
Serdica J. Computing 4 (2010), 385–416

COMPUTER NETWORKS SECURITY MODELS
A New Approach for Denial-of-Services Attacks Mitigation∗

Tsvetomir Tsvetanov

Abstract. Computer networks are a critical factor for the performance of a
modern company. Managing networks is as important as managing any other
aspect of the company’s performance and security. There are many tools and
appliances for monitoring the traffic and analyzing the network flow security.
They use different approaches and rely on a variety of characteristics of the
network flows. Network researchers are still working on a common approach
for security baselining that might enable early watch alerts. This research
focuses on the network security models, particularly the Denial-of-Services
(DoS) attacks mitigation, based on a network flow analysis using the flows
measurements and the theory of Markov models. The content of the paper
comprises the essentials of the author’s doctoral thesis.

ACM Computing Classification System (1998): C.2.0.
Key words: network security, denial-of-services, pattern-based defense mechanism.

*This article presents the principal results of the doctoral thesis “Computers Networks De-
fending Models” by Tsvetomir Tsvetanov (St. K. Ohridski University of Sofia), successfully
defended before the Specialised Academic Council for Informatics and Mathematical Modelling
on 25 May, 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

386 Tsvetomir Tsvetanov

1. Network Security—Issues and Challenges. In the last few
years severe issues emerged in the information security field that had to be ad-
dressed immediately. Network researchers focused on developing new technologies
which would be able to protect computer networks from the increasing number
of security threats. Regardless of the great development in that area, today there
is still more to do and the need for a breakthrough solution or technology is still
on the table. Some computer network security researchers ([1], [2]) outlined four
major issues of the global Internet security:

Issue 1: Internet security is highly interdependent. DoS attacks are com-
monly launched from systems that are subverted through security-related compro-
mises. Regardless of how well secured the victim system may be, its susceptibility
to DoS attacks depends on the state of the security in the rest of the Internet.

Issue 2: Internet resources are limited. Each Internet host has limited
resources that can be consumed by a sufficient number of users.

Issue 3: The power of many is greater than the power of few. Coordinated
and simultaneous malicious actions by some participants can always be detrimen-
tal to others, if the resources of the attackers are greater than the resources of
the victims.

Issue 4: Intelligence and resources are not collocated. An end-to-end com-
munication paradigm led to locating most of the intelligence needed for service
guarantees with end hosts. At the same time, a desire for large throughput led
to the design of high bandwidth pathways in the intermediate network. Thus,
malicious clients can misuse the abundant resources of unwitting network for
delivering numerous messages to a victim.

These days we have ended up with many concepts and solutions for pro-
tecting the networks. All these provide deployment of a protection system within
a single computer host or distributed deployment via server and agents. There
are, however, few solutions that are focused on ubiquitous protection including
all computer workstations, network segments (Intranet and Extranet), as well as
protection of the global network. The following are the known systems for in-
formational security that cover a certain perimeter of the enterprise information
systems and networks: antivirus systems, Intrusion Detection Systems, Intrusion
Prevention Systems, and Traffic filtering systems. Every vendor emphasizes on
a specific subset of vulnerabilities or on a few typical traffic parameters related
to network security. However, none of these approaches is ubiquitous. Typically
they would require configuring and using the individual security capabilities of
the network appliance (routers, switches, etc.) in order to achieve robust net-
work security. Again, the protection provided by the firmware (network operating
system) is focused on certain traffic data requiring very good understanding on

Computer Networks Security Models 387

part of the administrator about what does need protection and how it is to be
protected.

1.1. Goals and Problems. The ultimate goal of the thesis is to research
the existing methodologies in network security and to identify the issues with poor
or no effective approach for providing an acceptable level of protection. As many
of the security issues belong to the Denial-of-Services attacks, we focused our
major goal in that area. In order to address the DoS problem, we defined the
following tasks and problems for solving:

– Research the state-of-the-art methodology and approaches for predictive
analysis of the computer networks; research the variety of DoS attacks and
create taxonomies depending on the features of the attacks and defense
mechanisms.

– Analyze, select, and develop a methodology for a critical subset of DoS
attacks and apply that methodology using a software system based on that
model.

– Develop a system prototype, run field tests in the network environment,
analyze the results, and finally compare the results with similar existing
methodology and approaches.

1.2. Methodology of computer networks analysis. The analysis
center at CERT outlined a few challenges of predictive network analysis [3]. The
analysts summarized five major problems for computer network traffic analysis
for a successful prediction of threats:

– Establishing perspectives

– Establishing a base line profile of normal behavior

– Spotting and evaluating exceptional behavior

– Producing analysis results that support decision making

– Assessing the effectiveness of the actions

Analysts face the challenge of choosing among the perspectives from which
to observe network behavior [3]. Four perspectives are listed below and shown at
Figure 1.

Local perspective: Observing network behavior at the connection(s) be-
tween an organization’s network and the Internet or another wide-area network,
often a perimeter firewall. This is the easiest perspective to obtain. The advan-
tage is that the threatening behavior identified is specific to the organization.
The disadvantage is that there is little (if any) time for protective action, leaving
only reactive strategies to the organization.

Proximate perspective: Arranging for observation at the wide-area net-

388 Tsvetomir Tsvetanov

Fig. 1. Perspectives: (a) local, (b) proximate, (c) remote, (d) endemic

work point of presence. In general, this involves contract negotiations to establish
what observations will be made and how the data will be transmitted. Advan-
tages are that threatening behavior is still somewhat specific to the organization,
and that a somewhat broader observation than the local perspective is possible.
Disadvantages are the need for negotiation and the limited time for anything but
reactive strategies.

Remote perspective: Arranging for a variety of points of observation at
contracted points on the wide-area network, not necessarily related to a particular
organization. The contract negotiations are likely to be more complicated than
for the proximate perspective since the needs of a variety of organizations are
involved. An advantage is the ability to generalize, along with a degree of analyt-
ical context. Disadvantages include varying amounts of data covering the same
event and varying time lags; in addition, the task of organizing and coordinating
the data is likely to be extensive.

Endemic perspective: Building a fostered cooperative network of allied
network analysis groups. This allows a variety of perspectives on network behav-
ior and a shared understanding of the analysis process and its results. Advantages
are a fair amount of collaborative understanding and the ability to bring in the
local expertise of a variety of organizations. It is also possible that even subtle
threats would be detected with a maximum of time for protective action. Disad-
vantages include the difficulty of localizing threats to a specific organization and
the possibility that differing assumptions of the analysis may lead to contradic-
tory recommendations.

Along with establishing perspectives, analysts need to understand the
normal behavior associated with these perspectives. They have to establish a
baseline for later identification of exceptional behavior. Once some initial profiling
and analysis has been done, analysts can move to more in-depth analysis. This
involves looking for trends and cycles, incorporating data from multiple sources,
and seeking triggering events or conditions for variations.

Regarding the spotting and evaluating of exceptional behavior, the fol-

Computer Networks Security Models 389

lowing are among the factors that must be considered: time; source and victim;
growth of incidents related to a specific rationale; and the perpetrators. The de-
cision support role for predictive analysis involves a) understanding the various
courses of action available in response to an alert along with their consequences, b)
matching the threat to possible defensive actions, and c) providing those courses
of action in a strategic context to decision makers.

