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THE DIVISIBILITY MODULO 4 OF KLOOSTERMAN SUMS
OVER FINITE FIELDS OF CHARACTERISTIC 3

Changhyon Sin

Abstract. Recently Garashuk and Lisonek evaluated Kloosterman sums
K(a) modulo 4 over a finite field F3m in the case of even K(a). They
posed it as an open problem to characterize elements a in F3m for which
K(a) ≡ 1 (mod4) and K(a) ≡ 3 (mod4). In this paper, we will give an
answer to this problem. The result allows us to count the number of elements
a in F3m belonging to each of these two classes.

1. Introduction. Let Fq denote the finite field with q elements.
From now on, let m be a positive integer and q = 3m.
Let TrFq/F3

(x) be the trace function from Fq onto F3 defined by

TrFq/F3
(x) =

m−1
∑

j=0

x3j

.

We will often write simply Trfor TrFq/F3
if Fq/F3 is understood.
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The Kloosterman sum K(a) over Fq is defined for any a ∈ Fq by

K(a) =
ωTr(x−1+ax)
∑

x∈F∗

q

,

where ω = e2π i/3 is a complex primitive cubic root of unity.
Kloosterman sums have been studied extensively because they are inter-

esting mathematical objects as well as powerful tools to investigate coding theory
and cryptography; see for example [8, 9].

Moreover Kloosterman sums are linked to the weight distribution of some
codes, the number of rational points on an elliptic curve and the number of
irreducible polynomials with prescribed coefficients (see e.g. [1, 3]).

It is very difficult to find exact values of Kloosterman sums and usually
we have to be satisfied with only estimating it. Recently, congruences in terms
of Kloosterman sums are widely studied (see e.g. [2, 4, 5]). Moreover Garaschuk
and Lisonek [4] characterized elements a ∈ Fq for which K(a) ≡ 0(mod4) and
K(a) ≡ 2 (mod4). They posed it as an open problem to characterize elements
a ∈ Fq for which K(a) ≡ 1 (mod4) and K(a) ≡ 3 (mod4). In this paper we will
give an answer to this problem. Our strategy is to obtain a congruence between
K(a2) and an exponential sum using the property of elements b ∈ Fq such that
the polynomial x4 − bx3 + a2 has only one root in Fq.

The rest of the paper is organized as follows. In section 2 some necessary
definitions and propositions are recalled. In section 3 the number of roots of the
polynomial x4 − bx3 + a over Fq is considered. In section 4 congruences modulo
4 for K(a2) are obtained and elements a ∈ Fq for which K(a) ≡ 1 (mod4) and
K(a) ≡ 3 (mod4) are completely characterized. Finally in section 5 the number
of elements a ∈ Fq for which K(a) ≡ 1 (mod4) is given.

2. Preliminaries. In this section we recall some definitions and propo-
sitions for Kloosterman sums needed in the sequel.

Let a ∈ Fq. If there exists an x ∈ Fq such that a = x2 then we say that
a is a square, otherwise we say that a is a non-square. For each square a ∈ Fq,
let

√
a denote an x ∈ Fq such that x2 = a. If a 6= 0, then we are making a choice

between x and −x; this choice can be arbitrary as long as it is the same in each
occurrence of

√
a.

The following results were obtained in [4].

Proposition 1. For all a ∈ Fq,K(a) is an integer satisfying K(a) ≡
2 (mod3).
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Proposition 2. K(a) is odd if and only if a = 0 or a is a square and

Tr(
√
a) 6= 0.

Proposition 3. K(a) is odd for
1

3
q + 1 elements a ∈ Fq.

It is sufficient to consider K(a2) in order to arrive at the goal of this paper
by proposition 2. We have easily K(0) = −1. Hence we only consider K(a2) with
a 6= 0.

We know the following result by [6, p. 19].

Proposition 4. Let f(x) = x3 − bx− c ∈ Fq[x] with b 6= 0. Then

(1) f(x) has no multiple roots.

