
Serdica J. Computing 4 (2010), 435–446

SOLVING THE TASK ASSIGNMENT PROBLEM

WITH A VARIABLE NEIGHBORHOOD SEARCH∗

Jozef Kratica, Aleksandar Savić,

Vladimir Filipović, Marija Milanović

Abstract. In this paper a variable neighborhood search (VNS) approach
for the task assignment problem (TAP) is considered. An appropriate neigh-
borhood scheme along with a shaking operator and local search procedure
are constructed specifically for this problem. The computational results are
presented for the instances from the literature, and compared to optimal
solutions obtained by the CPLEX solver and heuristic solutions generated
by the genetic algorithm. It can be seen that the proposed VNS approach
reaches all optimal solutions in a quite short amount of computational time.

1. Introduction. Recent developments in computer industry present

problems of a more sophisticated approach to allotment of memory and processors
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to various tasks. This is particularly true if multiple processors and a larger

number of tasks are involved. Assignment of tasks to processors where running

times varied was vital for obtaining streamline of processing jobs. The problem

was complicated by mutual interference of multiple tasks with interchange of

information.

In this paper a special Task Assignment Problem (TAP), sometimes called

TAS with non-uniform communication costs, is studied. The roots of this problem

can be traced to the earliest times of use of computers but its complexity and

enormous time consumption did not allow it to be solved. The development

of new metaheuristics, specifically variable neighborhood search, allowed solving

this problem in short times with reasonably good results.

The problem of task assignment with non-uniform communication costs

can be modelled as a quadratic integer 0-1 minimization problem. Note that

the problem is fully 0-1 integer, it is hard for exact methods, so it must be

solved by metaheuristic approaches such as genetic algorithm (GA) or variable

neighborhood search (VNS).

The TAP problem is also known as Quadratic Semi-Assignment Prob-

lem, which is discussed in [1] mostly on theoretical basis. In [1] it is stated that

the problem is NP-hard, and methods of reduction of a linear part of objective

function are given. In that paper only experimental results are given for the num-

ber of reduction steps and time of their execution and not for solving respective

instances, so a comparison was not possible.

In [13] a genetic algorithm (GA) for the task assignment problem (TAP)

is considered. In that paper an integer representation with standard genetic

operators is used. The proposed GA approach reaches 17 of 20 optimal solutions

in a short amount of computational time. Because of this fact a comparison

became possible and both those results and respective VNS results are given in

Table 2.

Similar to our problem are the Memory-constrained Allocation Problem

(MCAP) and Constrained Module Allocation Problem (CMAP). MCAP is con-

sidered in detail in [12]. This problem has similar structure to TAP but has addi-

tional constraints on memory amount assigned to every individual task. CMAP

considerations can be found in [5], especially problems’ lower bounds.

2. Mathematical formulation. In this section we will use the quad-

ratic integer 0-1 programming formulation for TAP given in [4]. The problem of
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task assignment with non-uniform communication costs is related to finding an

assignment of N tasks to M processors providing that:

• the total cost of execution for given tasks,

• the total cost of all communications between processors, while they execute

allocated tasks,

are minimal.

Let there be N tasks and M processors, and eik be a cost of executing

task i on a processor k. Let cijkl be the communication cost between tasks i and

j if they are respectively assigned to processors k and l. Let us denote with 0-1

integer variable xik which has value 1 if task i is assigned to processor k.

Now we can formulate the quadratic integer programming model for TAP

as follows:

(1) min

N∑

i=1

M∑

k=1

eikxik +

N−1∑

i=1

N∑

j=i+1

M∑

k=1

M∑

l=1

cijklxikxjl

subject to

(2)

M∑

k=1

xik = 1, i = 1, . . . , N

(3) xik ∈ {0, 1} i = 1, . . . , N, k = 1, . . . ,M

The constraints (2) reflect the natural request that any particular task

should be executed on only one processor.

3. Proposed VNS method. Variable Neighborhood Search (VNS)

was first introduced in the literature by Hansen and Mladenović in ([8]). It is a

robust and effective metaheuristic, which can be seen from the large number of

its successful applications. The detailed description of different VNS variants is

out of this paper’s scope and can be found in [6]. We shall only mention some of

the recent and successful VNS applications:

• mixed integer programming [7];

• minimum labelling Steiner tree[3];



438 J. Kratica, A. Savić, V. Filipović, M. Milanović

• bandwidth reduction[9];

• variable selection and determination [10];

• container loading [11];

• nurse rostering [2];

• quadratic assignment problem [14].