To assess this effectiveness, analysts need to formulate criteria for a suc-
cessful defensive action, collect observations to confirm or deny these hypotheses,
test the hypotheses against the observations, and finally balance between the two
general types of observational error: identifying a change that, in fact, does not
exist and failing to identify a change that does exist.

1.3. Methodology for Detecting and Preventing Denial-of-Ser-
vices Attacks. Searching the Web we would find hundreds of definitions of the
denial-of-services (DoS) attack and their variations like distributed DoS (DDoS),
distributed reflected DoS (DRDoS), permanent DoS (PDoS) and many others.
However, none of those would be good enough to formally describe the whole
variety of DoS attacks. In this paper we use an informal definition provided by
US-CERT that basically addresses the end-users experience:

“In a denial-of-service attack, an attacker attempts to prevent legitimate
users from accessing information or services. By targeting your computer and its
network connection, or the computers and network of the sites you are trying to
use, an attacker may be able to prevent you from accessing email, websites, online
accounts (banking, etc.), or other services that rely on the affected computer.” [4].

“In a distributed denial-of-service attack, an attacker may use your com-
puter to attack another computer. By taking advantage of security vulnerabilities
or weaknesses, an attacker could take control of your computer. He or she could
then force your computer to send huge amounts of data to a website or send spam
to particular email addresses. The attack is distributed because the attacker is us-
ing multiple computers, including yours, to launch the denial-of-service attack.”
[4]. Figure 2 illustrates the DDoS network hierarchy. In DDoS the intruder
engages other platforms as stepping stones for attacking the victim.

The DoS targets a victim in order to block access rather to steal and
misuse information. Technically, the DoS could be used as a stepping stone for
information theft and frauds; however, the DoS attack itself does not do that.
The DoS could also be very destructive depending on the way it was performed
and on its targets. This is the reason why DoS attacks are one of the most critical
issues of the computer network security. Network analysts and researchers have
developed many methodologies and systems in order to address the mitigation
and prevention of the DoS problem. But the variety of this problem is so diverse

390 Tsvetomir Tsvetanov

Fig. 2. Attacking network hierarchy

that no solution was able to span all over it.
The first set of problems defined in our thesis focused on the analysis of

DoS attacks and the overview of the current methodology:
Develop a structural approach for DoS analysis based on the common

taxonomy of DoS attacks and DoS defending mechanisms in order to get a clear
understanding of the DoS problem [1]. Also, find out the most common charac-
teristics of the DoS attacks with the greatest impact on the network.

Summarize the state-of-the-art mechanisms for defending against the DoS
and the essentials of the approaches on which they are based.

The DoS taxonomy [1] addresses the following major issues and aids the
analysts in the following directions:

– The taxonomy synthesizes the common characteristics of the DoS attacks
and provides a common language and terminology for analysts.

– It leverages the communication and the cooperation between analysts for
building up successful DoS defense mechanisms.

– It identifies the weak points of the DoS problem where many gaps are still
not filled and where no solution has been found or even explored.

In our thesis we made a detailed overview of the most successful mecha-
nisms for DoS defense. Most of them are research topics or prototypes in incubus
phase or suggestions for design improvements of network protocols. However,
they are all attempts to address the DoS phenomena globally: Pushback [5],
Traceback [6], ICMP Traceback [7], D-WARD [8], NetBouncer [9], SOS [10],
Proof-of-Work System [11], DefCOM [12], COSSACK [13], Pi [14], Stateless In-
ternet Flow Filter (SIFF) [15], Hop-count Filtering system [16], IP Source Tracker
[17], Locality and Entropy [18].

Summarizing the DoS characteristics together with the variety of solu-

Computer Networks Security Models 391

tions in the context of the OSI network model and the deployment location, we
presented graphically the information security systems as shown on Figure 3.
The DoS problem, however, spans all over the OSI stack and has local impact
on particular hosts and network segments in addition to being able to affect the
global networks (Figure 4). This is why there is no easy technical approach that
can address the whole impact area.

Fig. 3. Information security systems according to the deployment location and the
protection level

2. DoS Attack Detection and Prevention—Analysis, Design,
and Prototype. The major part of our thesis was focused on researching the
opportunities for faster detection of DoS attacks based on a certain methodology,
designing and prototyping a system that implements the methodology. On the
basis of the analysis of the DoS problem as well as the findings about the attacks
with the greatest impact, it was decided that the most important characteristics
for detecting severe DoS were the traffic parameters of OSI layers 3 and 4 (network
layer and transport layer, respectively). This is why our research and system
design started with the following major traffic data: transport protocol identifier
(ICMP = 1, TCP = 6, UDP = 17), source IP address, source port number,
destination IP address, destination port number. In the case of ICMP the port
numbers are calculated based on the ICMP type and code values: p = 16t + c,

392 Tsvetomir Tsvetanov

Fig. 4. DoS threats in the context of the OSI stack and the destination target

where t is the ICMP type and c is the ICMP code as per RFC792. Obviously the
calculation in the program would be p = t ≪ 4| c;

These five traffic parameters are part of the IP header and the transport
layer header. The IP network protocol was chosen because it is practically the
sole network protocol in the global networks. For the purposes of our research it
would be absolutely sufficient to focus on the headers data related to the peers
over the IP communication.

The following are the tasks defined in the corresponding chapter of our
thesis:

– How we can obtain the necessary IP data?

– What methodology to choose for modeling the network traffic?

– What defense model should be preferred for prototyping and how to apply
that methodology in our system?

2.1. Prerequisites and Input Data. The modern network solutions
provide appliances for network data capture and analysis. There are basically
two types, depending on the deployment: inline and passive. With the inline
deployment the device would be able to modify the traffic; the passive deployment
makes sense in the case of traffic monitoring, trending, and reporting. About
ten years ago the traffic monitoring solutions were mostly software based. The
administrator needed to set up a dedicated host running the monitoring software
in a certain point of the network and collect the data. A few years ago the

Computer Networks Security Models 393

network vendors agreed on a common standard for providing network monitoring
data. NetFlow [19], which initially was Cisco proprietary, was finally published
as industry standard under RFC3954.

NetFlow enables the network appliance to track unicast IP packets as
they enter the router through an interface. As the name implies, NetFlow tracks
IP packets on a “per flow” basis. A flow is made up of unidirectional flow of data
having two endpoints as individually identified by a combination of the following
seven criteria items:

– Source IP address
– Destination IP address
– Source port number (TCP, UDP)
– Destination port number (TCP, UDP)
– Layer 3 protocol type (TCP, UDP, ICMP)
– Type of Service (ToS) byte (0-7)
– Input logical interface
Any difference in these seven criteria distinguishes one flow from another.
The NetFlow standard was an answer of the first question—how we would

capture the IP flow data. Next, we need to decide on the IP traffic modeling
methodology.