(2) f(x) has only one root in Fq if and only if b is a non-square.

(3) f(x) has three roots in Fq if and only if b is a square and Tr(c
√
b
−3

) = 0.

(4) f(x) is irreducible over Fq if and only if b is a square and Tr(c
√
b
−3

) 6= 0.

We need also the following well-known result (see Theorem 5.4 in [7]).

Proposition 5. Let a ∈ Fq. Then

∑

x∈Fq

χ(ax) =

{

q if a = 0,
0 if a 6= 0,

where χ is the canonical additive character of Fq.

3. The number of roots of a polynomial with degree 4. In
this section we consider the number of roots of the polynomial x4 − bx3 + a.

Lemma 1. Let f(x) = x3 + ax2 + bx + c ∈ Fq[x] with a 6= 0 and

B = c+
b3

a3
− b2

a
6= 0. Then

(1) f(x) has no multiple roots.

(2) f(x) has only one root in Fq if and only if −aB−1 is a non-square.

(3) f(x) has three roots in Fq if and only if −aB−1 is a square and

Tr(B−1
√

−aB−1
−3

) = 0.

(4) f(x) is irreducible over Fq if and only if −aB−1 is a square and

Tr(B−1
√

−aB−1
−3

) 6= 0.
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P r o o f. We have

f(x) =

(

x− b

a

)3

+ a

(

x− b

a

)2

+B.

Since x3 + ax2 + B is the reciprocal polynomial of B

(

x3 +
a

B
x+

1

B

)

,

the lemma follows immediately from Proposition 4. �

Lemma 2. Let f(x) = x4 − bx3 + a ∈ Fq[x] with a 6= 0. Then

(1) f(x) has no multiple roots.

Assume that f(x) has at least one root in Fq. Then

(2) f(x) has exactly two roots in Fq if and only if a is a non-square.

(3) f(x) has four roots in Fq if and only if a is a square and Tr(b2
√
a
−1

) = 0.

(4) f(x) has only one root in Fq if and only if a is a square and Tr(b2
√
a
−1

) 6= 0.

P r o o f. We have

f ′(x) = 4x3 − 3bx2 = x3.

Therefore f(x) and f ′(x) are relatively prime which proves the first part
of the lemma.

Assume that t ∈ Fq is a root of f(x). Then we have

f(x) = (x− t)
(

x3 − a

t3
x2 − a

t2
x− a

t

)

.

Calculating B of x3 − a

t3
x2 − a

t2
x− a

t
with the notation of Lemma 1, we

have
B = −a

t
+ t3 +

a

t
= t3 6= 0.

By Lemma 1-(2), it follows that f(x)has exactly two roots in Fq if and
only if

−
(

− a

t3

)

B−1 =
a

t6

is a non-square which proves the second part of the lemma.
Now assume that ais a square. By Lemma 1-(3) it follows that

0 6= Tr

(

B−1

√

a

t6

−3
)

= Tr

(

t6
√
a

3

)

= Tr(
√
a
−1
t2)
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Tr(
√
a
−1
t2) = Tr(

√
a
−1
t2) + 2Tr(

√
a t−2) + Tr(

√
a t−2)

= Tr(
√
a
−1
t2) + 2Tr(

√
a t−2) + Tr(

√
a

3
t−6)

= Tr(
√
a
−1

(t2 + 2at−2 + a2t−6))

= Tr(
√
a
−1

(t+ at−3)2)

= Tr(
√
a
−1
b2),

which completes the proof. �

Lemma 3. Let f(x) = x4 − bx3 + a ∈ Fq[x] with a 6= 0. Then

(1) f(x) has only one root in Fq if and only if a is square and Tr(b2
√
a

−1
) 6= 0.

(2) If a is a square then the number of roots of f(x) in Fq is

|{x ∈ F∗

q|b = x+ ax−3}| =

{

1 if Tr(b2
√
a

−1
) 6= 0

0 or 4 if Tr(b2
√
a

−1
) = 0.