The chief purpose of this method is to change neighborhoods as the search

for solution is progressing (hence the name variable neighborhood) and to combine

a local search method for finding local extremes. VNS systematically exploits the

concept of neighborhood change, both in descent to local minima and in escape

from the valleys which contain them. Two complementary concepts are combined

to achieve this: local search and shaking.

First, it is necessary to define a suitable neighborhood structure for the

solution space. The method is constructed firstly to find local minima for running

neighborhood by using local search. When this is achieved, the neighborhood is

changed so that other parts of the solution space can be searched.

Let Nk (k = kmin, . . . , kmax) be a finite set of neighborhoods, where

Nk(S) is the set of solutions in the kth neighborhood of the solution S. The

simplest and most common choice is a structure in which the neighborhoods

have increasing cardinality: |Nkmin(S)| < |Nkmin+1(S)| < · · · < |Nkmax(S)|.

Given an incumbent S and an integer k ∈ {kmin, . . . , kmax} associated to

a current neighborhood, a feasible solution S′ is generated in Nk(S), and a local

search is then applied to S′ in order to obtain a possibly better solution S′′. If

S′′ is better than S, then S′′ becomes the new incumbent and the next search

begins at the first neighborhood Nkmin; otherwise, the next neighborhood in the

sequence is considered in order to try to improve upon solution S. Should the last

neighborhood Nkmax be reached without a solution better than the incumbent

being found, the search begins again at the first neighborhood Nkmin until a

stopping condition, e.g., a maximum number of iterations, is satisfied.

The process of choosing solution S′ in the current neighborhood is called

shaking. This procedure can be performed by random choice or by some other

strategy and is used to diversifies the search process. If the structure of the

neighborhoods is such that the order of neighborhood cardinalities is increasing,

this means that the search for solutions will be diversified on each step over an

increasing part of the solution space.
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The pseudo-scheme of the variable neighborhood search for the task as-

signment problem is given in Figure 1.

Input parameters for VNS are: minimal and maximal number of neigh-

borhoods which should be searched, kmin and kmax, maximal number of iterations

and p, which represents the probability of moving from one solution to another

with the same value of the objective function.

Initialization is carried out randomly. At the beginning of the VNS pro-

cedure a randomly chosen processor is assigned to each task and this assignment

is the starting solution S.

On every iteration function Shaking() is performed as follows. For a

given k, the k elements from the set {1, . . . , N} are chosen randomly. For each

of the chosen k tasks we randomly change its assigned processor to some random

value from the set {1, ..,M}, while for the other tasks the assignments in the

S′ are preserved from S. After that a local search, which is explained later

in all details, is carried out until there is no improvement. At the end of the

local search a new solution S′′ is obtained. If this new solution is better than

the current solution S, then S′′ replaces S and the algorithm continues in the

same neighborhood. If the local search produces a worse solution S′ than S, a

new neighborhood is tried (k = k + 1). Because k increases it is clear that the

cardinality of Nk+1(S) is larger than that of Nk(S). This can be seen from the

fact that |Nk+1(S)| = Mk+1 > Mk = |Nk(S)|. In the case k = kmax we set the

neighborhood to k = kmin.

Basic VNS moves strictly from one solution to the next solution, which has

an objective function value strictly greater than previous solution. For problems

with many local optima with the same value of objective function, this approach is

too tight. Switching to one of these optima can broaden the search and increase

the chances of improvement. Contrariwise, if the algorithm switches from one

solution to another every time value of objective function is repeated, the chance

of moving in circles increases. Contrary to basic VNS here is implemented a

modification of the function Compare(), which switches from one solution to

another with the same value of the objective function with some probability p.

In this way, both drawbacks mentioned before are successfully prevented.

The local search procedure implemented in this VNS method is now ex-

plained. The local search traces assignment of tasks to processors going from

task 1 to task N . For each task, a local search tries to find a better assignment

of that task with some other processor. If there is improvement in the objec-

tive function, we change the assignment of that task and continue the process
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Function VNS(kmin, kmax, itermax, p)
S:= Random Init();
k := kmin;
iter := 0;
repeat

iter := iter + 1;
S′ := Shaking(S,k);
S′′ := Local Search(S′);
if Compare(S, S′′, p)
then

S := S′′;
else

if k < kmax

then

k := k + 1;
else

k := kmin;
endif

endif

until iter ≤ itermax;
return S;

end;

Function Compare(S, S′′, p)
if(Obj (S′′) < Obj (S))
then

return true;
else

if(Obj (S′′) > Obj (S))
then

return false;
else

return Random(0,1)<p;
endif

endif

end;

Fig. 1. Pseudo-code of the VNS for TAP
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again starting from task 1. If there is no improvements, the local search contin-

ues tracing the assignment of the next task. If there is no improvement in the

objective function after tracing all N tasks, we end the local search procedure

and the newly obtained solution is S′′. This strategy is known in the literature

as “first improvement strategy”, because we reset the local search step after the

first improvement.

