis/qmg2.0/qmg2 0 home.html.

[36] Schmidt D., M. Stall, H. Rohnert, F. Buschmann. Pattern-Oriented
Software Architecture—Patterns for concurrent and networked objects, Vol-
ume 2, Willey, 2000.

[37] Srinivasan L., J. Treadwell. An Overview of Service-oriented Archi-
tecture, Web Services and Grid Computing, Nov 2005.
http://h71028.www7.hp.com/ERC/downloads/

SOA-Grid-HP-WhitePaper.pdf.

[38] Wilson S., J. Kesselman. Java Platform Performance: Strategies and
Tactics, Prentice Hall, 2001. http://java.sun.com/docs/books/
performance/1st edition/html/JPTitle.fm.html.

Anna Malinova

Department of Computer Technologies

Faculty of Mathematics and Informatics

University of Plovdiv

236 Bulgaria Blvd

4003 Plovdiv, Bulgaria

e-mail: malinova@uni-plovdiv.bg

Received Junuary 10, 2011

Final Accepted February 7, 2011