P r o o f. (1) By Lemma 2-(4) it is sufficient to show that if a is a square
and Tr(b2

√
a
−1

) 6= 0 then f(x) has at least one root in Fq.

Assume that f(x) has no root in Fq. Then f(x) is irreducible over Fq or
f(x) factors into two irreducible polynomials with degree 2. Hence f(x) has four
roots in an extension field Fq4 of Fq. By Lemma 2-(3) we have

0 = TrF
q4/F3

(b2
√
a
−1

) = TrFq/F3
(4b2

√
a
−1

) = TrFq/F3
(b2

√
a
−1

),

a contradiction.

(2) If Tr(b2
√
a
−1

) = 0 and |{x ∈ F∗

q|b = x+ ax−3}| 6= 0 then by Lemma
2-(3) we have

|{x ∈ F∗

q |b = x+ ax−3}| = 4,

which completes the proof. �

4. Congruence modulo 4 for K(a2). In this section we will show
some congruences modulo 4 for K(a2).

Although the following lemma is proved easily by using techniques in [4,
Lemma 1.2], we also prove it here for the convenience of the reader.
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Lemma 4. Let f(x) be a function from F∗

q to Fq (then f(x) will become

a polynomial function over Fq). For u ∈ F3, let Nu denote |{x ∈ F∗

q|Tr(f(x)) =
u}|. If f(x) = −f(−x) for any x ∈ F∗

q , then

L :=
∑

x∈F∗

q

χ(f(x)) = q − 1 − 3N1.

P r o o f. The bijection x 7→ −x shows that N1 = N−1. Since ω + ω−1 =
−1, we get L = N0−N1. Then from N0 = q−1−2N1 we get L = q−1−3N1. �

Theorem 5. Let a ∈ F∗

q and Sa = {b ∈ Fq|Tr(b) = 1, Tr(b2a−1) 6= 0}.
Then

K(a2) ≡ (−1)m − 1 + |Sa| (mod 4).

P r o o f. By the Frobenius automorphism and the properties of the trace
function, we have

K(a2) =
∑

x∈F∗

q

χ(x+ a2x−1) =
∑

x∈F∗

q

χ(x3 + a2x−3) =
∑

x∈F∗

q

χ(x3)χ(a2x−3)

=
∑

x∈F∗

q

χ(x)χ(a2x−3) =
∑

x∈F∗

q

χ(x+ a2x−3).

By Lemma 4 we have

K(a2) ≡ (−1)m − 1 + |{x ∈ F∗

q |Tr(x+ a2x−3) = 1}|(mod4),

using q ≡ (−1)m (mod4).
By Lemma 3-(2) we also get

|{x ∈ F∗

q|Tr(x+ a2x−3) = 1}| ≡ |{b ∈ Fq|Tr(b) = 1, Tr(b2a−1) 6= 0}|(mod4),

which completes the proof. �

Now we consider the following exponential sums to calculate |Sa|.
Let η denote the quadratic character of F∗

q. i is a complex number such
that i2 = −1.

Lemma 6.Let a, b ∈ Fq Then

(1)
∑

x∈F∗

q

χ(ax2) = −1 + (−1)m−1imη(a)
√
q.
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(2) If a 6= 0,
∑

x∈F∗

q

χ(ax2 + bx) = χ

(−b2
a

)

(−1)m−1imη(a)
√
q − 1.

P r o o f. (1) By [7, Theorem 5.30, 5.15] we have
∑

x∈F∗

q

χ(ax2) = −1 +G(η) · η(a), G(η) = (−1)m−1im
√
q,

where G(η) =
∑

x∈F ∗

q

χ(x)η(x) is the Gauss sum of η. This completes the first part

of the lemma.
(2) We have

∑

x∈F∗

q

χ(ax2 + bx) =
∑

x∈F∗

q

χ

(

a

(

x− b

a

)2

− b2

a

)

= χ

(−b2
a

)

∑

x∈F∗

q

χ

(

a

(

x− b

a

)2
)

=

= χ

(−b2
a

)





∑

x∈F∗

q

χ(ax2) + 1 − χ(
b2

a
)



 = χ

(−b2
a

)

(−1)m−1imη(a)
√
q − 1,

which completes the proof. �

Lemma 7. With notations as above, we have

9|Sa| = 2q + imη(a)
√
q[(−1)m + 1 + (−1)m−1χ(−a) − χ(a)].