4. Experimental results. All computations were executed on a Quad

Core 2.5 GHz PC computer with 4 GB RAM. The VNS implementation was coded

in C language. For experimental testings in this implementation the instances

described at [4] were used. These instances include different numbers of tasks

(N = 10, 15) and different number of processors (M = 3, 5). For each pair of

task-processor (N,M), there is a set of ten instances. Note that the optimal

solution values for M = 3 differ from the values described in [4] by at most 1.

The solution values for M = 5 differ significantly. Therefore we used optimal

solution values obtained by CPLEX, because we cannot deduce the difference

from the results described in [4].

The finishing criterion of VNS is the maximal number of iterations Niter

= 100. In this experiment the VNS parameters kmin, kmax and probability p

have values of 2, 30 and 0.4, respectively. Because VNS is a non-deterministic

algorithm, all experiments were executed 30 times.

Table 1 summarizes the results of VNS on these instances. In the first

column the names of instances are given. The instance’s name carries information

about the number of tasks N , the number of processors M and the number of gen-

erated cases with the same N and M . (For example, the instance tassnu 10 3 1

is an instance which has N = 10 tasks on M = 3 processors and is the first case

generated for this N and M .) The second and third column contain optimal so-

lution values and values of the solutions obtained by VNS. In the fourth column

the VNS running time is given. The fifth and sixth column contain the relative

error err and standard deviation σ in all 30 runs. The seventh column contains

the average overall number of local search steps through all 100 iterations. In

the following two columns data about first occurrence of best VNS solution are

presented: average number of iterations and average number of local search steps,

respectively.

Direct comparisons of the VNS results with CPLEX and GA implemen-

tation from [13] are given in Table 2. The first column contains the instances’
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Table 1. VNS results on TAP instances

Instance name optsol V NSsol t(s) err(%) σ (%) LStotiter iter LSiter

tassnu 10 3 1 −719 opt < 0.001 0.000 0.000 894 2 19

tassnu 10 3 2 −790 opt < 0.001 0.000 0.000 762 2 17

tassnu 10 3 3 −624 opt < 0.001 0.000 0.000 747 19 131

tassnu 10 3 4 −734 opt < 0.001 0.000 0.000 769 6 49

tassnu 10 3 5 −871 opt < 0.001 0.000 0.000 732 7 48

tassnu 10 3 6 −677 opt < 0.001 0.000 0.000 684 10 69

tassnu 10 3 7 −613 opt < 0.001 0.000 0.000 841 4 35

tassnu 10 3 8 −495 opt < 0.001 0.000 0.000 888 2 21

tassnu 10 3 9 −750 opt < 0.001 0.000 0.000 800 3 22

tassnu 10 3 10 −486 opt < 0.001 0.000 0.000 755 7 48

tassnu 15 5 1 −1985 opt < 0.001 0.000 0.000 1664 6 91

tassnu 15 5 2 −1568 opt < 0.001 0.493 0.822 1832 17 268

tassnu 15 5 3 −1892 opt < 0.001 0.000 0.000 1796 7 116

tassnu 15 5 4 −1806 opt < 0.001 0.000 0.000 1630 6 92

tassnu 15 5 5 −1881 opt < 0.001 0.000 0.000 1735 12 208

tassnu 15 5 6 −1950 opt < 0.001 0.000 0.000 1690 16 269

tassnu 15 5 7 −1893 opt < 0.001 0.000 0.000 1762 15 227

tassnu 15 5 8 −1733 opt < 0.001 0.000 0.000 1647 15 241

tassnu 15 5 9 −1798 opt < 0.001 0.100 0.301 1700 27 436

tassnu 15 5 10 −1763 opt < 0.001 0.004 0.014 1632 32 509

names, while the second and third columns contain optimal solutions and run-

ning times of CPLEX solver. The best values of genetic algorithm (GA) GAsol

are given in the following column. The mark opt is given if optimal solution is

reached and there is no difference between that solution and the solution obtained

by CPLEX. Average overall running times of the GA values are given in the t

column. The next column contains relative errors given in percents. In the next

three columns best values, running times and relative errors of VNS are given.