2.2. Modeling the Network Traffic. Two major approaches are uti-
lized in the theory of computer network modeling: queuing theory [20] and hid-
den Markov models [21]. Queuing theory addresses basically the models for the
ubiquitous service. The general issue of the contemporary online services is how
we can ensure that every customer would be served in a fairly short timeline.
This issue is the main objective of the ubiquitous service. Apparently, queu-
ing theory provides an approach for analysis of quality of service (QoS) issues.
QoS was addressed in the early days of computer networking and it is still an
ongoing issue for modern telecommunications. One aspect of the QoS problem
is the quality measurement; the other aspect is related to the analysis of net-
work processes. Queuing theory also aided analysts in discovering those internal
network processes that allocate the major part of the network resources. Once
knowing the processes, analysts might be able to decide on the policy of the
allocation of resources in order to ensure the target level of the quality of service.

The seconds approach uses Hidden Markov Models (HMM). In fact, queu-
ing theory also uses Markov chains and models, but we address network analysis
based on Markov models only. Hidden Markov models are stochastic systems
that have two parts: an internal hidden part and a visible part that manifests
the hidden behavior to the observer. The internal states of the model are hidden
from the observer. We call them also hidden states. The system moves from state

394 Tsvetomir Tsvetanov

to state within the discrete time intervals. In the context of computer networks
we can think about the hidden states as internal processes or events occurring
in the network environment. Beside the hidden part, the hidden Markov model
has a “visible” part. The observer can “see” the manifestation of the hidden
state in terms of observed symbols emitted by the internal processes. The set of
observed symbols is the alphabet of symbols. When talking about applications
of hidden Markov model for network analysis, we can also call that alphabet of
the observed symbols a network alphabet. Should we pick up the hidden Markov
model for application of network analysis, we will need to define the set of hidden
states and the network alphabet, matching them to a particular semantics in the
context of the network analysis application.

Unlike the queuing theory approaches, network analysis based on the
Markov models does not address the quality of service issues; it rather solves the
problem for pattern recognition onto the network flows. Using HMM, analysts
build up a different kind of network profiles for different network environments.
Those profiles aid analysts in the detection of abnormal network behavior as well
as in finding specific trends in the use of the network environment. The profiles
also might be applied in network security management. When building up a
set of profiles within a certain timeline, the analysts are able to determine the
differences and then detect potential threats.

We will focus on modeling the network flow for network behavior pattern
recognition. In order to address this problem we choose the HMM approach.
Having built up the model patterns we would be able to recognize if our network
is handling legitimate traffic or the traffic flow is offensive and malicious. The
reason for choosing the HMM approach is also based on the following facts.

There are certain internal processes running in the network and they are
hidden from the end-users and even from the monitoring tools. Those processes
affect the network resources and change the behavior of the infrastructure. Due
to the internal processes the network moves to another state within certain dis-
crete time interval. Every internal state transition emits external phenomena in
terms of network traffic attributes like specific header values, payload content,
a combination of both, or a specific sequence of network packets on the wire.
All those manifestations may be different for particular infrastructures and en-
vironments and also may vary between network segments within an autonomous
system.

The comprehensive network devices are able to provide some predefined
characteristics of the network flow to the network monitors. That information, of
course, cannot be unlimited by quantity and by property, obviously because this
is additional function for the network devices and it produces additional overhead

Computer Networks Security Models 395

on the device’s resources. The device vendors address the network monitoring
requirement by aggregation and export of the protocol headers in predefined data
structures. Using that information the network monitors are able to collect traffic
data, i.e., the network symbols emitted by the internal processes.

Using a network tool for collecting the traffic tokens we can build up a
network profile for certain discrete time intervals. The basic idea of this task is
to obtain two groups of observed network words:

– Words that were read in a time of normal network behavior, when there
was no anomaly in the traffic flow or the anomalies were too weak to affect
the network assets and performance.

– Words observed during a long running intensive network flow anomaly when
the there might be Denial-of-Services or similar attacks executed against the
network resources.

The definition of the network alphabet that we are going to use is based
on the relation between the communication peers from the previous traffic entry
and the current one. The comparison of those two traffic entries depends on the
network and transport protocol header values. As we are focusing on IP network
stack analysis, the following values are taken into account:

– Source IP address
– Source port
– Destination IP address
– Destination port
– Protocol code (e.g. ICMP = 1, TCP = 6, etc.)
The following table contains the semantics of the network alphabet.
It is important to note that all the symbols except the symbol ‘H’ require

the same transport protocol code. When the parameters source IP address, des-
tination IP address, source port, and destination port do not match between the
traffic flows, the emitted symbol will be ‘H’ no matter the protocol is the same
or not.

Figure 5 shows the result of collecting the network words over the wire
during normal and abnormal behavior. As expected, the symbol ‘H’ emerged
mostly with heterogeneous traffic, which basically occurs as the normal network
flow.

2.3. Result Analysis. After the network words are collected by the tool
and stored into files, we will make a post-mortem analysis of the observed flows.
Before proceeding to the task, we need to make a few definitions to be used later
in the paper.

Let the set of observed symbols be V = {V1, V2, dots, VM}. Set V is the
network alphabet as previously defined in Table 1. As per the definitions the size

396 Tsvetomir Tsvetanov

Table 1. Information security systems according to the deployment location and the
protection level

A The communication peers are absolutely the same. The previous traffic flow
entry and the current entry are absolutely the same, i.e., those are the same
connection flows.

B The previous and the current traffic flow entry have one different port, either
source or destination, for example:
TCP / 10.10.167.154:2311—10.10.10.5:80
TCP / 10.10.167.154:2314—10.10.10.5:80

C The traffic flow entries have one different IP address, either source or destina-
tion, for example:
UDP / 10.10.10.8:53—10.10.16.4:53
UDP / 10.10.10.8:53—10.10.16.5:53

D The traffic flow entries vary by the ports and the IP addresses are still the
same, for instance:
TCP / 10.10.10.3:162—10.10.10.8:53
TCP / 10.10.10.8:543—10.10.10.3:53

E The traffic flow entries hold the same IP address and port pair for one peer,
either source or destination, but the other peer IP address and port do not
match. The most common reason for this kind of consequence could be that
the matching peer is actually a service that was requested from a different client
as you can see in this example of flow entries:
TCP / 10.10.167.154:2311—10.10.10.5:80
TCP / 10.10.10.5:80—10.8.130.35:45319

F The traffic flow entries, the previous and the current, hold the same IP address,
either source or destination, but all other peer properties are different:
TCP / 10.10.167.154:2311—10.10.10.5:443
TCP / 10.10.10.5:80—10.8.130.35:45319

G The current and the previous traffic flows match only in one port, either source
or destination:
UDP / 10.11.101.230:21439—10.10.10.5:161
UDP / 10.16.116.159:19012—10.10.10.4:161

H The traffic flow entries have absolutely nothing in common.

of the network alphabet is 8, i.e., M = 8. There are two major characteristics that
we would be interested in during the pre-modeling analysis. The first question to
answer is how long the longest sequence of same symbols is, no matter what the
symbol itself. The next problem is what is the symbols share over the discrete
period of time of the observation. For these reasons we introduce two definitions
over the network alphabet set V .