P r o o f. By Lemma 6 we have

∑

x∈F∗

q

χ

(

x2

a

)

= −1 + (−1)m−1imη(a−1)
√
q = −1 + (−1)m−1imη(a)

√
q,

∑

x∈F∗

q

χ

(−x2

a

)

=
∑

x∈F∗

q

χ̄

(

x2

a

)

= −1 + (−1)m−1(−i)mη(a)√q = −1 − imη(a)
√
q,

∑

x∈F∗

q

χ

(

x2

a
+ x

)

= χ(−a)(−1)m−1imη(a)
√
q − 1,

∑

x∈F∗

q

χ

(−x2

a
− x

)

= −χ(a)imη(a)
√
q − 1,

∑

x∈F∗

q

χ

(

x2

a
+ x

)

=
∑

x∈F∗

q

χ

(

x2

a
− x

)

,
∑

x∈F∗

q

χ

(−x2

a
− x

)

=
∑

x∈F∗

q

χ

(−x2

a
+ x

)

,
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ω̄
∑

x∈F∗

q

χ

(

x2

a
+ x

)

+ ω
∑

x∈F∗

q

χ

(−x2

a
− x

)

= ω̄χ(−a)(−1)m−1imη(a)
√
q − ω̄

− ωχ(a)imη(a)
√
q − ω = 1 + imη(a)

√
q · [ ω̄χ(−a)(−1)m−1 − ωχ(a)],

ω
∑

x∈F∗

q

χ

(

x2

a
− x

)

+ ω̄
∑

x∈F∗

q

χ

(−x2

a
+ x

)

= ωχ(−a)(−1)m−1imη(a)
√
q − ω

− ω̄χ(a)imη(a)
√
q − ω̄ = 1 + imη(a)

√
q · [ωχ(−a)(−1)m−1 − ω̄χ(a)].

Let ψ be the canonical additive character of F3. Let z ∈ Fq satisfying
Tr(z) = 1.

By proposition 5 we have

9|Sa| =
∑

x∈F∗

q





∑

u∈F3

ψ(Tr(x− z)u)
∑

v∈F3

ψ(Tr(
x2

a
− z)v)





+
∑

x∈F∗

q





∑

u∈F3

ψ(Tr(x− z)u)
∑

v∈F3

ψ(Tr(
x2

a
+ z)v)



,

9 ·
(q

3
− |Sa|

)

=
∑

x∈F∗

q





∑

u∈F3

ψ(Tr(x− z)u)
∑

v∈F3

ψ(Tr

(

x2

a

)

v)





=
∑

x∈F∗

q

[1 + χ(x− z) + χ(z − x)]

[

1 + χ

(

x2

a

)

+ χ

(−x2

a

)]

=
∑

x∈F∗

q

[

1 + χ(x− z) + χ(z − x) + χ

(

x2

a

)

+ χ

(−x2

a

)

+χ

(

x2

a
+ x− z

)

+ χ

(−x2

a
− x+ z

)

+ χ

(

x2

a
− x+ z

)

+ χ

(−x2

a
+ x− z

)

]

= q − 1 + ω̄
∑

x∈F∗

q

χ(x) + ω
∑

x∈F∗

q

χ(−x) +
∑

x∈F∗

q

χ

(

x2

a

)

+
∑

x∈F∗

q

χ

(−x2

a

)
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+ω̄
∑

x∈F∗

q

χ

(

x2

a
+ x

)

+ ω
∑

x∈F∗

q

χ

(−x2

a
− x

)

+ω
∑

x∈F∗

q

χ

(

x2

a
− x

)

+ ω̄
∑

x∈F∗

q

χ

(−x2

a
+ x

)