As can be seen in Tables 1 and 2, VNS reached all optimal solutions and

the running time on all instances is smaller than 0.001 seconds. The CPLEX

solver also runs very fast on instances with 10 tasks, but on larger instances,
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Table 2. Comparison of CPLEX, GA and VNS results on TAP instances

CPLEX GA VNS

Instance name optsol t(s) sol t(s) err(%) sol t(s) err(%)

tassnu 10 3 1 −719 < 1 opt 0.162 0.000 opt < 0.001 0.000

tassnu 10 3 2 −790 < 1 opt 0.165 0.000 opt < 0.001 0.000

tassnu 10 3 3 −624 < 1 opt 0.210 0.641 opt < 0.001 0.000

tassnu 10 3 4 −734 < 1 opt 0.172 0.000 opt < 0.001 0.000

tassnu 10 3 5 −871 < 1 opt 0.162 0.000 opt < 0.001 0.000

tassnu 10 3 6 −677 < 1 opt 0.165 0.214 opt < 0.001 0.000

tassnu 10 3 7 −613 < 1 opt 0.162 0.000 opt < 0.001 0.000

tassnu 10 3 8 −495 < 1 opt 0.164 0.000 opt < 0.001 0.000

tassnu 10 3 9 −750 < 1 opt 0.163 0.000 opt < 0.001 0.000

tassnu 10 3 10 −486 < 1 opt 0.164 0.021 opt < 0.001 0.000

tassnu 15 5 1 −1985 51832 opt 0.254 3.131 opt < 0.001 0.000

tassnu 15 5 2 −1568 129840 −1539 0.328 4.827 opt < 0.001 0.493

tassnu 15 5 3 −1892 52955 −1856 0.257 9.905 opt < 0.001 0.000

tassnu 15 5 4 −1806 91146 opt 0.292 1.462 opt < 0.001 0.000

tassnu 15 5 5 −1881 78795 opt 0.248 2.818 opt < 0.001 0.000

tassnu 15 5 6 −1950 79872 opt 0.254 5.285 opt < 0.001 0.000

tassnu 15 5 7 −1893 51547 opt 0.236 4.691 opt < 0.001 0.000

tassnu 15 5 8 −1733 108092 opt 0.241 2.796 opt < 0.001 0.000

tassnu 15 5 9 −1798 107982 −1780 0.246 2.496 opt < 0.001 0.100

tassnu 15 5 10 −1763 109963 opt 0.246 4.169 opt < 0.001 0.004

with 15 tasks, running times are huge (> 50 000 seconds). As can be seen in

Table 2, GA did not reach the optimal solution for 3 of 20 instances. Though

running times of GA are quite small, VNS results are obtained almost instantly

and all are optimal. It is obvious that CPLEX cannot handle larger instances

with more than 15 tasks. The GA quickly gives solutions of acceptable quality

even in these instances, but it is evident that VNS performs better. Also, relative

errors for VNS are smaller than those of GA by an order of magnitude.
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5. Conclusions. In this paper a robust and effective variable neighbor-

hood search metaheuristic for solving the task assignment problem is presented.

The good choice of neigborhood structures and efficient implementation of shak-

ing and local search procedures are crucial for producing excellent experimental

results. The VNS reaches optimal solutions for all instances in almost instant

running time.

Based on the presented results, we can conclude that VNS has the great

potential of being a useful metaheuristic for solving other similar problems. The

hybridization of the VNS with exact and other metaheuristic methods are further

most promising directions of future work.
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zález. Variable neighbourhood search for bandwidth reduction. European

Journal of Operational Research, 200 (2010), 14–27.

[10] Pacheco J., S. Casado, L. Nunez. Use of VNS and TS in classification:

variable selection and determination of the linear discrimination function

coefficients. IMA Journal of Management Mathematics, 18 (2007), No 2,

191–206.

[11] Parreno F., R. Alvarez-Valdes, J. F. Oliveira, J. M. Tamarit.

Neighborhood structures for the container loading problem: a VNS imple-

mentation. Journal of Heuristics, 16 (2010), No 1, 1–22.

[12] Roupin F. From Linear to Semidefinite Programming: An Algorithm to

Obtain Semidefinite Relaxations for Bivalent Quadratic Problems. Journal

of Combinatorial Optimization, 8 (2004), 469–493.
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