Definition 1. The longest sequence ρi(T) of identical symbols Vi in the

Computer Networks Security Models 397

Fig. 5. Networks words captured during a normal network behavior (a) and during
suspicious traffic flows (b)

observed word O for the discrete period of time T is called density of the symbol
Vi for the observed period T . The set of all densities ρi(T) for the corresponding
symbols Vi, ρ(T) = {ρ1(T), . . . , ρM (T)}, is called density of the network alphabet
V for the observation period T .

Definition 2 The ratio φi(T) of the number of the occurrences of symbol
Vi for the discrete period of time T to the length of the observed word O for the
same period T is called frequency of the symbol Vi for the observed period T .

According to the second definition, the following relation immediately
implies Σφi(T) = 1, i ∈ [0;M].

Once collected, the network words are calculated against the density and
the frequency values. If the words are observed during the normal behavior then
we would get ρ and φ parameters for the normal traffic model. Using a test
program we simulated flowing attack and collected the network symbols. The
overall field tests were made over 24-hour periods of time. The results were
collected in series of files and then we proceeded with the flow analysis.

Figures 8 and 9 summarize the results of the analysis. We processed the
network words as follows. The overall period of time was separated in series of
time intervals. As the tests ran for 24 hours, we divided the results in 24 output
words, one for every hour of the day. Then we picked up the words and for each

398 Tsvetomir Tsvetanov

of them we calculated the density and frequency for each of the network symbols.
At the end we had 24 values of the arrays ρi(t) and φi(t) for each time interval
1 ≤ t ≤ T . The output results were generated as double arrays ρ(T) and φ(T)
and the values were translated into a graphical format. These figures present the
values of ρ(T) and φ(T) during the normal flows and during the suspicious flows.

To what extent might the values of the density ρ and the frequency φ be
helpful for the purposes of the traffic analysis? First, these parameters present the
degree of entropy in a measurable way. The average values for the density of 100
counts for the symbols ‘A’, ‘B’, and ‘C’ together with the frequency rates over
20% will be a token for machine-generated flows and accordingly for potential
malicious network traffic. Table 2 summarizes the critical threshold values for
the density and frequency. These values will be considered when deciding on the
characteristics of the traffic flow.

Table 2. Critical values for density and frequency
of the symbols A, B, and C

Symbol density ρ 100
Symbol frequency φ 20%

Once we build and use the traffic flow collector together with the analytic
engine, we can make network security probes on short time interval basis. With
these probes the tool will be able to generate early alerts for the ongoing suspicious
flows. Even though we have already defined the critical threshold values for the
symbol density and the symbol frequency, it will be even better if the values are
tuned up according to the specific network environment.

Beside the critical values of the symbol density and symbol frequency,
we will also be interested in finding a probability model which will match most
precisely the observed network words. Only the Hidden Markov Model can be
such a stochastic model.

2.4. Maximizing the Hidden Markov Model against the Ob-
served Network Words. In the next step of the analysis, before applying
the HMM against the collected network words, let us summarize the HMM ba-
sics and statements. The Markov Model is a stochastic process—a process whose
current state is relatively independent from the previous state:

(1) P [x(tn) ≤ xn|x(t)∀t ≤ tn−1] = P [x(tn) ≤ xn|x(tn−1)]

for each n and t1 < t2 < · · · < t.

The Hidden Markov Model is a statistical model assuming that the system
has unknown parameters for its state transitions but emits a definite number of

Computer Networks Security Models 399

visible symbols in each discrete time frame. The challenge of the HMM is how
to discover the sequence of internal (hidden) states of the system knowing the
external (visible) manifestations. In order to formalize the HMM we use the
following definitions of the elements of the model [24]:

S = {S1, S2, . . . , SN} the set of hidden system states;
V = {V1, V2, . . . , VM} the set of visible symbols emerging by the change

in the system state.
The elements in the set V are called set of observed symbols or symbols.

The set V is also called a discrete alphabet. For a particular discrete time period
T we will observe T symbols. This symbol sequence is also called an observed
word.

Every hidden Markov model has the following characteristics:

• N—the number of internal (hidden) system states. The sequence Q =
q1q2 . . . qT is the sequence of the discrete states that the system was in
during the observed period of time [1;T]. With qt we will denote the hidden
state that the system was in at the discrete moment of time t. Obviously
qt (1 ≤ t ≤ T) belongs to the state set S.

• M—the number of symbols that the system emits during the observed pe-
riod T. The sequence O = O1O2 . . . OT is the emitted word for the observed
period [1;T]. In the case of a two-symbol alphabet (M = 2), i.e., V is the
Boolean alphabet, so the word O is considered a Boolean vector. Obviously
the word O is a number in the interval [0;MT − 1].

• A—the matrix of the transition probability of the hidden states, A = {aij},
where

(2) aij = P [qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N

In case the model allows any-to-any hidden state transitions, aij > 0, ∀i, j.
In the real life examples, however, some of the state transitions are not
possible, therefore aij = 0 for some pairs 〈i, j〉.

• B—the matrix of the symbol emission probability for observing the symbol
Vk in case the system stays in the hidden state Sj, i.e. B = {bj(k)}, where

(3) bj(k) = P [Vk in time t|qt = Sj] 1 ≤ k ≤ M, 1 ≤ j ≤ N

• π—the initial vector of the state entry probability, π = {πi}, where

πi = P [q1 = Si] 1 ≤ i ≤ N(4)

400 Tsvetomir Tsvetanov

The hidden Markov model is the triple λ = (A,B, π). Based on (2), (3) (4), the
HMM fulfills the following stochastic constants:

(5)
N∑

j=1

aij = 1 ∀i, 1 ≤ i ≤ N

(6)

M∑

k=1

bj(k) = 1 ∀j, 1 ≤ j ≤ N

(7)

N∑

i=1

πi = 1

In essence, the HMM maximizing procedure provided by Baum-Welch is used for
discovering the optimal values of the model (A,B, π) for certain observations, or
in other words it maximizes the probability P [O|λ]. The Baum-Welch algorithm
is an iterative procedure for optimization of HMM values. On each iteration a
new HMM λ̄(Ā, B̄, π̄) is calculated. Baum has proved that either the initial model
λ is the critical point of the probability function, or the new model λ̄ is the better
one. So if the new model does not improve the observation probability, P [O|λ] ≥
P [O|λ̄], then the algorithm stops. From the technical software perspective, we
will rather not compare the probabilities but the difference

|P [O|λ] − P [O|λ̄]| < δ,

where δ is a very small constant (equality threshold).
The Baum-Welch procedure was applied over ten different models. The

results published in [24] outlined the following two findings:

– The probability of observing the symbols is maximized over all the inter-
nal (hidden) states. No matter what the matrix of the values of symbol
emission probability of the initial model λ, the values f the optimal model
λ′ are maximized for those symbols that were emitted most. This proves
the criticality of what is observed at the traffic flows versus what actually
happened internally in the network infrastructure.

– No matter what the HMM initial vector values π, the maximized model
strongly depends on the input word. As a result, the maximized model has
higher values bj(k) for those symbols Vk that had highest emissions in .