= q − 1 + ω̄ · (−1) + ω · (−1) − 1 + (−1)m−1imη(a)
√
q − 1 − imη(a)

√
q

+1 + imη(a)
√
q · [ ω̄χ(−a)(−1)m−1 − ωχ(a)]

+1 + imη(a)
√
q · [ωχ(−a)(−1)m−1 − ω̄χ(a)]

= q − 1 + 1 + imη(a)
√
q[(−1)m−1 − 1 − χ(−a)(−1)m−1 + χ(a)]

= q − imη(a)
√
q[(−1)m + 1 + (−1)m−1χ(−a) − χ(a)],

which completes the proof. �

Theorem 8. Let a ∈ F∗

q. Then

K(a2) ≡ −(−1)m − 1 + imη(a)
√
q[(−1)m + 1 + (−1)m−1χ(−a) − χ(a)](mod 4).

P r o o f. By Theorem 5 and Lemma 7 we have

K(a2) ≡ (−1)m − 1 + 2(−1)m

+ imη(a)
√
q[(−1)m + 1 + (−1)m−1χ(−a) − χ(a)](mod 4),

which completes the proof. �

The next corollary answers the open problem posed in Garashcuk and
Lisonek [4].

Corollary 9. Let a ∈ F∗

q. Then

(1) In the case of m even,

K(a) ≡ 1 (mod 4) if and only if a is a square, Tr(
√
a) 6= 0 and

√
a is a

square.

K(a) ≡ 3 (mod 4) if and only if a is a square, Tr(
√
a) 6= 0 and

√
a is a

non-square.

(2) In the case of m odd,

K(a) ≡ 3 (mod 4) if and only if there exists an element t ∈ F∗

q such that

a = t2, Tr(t) = 1 and t is a square.



10 Changhyon Sin

K(a) ≡ 1 (mod 4) if and only if there exists an element t ∈ F∗

q such that

a = t2, Tr(t) = 1 and t is a non-square.

P r o o f. By Proposition 2 we only consider a ∈ F∗

q such that a is a square
and Tr(

√
a) 6= 0.

By Theorem 8 we have

K(a) ≡ 2 + imη(
√
a)
√
q[2 − χ(−

√
a) − χ(

√
a)](mod 4).

Since Tr(
√
a) 6= 0 we also get

χ(−
√
a) + χ(

√
a) = ω + ω̄ = −1.

Therefore we obtain

K(a) ≡ 2− (−1)m/2η(
√
a)
√
q ≡ 2− (−1)m/2η(

√
a)(−1)m/2 ≡ 2− η(

√
a)(mod 4),

which completes the first part of the corollary.
(2) Let t be a square root of a. Since Tr(t) 6= 0 and Tr(t) + Tr(−t) = 0,

suppose without loss of generality that Tr(t) = 1.
By Theorem 8 we have

K(t2) ≡ imη(t)
√
q[χ(−t) − χ(t)](mod 4),

χ(−t) − χ(t) = ω̄ − ω = −i
√

3,

K(t2) ≡ −(−1)(m+1)/2η(t)
√

3q

≡ −(−1)(m+1)/2η(t)(−1)(m+1)/2 ≡ −η(t) (mod 4).

The proof is now complete. �

5. The number of elements a ∈ Fq for which K(a) ≡

1 (mod4). In this section we consider the number of elements a ∈ Fq for
which K(a) ≡ 1 (mod4) , which lead to the number of elements a ∈ Fq for
which K(a) ≡ 3 (mod 4) because we know the number of elements a ∈ Fq for
which K(a) ≡ 1 (mod 2).

For the convenience we denote by Ar,M the number of elements a ∈ F∗

q

for which K(a) ≡ r (modM) for any positive integer M and any integer r =
0, 1, . . . ,M − 1, i.e.

Ar,M = |{a ∈ F∗

q|K(a) ≡ r(modM)}|.
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By proposition 3 we have

A1,4 +A3,4 = A1,2 =
q

3
,

since K(0) = −1.