Computer Networks Security Models 401

These findings basically ruled out the importance of the density and fre-
quency variables before the characteristics of the hidden network processes. This
would that mean the external manifestation of the internal processes is the im-
portant information we need to look at when analyzing the potential network
threats. The next paragraph introduces the model and the approach we choose
for system prototyping. Due to the importance of the IP headers data (the net-
work flow), our model is based on recognition of IP flow patterns, hence, we
named it IP Flow Patterns.

2.5. IP Flow Patterns. For addressing more precisely and adequately
the analysis results above, we introduce the IP Flow Patterns (IPFP) concept
as a potential solution for most DoS issues. The mechanism is based on admin-
istratively defined patterns following strict semantics. It implies a software tool
that implements the pattern semantics. That software program would be started
at the monitoring host where the enterprise traffic is accounted. The program
receives the traffic characteristics, exports them in readable raw data format, and
checks against the defined pattern. Since the algorithm is flexibly constructed it
is easy to implement any traffic handler against the pattern check modules.

2.5.1. Pattern Definition, Rules, and Semantics. A pattern is a set
of statements describing a characteristic of the network traffic:

P={ S1, S2, ..., Sn}
S=¡K,{ V1, V2, ..., Vk}¿
where P—pattern, S—statement, K—key, V—value
The statements are unique by their keys. If several statements are defined

with the same key, the last one is the valid statement (the previous ones are
ignored).

Rule 1: Network traffic matches a pattern if and only if it matches all
the statements defined in the pattern. (Conjunction rule)

Rule 2: Network traffic matches a pattern statement if it matches one
of the values defined under the statement key. (Disjunction rule)

Rule 3 (match-all rule): When a statement is not defined, it matches all
network traffic entries.

The pattern semantics are defined by the following Extended Backus-Naur
Form:
<IPFlow pattern config file> ::= {¡DoS pattern>}+ {¡comment text>}*
<IPFlow pattern> ::=
’Pattern’ <pattern number> ’(’ <EOL>

’proto:’ <protocol name> <endl>
{<protocol specific> <endl>}?
{(’src-addr:’ | ’dst-addr:’) <ip address set> <endl>}*

402 Tsvetomir Tsvetanov

{’src-addr-seq’ <endl>}?
{’dst-addr-seq’ <endl>}?
{’redistribute’ <endl>}?
{’frequency:’ <freq> <endl>}?
{’description:’ <text> <endl>}?
{’seqlen:’ <uint8> <endl>}?
{<comment text>}*
’)’ <EOL>

<comment text> ::= ’#’<text><EOL>

<pattern number> ::= <uint8> (* number 1..255 *)
<protocol name> ::= ’tcp’ | ’udp’ | ’icmp’
<freq> ::= <uint16> | ’no-limit’
<protocol specific> ::= <icmp specific> | <tcp specific> | <udp specific>
<icmp specific> ::=
{’src-type-code:’ <icmp type code> <endl>}?
{’dst-type-code:’ <icmp type code> <endl>}?
<icmp type code> ::= ’any’ | <icmp type>’/’<icmp code>
<icmp type> ::= Integer (* 1..5 : refers to RFC 792 *)
<icmp code> ::= Integer (* 1..20 : refers to RFC 792 *)
<tcp specific> ::=
{<udp specific> <endl>}? {’ttl:’ <uint8> <endl>}? {’tos:’ <uint8> <endl>}?
{’flags:’ <tcp flags> <endl>}?
<tcp flags> ::= {’U’|’A’|’P’|’R’|’S’|’F’}+
<udp specific> ::=
{(’src-port:’ | ’dst-port:’) <port enum set> <endl> }+
(src-port-seq)? (dst-port-seq)? (* definitions for port sequence/scanning *)
<port enum set> ::= ’any’ | {(<uint16> | <uint16>’-’<uint16>) {’,’<port enum set>}*

(* in the expression <uint16>’-’<uint16>
* the first number MUST be lower than the second *)
<ip address set> ::= (’any’ | (’intranet’ | ’internet’ | <ip net>) {’,’<ip address set>}+
<ip net> ::= <uint8>’.’<uint8>’.’<uint8>’.’<uint8>’/’<cidr>
<cidr> ::= Integer (* 1..32 *)
<uint16> ::= Integer (* 0..65535 *)
<uint8> ::= Integer (* 0..255 *)
<endl> ::= ’;’ | <EOL>

As the match-all rule states, it does not matter if the pattern statement
is defined with “any” value or it is missing at all. For instance, the following
pattern descriptions are equivalent:

Computer Networks Security Models 403

Pattern 121 (proto:icmp; src-addr:internet; dst-addr:any;)
Pattern 122 (proto:icmp; src-addr:internet;)
The pattern describes traffic characteristics of OSI Layer 3 and 4 at-

tributes. Every pattern defines a specific protocol (ICMP, TCP, and UDP are
implemented only) and it is expected that the protocol-specific data should be de-
fined as well. Those data must match the protocol identifier or otherwise will be
ignored. The current traffic flow is checked against the pattern(s) in the pattern
configuration file. If the recognition matches, the process acts as follows:

– It increases the match counter and checks it against the occurrence fre-
quency. If the latter is bigger than a specific threshold, the process raises
an assigned action.

– The match process raises an assigned action immediately when no frequency
is defined or the pattern is checking against a port or address sequence.

The main phases of the pattern match process are: Read, validate, and
activate patterns → Get traffic → Map against the pattern(s) → Reaction: log,
iterate, reconfigure, etc. The program logic is implemented in the third phase.
The pattern definition is stored in a data structure. The pattern API provides
functions for parsing and filling up data structures and outputting them in a
byte stream. On the other hand, the NetFlow API implements traffic collection
and store. Both APIs are compliant to a “check algorithm” against the pattern
semantics. During the check, several additional handler operations are performed.
They are used for process optimization as well as handling complex tasks, e.g.,
checking against address and port sequences. The following operations are done
during pattern-to-traffic validation:

• If the Layer 4 protocol (ICMP, TCP, and UDP) does not match, the check
returns false.

• If the sequences (address and/or port) are defined, the process behavior
depends on:

– Checking the IP address (source or destination, depending on the
source or destination sequence definitions) against the address set defi-
nitions (network segments, Intranet, Internet). If the address matches
at least one of the sets, the traffic entry is inserted in the Sequence
Handler Module (SqHM). Otherwise it is not.

– If no corresponding (source or destination) IP address set is defined,
the traffic entry is inserted in SqHM (matches all).

– SqHM is queried for address and/or port sequences described in the
pattern. If a sequence was found, SqHM returns the address for it.
The IP address is the last from the address sequence or the unique

404 Tsvetomir Tsvetanov

address for a port sequence.

– The pattern matching process compares the address returned by SqHM
against the corresponding pattern address set definitions. If there is
no address set definition (match-all rule) the process returns true. If
the address returned by SqHM matches the address set definition the
process returns true as well.

– If there are no protocol-specific statements defined, the process re-
turns the result from the invocation of the Frequency Handler Module
(FqHM).

• When a port statement is defined, the process checks against the port set.
If the corresponding port matches the set, the process returns the result
from FqHM.