5.1. Case of m even. By Corollary 9 we have

A1,4 = |{a ∈ F∗

q|∃ t ∈ F∗

q, a = t4, Tr(t2) 6= 0}|.

By Lemma 3-(2) it follows that if the polynomial x4 − a ∈ Fq[x] with
a 6= 0 has a root in Fq then it has four distinct roots in Fq. Therefore we obtain

A1,4 =
1

4
|{t ∈ F∗

q|Tr(t2) 6= 0}|.

Let α be a primitive element of Fq. Then δ = α(q−1)/4 is a primitive
fourth root of unity in Fq since m is even. The bijection t 7→ δ t shows that

|{t ∈ F∗

q|Tr(t2) = 1}| = |{t ∈ F∗

q|Tr(t2) = −1}|.

Hence we have

A1,4 =
1

2
|{t ∈ F∗

q|Tr(t2) = 1}|.

Let z ∈ Fq satisfying Tr(z) = 1. Let ψ be the canonical additive character
of F3.

By Proposition 5 we have

|{t ∈ F∗

q|Tr(t2) = 1}| =
1

3

∑

x∈F∗

q

∑

u∈F3

ψ(Tr(x2 − z)u)

=
1

3

∑

x∈F∗

q

(1 + χ(x2 − z) + χ(−x2 + z))

(1) =
1

3
(q − 1 + ω̄

∑

x∈F∗

q

χ(x2) + ω
∑

x∈F∗

q

χ(−x2)).

By Lemma 6 we also get

∑

x∈F∗

q

χ(x2) = −1 − im
√
q =

∑

x∈F∗

q

χ(−x2).
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Therefore we obtain

A1,4 =
1

6
[q − 1 + (ω + ω̄)(−1 − im

√
q)]

=
1

6
(q + im

√
q) =

1

6
(3m + (−1)m/23m/2).

By Proposition 3 we also get

A3,4 =
q

3
−A1,4 =

1

6
(q − im

√
q) =

1

6
(3m − (−1)m/23m/2).

5.2. Case of m odd. By Corollary 9 we now get

A3,4 = |{a ∈ F∗

q|∃ t ∈ F∗

q, a = t2, Tr(t) = 1, t is a square}|.

Since Tr(−t) = −Tr(t) we obtain

A3,4 = |{t ∈ F∗

q| Tr(t) = 1, t is a square}|

=
1

2
|{x ∈ F∗

q| Tr(x2) = 1}|.

By (1) we have

|{x ∈ F∗

q | Tr(x2) = 1}| =
1

3
(q − 1 + ω̄

∑

x∈F∗

q

χ(x2) + ω
∑

x∈F∗

q

χ(−x2)).

By Lemma 6 we also get
∑

x∈F∗

q

χ(x2) = −1 + im
√
q,

∑

x∈F∗

q

χ(−x2) = −1 − im
√
q.

Therefore we have

A3,4 =
1

6
(q − 1 + ω̄(−1 + im

√
q) + ω(−1 − im

√
q))

=
1

6
(q − 1 + 1 + (ω̄ − ω)im

√
q)

=
1

6
(q − im+1

√

3q) =
1

6
(3m − (−1)(m+1)/23(m+1)/2).
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By Proposition 3 we also get

A1,4 =
q

3
− 1

6
(q − im+1

√

3q) =
1

6
(q + im+1

√

3q) =
1

6
(3m + (−1)(m+1)/23(m+1)/2).

We have proved the following theorem.

Theorem 10.

|{a ∈ F∗

q|K(a) ≡ 1 (mod4)}| =

{

(3m + (−1)m/23m/2)/6 if m is even,

(3m + (−1)(m+1)/23(m+1)/2)/6 if m is odd.

|{a ∈ F∗

q|K(a) ≡ 3 (mod4)}| =

{

(3m − (−1)m/23m/2)/6 if m is even,

(3m − (−1)(m+1)/23(m+1)/2)/6 if m is odd.
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