• When TCP protocol-specific characteristics are defined in pattern state-
ment(s), the process check against them (TTL, ToS, flags) and returns the
result from FqHM, if the check operation matched.

• FqHM invocation iterates the matches and calculates the matches per sec-
ond. The latter is checked against the frequency defined in the correspond-
ing pattern. If no frequency value is defined or the frequency statement has
a value of “any”, FqHM returns true. Otherwise returns false.

• The checking function follows the signature (pseudo C code): BOOL check
(pattern*, ip traffic*);. The recommendation is to implement a function as
universal as possible in order to manipulate different network traffic output
interfaces and APIs.

The last step of the process is the reaction to the event. While the IP Flow
Patterns core algorithm is dedicated to the anomaly and DoS detection, the re-
action step is executed externally. The IPFP configuration provides an ability to
declare a path to an external executable that is responsible to the event reaction.
The executable receives the following information as command line parameters:
the victim IP address, the peer IP address (attacker), the source port, the desti-
nation port, the last NetFlow entry to trigger the event. For example, should the
following string be configured for external execution ‘/root/tools/suspicious.sh
-x‘, the execution line would look like this:

/root/tools/suspicious.sh -x 10.10.10.123 172.17.17.17 80 12341 \
tcp/10.10.10.123:80:172.17.17.17:12399

2.5.2. Handler Modules. The IPFP implementation uses two handler
modules: Sequence Handler Module (SqHM) and Frequency Handler Module
(FqHM). These are additional modules in the check mechanism for providing
a pluggable infrastructure. The modules are tightly connected to the pattern

Computer Networks Security Models 405

semantics via the statements src-addr-seq, dst-addr-seq, src-port-seq, and dst-port-
seq for the SqHM and frequency for the FqHM.

2.5.2.1. Sequence Handler Module. This module is designed for caching
network data. It is size-restricted and the cache expiration period is practically
throughput dependent. SqHM is a table with strictly defined length. It stores
minimal network traffic entries. The entries themselves contain four additional
columns for storing entry pointers in order to implement two bidirectional link
lists. The data remain in a process image allocated in the memory. Depending
on the traffic rates this cache table must be configured with a proper size. For
low-rate IP traffic, e.g., less than 10 Mbps, a size of 65536 is good enough. If
the patterns using the SqHM are defined with both source and destination IP
address sets, SqHM will be able to store network traffic entries for larger periods
of time.

Here is a sample output snippet from the cache table (< 2 MB):

The cache table is made of homogeneous data structures. Every entry is
29 bytes long. If we allocate 216 rows, then the whole allocated memory will be
29*65536 = 1,9 MB. The structure we are using can represent up to 65536 sorted
entries. If there is a requirement for a bigger cache, then the four indexes must
be changed to 4-byte values. In that case we are able to address up to 232 rows
and the total size of the cache is up to 4294967296*37 = 158,9 GB. Using a big
table is not effective because this kind of cache uses a linear search.

An SqHM must be instantiated per pattern. Every pattern that contains
a sequence statement must use a different SqHM cache. Otherwise the match
can fail or produce unexpected result. The SqHM is a sorted bidirectional link
lists table and following the links the mechanism can detect address and port
sequences. When an insert operation is performed, the entry must find its place
in order to keep the sorted cycle list consistent. The algorithm itself must provide
robust consistency for both source and destination values. When a new value
is added, the IP Flow Pattern detect process performs a scan for source and
destination socket sequences. The complexity of the algorithm can be calculated
in two steps. First, insert action is a linear search function which performs a
maximum of N iterations until finding the place for the new entry. After that
the sequence detection function again performs a linear search in exactly N steps.

406 Tsvetomir Tsvetanov

Finally, insert and sequence search ability costs O(2n) for each direction (source
and destination). Since the table has fixed length (e.g., 65356), we can expected
a constant cost behavior of the cache table utility.

SqHM is able to detect address and/or port based sequences since the
cache flow table (the sequence cache) is not dated. When high traffic occurs,
SqHM will be able to find a sequence flowed within shorter time, while in case of
low congestion SqHM could detect such a DoS address/port scanning for a longer
periods. When SqHM is active (the pattern is defined for sequence detection) we
have implemented additional programmed logic for checking the peer socket. In
order to elaborate further, let us assume that we have activated the following
pattern:

pattern 6 (
descr:TCP sequence detection
proto:TCP
dst-addr:10.32.0.0/16
dst-port-seq
seqlen:30)
The pattern will be able to discover port scanning of the host from a wide

intranet (10.32.0.0/16). Most probably we will be able to find a port sequence
for some host or hosts within very short time:

tcp 192.168.10.11:80 –> 10.32.24.10:1035
tcp 192.168.10.18:80 –> 10.32.24.10:1033
tcp 192.168.10.14:81 –> 10.32.24.10:1037
tcp 192.168.10.10:80 –> 10.32.24.10:1034
tcp 192.168.10.21:81 –> 10.32.24.10:1036
tcp 192.168.10.12:80 –> 10.32.24.10:1038
.....
The destination socket in fact changes sequentially but when looking at

the peer socket (the source) we can easily find that actually the source host was
the target of malicious service scanning; in this example it was over well-known
HTTP ports. This is why, when checking against port permutation scanning, we
implicitly make additional checks against service(s) scanning of the peer. Here is
some typical output of SqHM when a service discovery attempt is detected:

2006-03-09.19-41-44| WARN| 31775|212|
max is c0a80a00->30 * 100.00% from 30 top * 8 ports are 80 81 0 0 0 0 0 0
2006-03-09.19-41-44| INFO| 31775|212|
Peer host(s) are the real victim [net:192.168.10.0, percent:100.00].
10.32.24.10 runs port scanner.

2.5.2.2. Frequency Handler Module. Frequency Handle Module (FqHM)

Computer Networks Security Models 407

implements the steps for iteration and check when the pattern frequency state-
ment is defined. When the check function detects traffic-to-pattern match, it calls
the FqHM in order to iterate the matches. FqHM calculates the matches per sec-
ond (mps) and returns true if the mps value is larger than the pattern frequency
statement value and if there is no pattern frequency statement. Otherwise it
returns true.

FqHM stores a pointer to the pattern definition, startup time values, and
matches. FqHM is used on per-pattern basis. Every pattern has its own FqHM
structure. FqHM could be enhanced in order to store the last N matches for fur-
ther analysis instead of issuing directly an entry match. During the experiments
we observed that the high traffic with specific characteristics as defined by the
DoS pattern could be a normal or abnormal flow depending on the network ser-
vices installed. It depends on the administrator’s knowledge of the characteristics
of the specific network services as to how to define the DoS patterns in order to
exclude that kind of flow.

2.6. A Prototype System Architecture. A prototype was developed
and deployed in the university campus network of the Faculty of Mathematics and
Computer Science in Sofia. The system, running on a Linux platform, received
the NetFlow data from the backbone campus router, so the characteristics of the
entire campus traffic were analyzed by the system.

Fig. 6. IPFP Collector

408 Tsvetomir Tsvetanov

Fig. 7. IPFP Inspector

The system comprises two major components: IP Flow Collector and IP
Flow Inspector :

• The IPFP Collector (Fig. 6) collects the traffic data from the routers via
NetFlow, generates human-readable interpretation of the data, and also
does data aggregation for the flow statistics. The output format is control-
lable and the administrator could expose it via an HTTP server.

• The IPFP Inspector (Fig. 7) is the actual core module of the IPFP pro-
totype system. It is responsible for matching the IPF patterns against the
traffic flow in order to discover the DoS threats. The Inspector basically
matches the NetFlow data against the predefined patterns. The match re-
sults are printed out in log files; however, the administrator is also able
to run an external process (program) that receives a short info about the
suspicious traffic via input parameters. That external program would be
able to take further actions for the attack prevention, for example, sending
system notifications and early watch alerts, reconfiguring automatically the
network devices, and other related activities for DoS prevention that are
specifically needed for the network infrastructure.

The IPFP basically addresses the network anomalies based on the IP
header data. IPFP does not take into account the application level data as
was decided in the design phase (Section 2.5). The solutions we described in
Section 1.3 as well as the modern IDS/IPS components do not process deeply the
IP level peer communication; they rather utilize the traffic inspection through
the whole OSI stack emphasizing at the application protocol level as it might

Computer Networks Security Models 409

exploit specific, usually well-known, vulnerabilities. In order to compare the
IPFP functionality and performance towards another system or software, we had
to find one that is similar to IPFP or at least one that claims to be able to
provide permutation scanning on the addresses and ports together with port
scanning (sweeping) detection. This was the reason why we chose SNORT for
the comparison.

2.7. Comparing IPFP with SNORT. In the last chapter of the thesis
we defined a methodology for comparing IPFP and SNORT [22] and then applied
that approach to these systems. The methodology is based on two aspects: (1)
functional tests and (2) assessment indexes. The functional tests were provided
in terms of simulation programs that can replicate the following network flow
anomalies:

– UDP port sweeping—sending a UDP datagram towards certain port range(s).

– UDP datagram flooding—sending UDP messages to a specific port.

2.7.1. Additional comparison indexes. Beside the functional testing
we defined a series of additional boolean indexes for comparing the systems IPFP
and SNORT. The indexes were measured on the basis of on the functional ca-
pabilities of the systems (Protection indexes group), the system design features
(System indexes group), as well as the resource consumption (Runtime group).
Table 5 summarizes the indexes and whether the systems match them.

2.7.2. SNORT vs. IPFP—summary. The functional tests and the
comparison indexes showed the level of maturity of the IPFP. The fact that
SNORT is commercial IPS software with a long background was also taken in
account. Keeping in mind that IPFP focuses on the IP flow level rather than
the whole OSI stack, we still proved that the IPFP concept is as powerful as
the full-blown IPS concept. The specific focus on the transport level definitely
resulted in a higher level of attack detection as we saw with the functional tests.
The features of SNORT and IPFP are summarized in Table 6.

3. Conclusion. At the very beginning we outlined the ultimate goal—
to find an effective mitigation method for the major severe DoS issues. In order
to address this goal we defined three problems to solve in our paper:

– Research the current state-of-the-art approaches and methodologies for
analysis of network flow behavior; research and analyze the DoS attacks,
their characteristics and taxonomies based on common features.

1SANS Internet Storm Center—Cooperative Network Security Community—Query for a
threat level report on the TCP port number 2967
http://isc.sans.org/port.html?start month=12&start day=21&start year=2006&end month

=12&end day=31&end year=2006&port=2967

410 Tsvetomir Tsvetanov

Table 3. Discovering UDP port sweeping: horizontal: 1, 2, 5—number of the repeats
of the scanning; S, R—sequential scanning and random scanning, respectively vertical:
1200, 4000, . . . , 62000—starting port number for the corresponding scanning region; 50,

200, . . . , 2500—port region length

– Select an appropriate methodology for DoS attacks detection and develop
a system model for applying that methodology.

Computer Networks Security Models 411

Table 4. UDP flooding detection: Horizontal: 50, 100, 200, and 500—number of the
datagrams in the traffic flooding; Vertical: 1000, 3000, . . . , 62000—the victim’s UDP port

numbers

Fig. 8. Densities and frequencies of the network symbols during the normal network
behavior

– Implement the model with software technology, test the product in the net-
work environment, analyze the output results, and compare the effectiveness
with existing systems, products, and approaches.

These problems were successfully addressed in the thesis and as a result
we ended up with a prototype system called IP Flow Patterns (IPFP). The IPFP
was a clear proof of the concept defended in the thesis. This is why we may
outline the following major contributions of our solution:

– Network security issues were investigated, emphasizing on the DoS attacks
issues. Research of the network flow analysis methodology and the ap-
proaches for estimate and analysis of the normal network behavior is fol-
lowed. The DoS attacks taxonomies and the defense mechanisms were made
in dependence of different grouping standards.

– Research of the network flow probing methods was pursued and a model

412 Tsvetomir Tsvetanov

Table 5. IPFP vs SNORT—a summary of the additional comparison indexes

IPFP SNORT

Protection

Passive protection X X

indexes

Active protection X X

Permutation scanning detection X X

High-frequency traffic detection (“port or
address sweeping”)

X –

Attacks on the application protocol – X

Infrastructure level protection X – *

Local host-based protection – * X

System

Support of a standard input data and in-
terfaces

X X

indexes Flexibility X X

Scalability – X

Runtime
CPU consumption – –

indexes
Memory consumption X X

Usability and maintenance X –

* some exceptions apply depending on the infrastructure

Table 6. SNORT vs. IPFP—features summary

SNORT IPFP

Complex fully functional IDS. Simplified model for network defense.

A rule-based detection engine checks the
traffic against traffic characteristics.

Uses text definitions to check the network
traffic against specific patterns.

Takes a predefined operation (LOG, AC-
TION) when at least one packet matches
with the rule.

Takes an action (a command string) when
a set of packets matched the IP Flow pat-
tern.

The SNORT rules analyses the traffic
through the whole OSI stack—from data-
link to application layer.

The IPFP works on the network and trans-
port layer; the packets payload is not in-
spected.

Using SNORT rules the network adminis-
trator can detect attack attempts to some
specific application protocol’s vulnerabil-
ity. The network and transport layer-
related threats are handled by a dedicated
plug-in module.

Using IPFP the network administrator can
detect attack attempts for permutation
scanning of network segments, hosts, and
services. The IP Flow patterns discover
high-frequent requests to sets of segments,
hosts, and services.

Computer Networks Security Models 413

Fig. 9. Densities and frequencies of the network symbols during suspicious traffic flows

Fig. 10. Occurrences of a suspect network flow. The graphic on the right presents
flooding over application protocol ssc-agent (tcp/2967) that was apparently confirmed to

be a severe threat in Dec 2006 by SANS Internet Storm Center1

for drilling and analysis was chosen.

– There was invented a new approach for DoS mitigation, based on the ana-
lyzed DoS defense mechanisms. Using a mathematical model we discovered
the essential network flow parameters. These parameters were built into
the new defense model.

– There was developed a methodology for functional quality assessment of
the DoS defense mechanisms.

In addition to the research we also developed a prototype for proving the
new concept for the DoS defense. The IPFP contributed basically to the applied
aspect of the thesis. The following is the summary of the achievements of the
application level:

– Software tools for network traffic data were developed.

414 Tsvetomir Tsvetanov

– Based on the new model for DoS protection the IPFP was implemented.
The IPFP was tested in real life scenarios and the output was analyzed. The
analysis results were compared with the corresponding online data centers
for transport level vulnerabilities (Fig. 10).

– IPFP was compared with SNORT based on the methodology for assessment
of the effectiveness of the DoS defense system.

The IP Flow Patterns model was also submitted for a patent at Sunny-
vale, California, U.S.A. [23]. The innovations that were nominated for patenting
were the pattern defense model and the pattern syntax, the methodology for the
network flow data processing, the methodology and the concept for permutation
network scanning detection, the frequency calculation of the traffic flowing rates
and others. Some parts of the thesis were probed and presented at conferences,
conventions, and a scientific journal ([24], [25], [26], [27], [28]).

REFERE NC ES

[1] Mirkovic J., J. Martin, P. Reiher. A Taxonomy of DDoS Attacks and
DDoS Defense Mechanisms. Computer Science Department, University of
California, Los Angeles, Technical report #020018.

[2] Dittrich D. Books on DDoS.
http://staff.washington.edu/dittrich/misc/ddos/

[3] Shimeall T., C. Dunlevy, L. Pesante. Challenges of Predictive Analysis
for Networks, CERT R©Analysis Center.

[4] US-CERT, Understanding Denial-of-Service Attacks, National Cyber Alert
System. http://www.us-cert.gov/cas/tips/ST04-015.html

[5] Floyd S., S. Bellovin, J. Ioannidis, K. Kompella, R. Mahajan,

V. Paxson. Pushback Messages for Controlling aggregates in the Network.
Internet draft, Work in progress. http://search.ietf.org/internet-
drafts/draft-floyd-pushbackmessages-00.txt, July 2001.

[6] Bellovin S. ICMP traceback messages. Internet draft.
http://lasr.cs.ucla.edu/save/rfc/draft-bellovin-itrace-00.txt,
October, 2001.

[7] Bellovin S., M. Leech, T. Taylor. ICMP Traceback Messages.
http://www.ietf.org/proceedings/02mar/I-D/

draft-ietf-itrace-01.txt

Computer Networks Security Models 415

[8] Mirkovic J. D-WARD: Source-End Defense Against Distributed Denial-of-
Service Attacks. http://lasr.cs.ucla.edu/ddos/dward-thesis.pdf

[9] O’Brien E. NetBouncer: A practical client-legitimacy-based DDoS defense
via ingress filtering,
http://www.isso.sparta.com/documents/netbouncer.pdf

[10] Keromytis A., V. Misra, D. Rubenstein. SOS: Secure Overlay Services.
http://www.sigcomm.org/sigcomm2002/papers/sos.pdf

[11] Proof-of-Work system. (definition from Wikipedia).
http://en.wikipedia.org/wiki/Proof-of-work system

[12] Mirkovic J., M. Robinson, P. Reiher, G. Kuenning. Forming Alliance
for DDoS Defenses. In: Proceedings of the New Security Paradigms Work-
shop (NSPW 2003), ACM Press, 11–18.

[13] Papdopoulos C., R. Lindell, J. Mehringer. A. Hussain, R. Govin-

dan. Cossack: Coordinated Suppression of Simultaneous Attacks. In: Pro-
ceedings of 3-rd DARPA Information Survivability Conference and Exposi-
tion (DISCEX 2003), Vol. 2 (April, 2003), 94–96.

[14] Yaar A., A. Perrig, D. Song. Pi: A Path Identification Mechanism to
Defend against DDoS Attacks. In: Proceedings of the IEEE Symposium on
Security and Privacy, May, 2003, 93–107.

[15] Yaar A., A. Perrig, D. Song. SIFF: A Stateless Internet Flow Filter to
Mitigate DDoS Flooding Attacks. In: Proceedings of the IEEE Symposium
on Security and Privacy, May, 2004, 130–143.

[16] Jin C., H. Wang, K. G. Shin. Hop-Count Filtering: An Effective Defense
Against Spoofed DDoS Traffic. In: Proceedings of the 10-th ACM Conference
on Computer and Communication Security, ACM Press, October, 2003, 30–
41.

[17] Cisco IP Source Tracker.
http://www.cisco.com/en/US/docs/ios/12 0s/feature/guide/ipst.html

[18] Kulkarni A., S. Bush, S. Evans. Detecting Distributed Denial-of-Service
Attacks Using Kolmogorov Complexity Metrics. Technical Report 2001,
CRD176, General Electric Research and Development Center, December,
2001.

416 Tsvetomir Tsvetanov

[19] NetFlow standard. RFC 3954, October, 2004.
http://www.ietf.org/rfc/rfc3954.txt

[20] Daigle J. Queueing Theory with Applications to Packet Telecommunica-
tion. Springer, 2005.

[21] Rabiner L. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. In: Proceedings of the IEEE, 77 (1989), No 2, 257–
286.

[22] SNORT. The free Intrusion Detection System. www.snort.org

[23] Tsvetanov T. Pattern-based Network Defense Mechanism. Patent appli-
cation, US ID 20080295173, EFS ID 2083257, August, 2007.

[24] Tsvetanov T., S. Simeonov. A Study on Network Flow Security. Cyber-
netics and Information Technologies, 8 (2008), No 3, IIT—BAS, Bulgaria,
32–47.

[25] Tsvetanov T., S. Simeonov. Pattern-Based Security Algorithm for DoS
Detection. In: Proceedings of the 20-th International Conference on Systems
for Automation of Engineering and Research SAER 2006, St. Konstantin,
Varna, Bulgaria, September, 2006, ISBN-10: 954-438-575-4, 80–88.

[26] Tsvetanov T., S. Simeonov. Applying Pattern Detection Network Secu-
rity against Denial-Of-Service Attacks. In: Proceedings of the World Mul-
ticonference on Systemics, Cybernetics and Informatics WMSCI 2006, Or-
lando, Florida, USA, July, 2006, ISBN 980-6560-65-8, 314–319.

[27] Tsvetanov T., S. Simeonov. Securing a Campus Network. In: Proceed-
ings of the 29th International Convention MiPro 2006, Opatija, Croatia,
May, 2006, ISBN 953-233-022-4, 141–146.

[28] Tsvetanov T., N. Manolov. Cisco IOS Features used for QoS Analysis
and Implementation. In: Proceedings of the XXXIX International Scientific
Conference on Information, Communication and Energy Systems and Tech-
nologies ICEST 2004, Bitola, Macedonia, June, 2004, ISBN 9989-786-38-0,
99–102.

Tsvetomir Tsvetanov

St. Kl. Ohridski University of Sofia

e-mail: ttsvetanov@gmail.com

Received January 17, 2010

Final Accepted July 22, 2010

