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AN IMPROVEMENT TO THE ACHIEVEMENT OF THE
GRIESMER BOUND

Noboru Hamada, Tatsuya Maruta∗

Abstract. We denoted by nq(k, d), the smallest value of n for which an
[n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥
dk +1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is
attained or not for d = dk, where gq(k, d) =

∑k−1

i=0

⌈

d/qi
⌉

, dk = (k−2)qk−1−
(k − 1)qk−2. It was shown by Dodunekov [2] and Maruta [9], [10] that there
is no [gq(k, dk), k, dk]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3,
k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as
nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7),
(8, 8), (8, 9).

1. Introduction. Let F
n
q denote the vector space of n-tuples over Fq,

the field of q elements, where n is an integer ≥ 4 and q is a prime or a prime power.

A q-ary linear code C of length n and dimension k, called an [n, k]q code, is a
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k-dimensional subspace of F
n
q , where n > k ≥ 3. An [n, k]q code C with minimum

Hamming distance d is referred to as an [n, k, d]q code. Let G = [gT
1 ,gT

2 , . . . ,gT
n ]

be a k×n generator matrix of an [n, k, d]q code C with g1, . . . ,gn ∈ F
k
q , where gT

denotes the transpose of the vector g. If there is no zero vector in {g1, . . . ,gn},

an [n, k, d]q code C is called a nontrivial code. A fundamental problem in coding

theory is to solve the following problem.

Problem 1. Find the smallest value of n, denoted by nq(k, d), for which

an [n, k, d]q code exists for given integers q, k, d.

An [n, k, d]q code is called optimal if n = nq(k, d). There is a lower bound

on nq(k, d) called the Griesmer bound [3], [11]:

nq(k, d) ≥ gq(k, d) :=

k−1
∑

i=0

⌈

d

qi

⌉

,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. A [gq(k, d), k, d]q
code is called a Griesmer code. In order to solve Problem 1, we consider the fol-

lowing problem for given integers k ≥ 3 and q ≥ 3.

Problem 2. For given integers k and q, find the value c(k, q) such that

(a) nq(k, d) ≥ gq(k, d) + 1 for d = c(k, q);

(b) nq(k, d) = gq(k, d) for any integer d ≥ c(k, q) + 1.

It is known (Theorem 2.12 in [6] or [1]) that the following theorem holds.

See [6] for linear codes of type BV.

Theorem 1.1. For given q, k and d, write

d = sqk−1 −

t
∑

i=1

qui−1

where s = ⌈d/qk−1⌉, k > u1 ≥ u2 ≥ · · · ≥ ut ≥ 1, and at most q− 1 ui’s take any

given value. Then there exists a [gq(k, d), k, d]q code of type BV if and only if the

following condition holds:
min{s+1,t}
∑

i=1

ui ≤ sk.

Corollary 1.2. If q and k are integers with q ≥ k ≥ 3, then
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(1) there is no [gq(k, d), k, d]q code of type BV for d = (k−2)qk−1−(k−1)qk−2,

(2) nq(k, d) = gq(k, d) for any integer d ≥ (k − 2)qk−1 − (k − 1)qk−2 + 1.

Problem 3. For given integers k and q, find the value b(k, q) such that

(a) there is no [gq(k, d), k, d]q code of type BV for d = b(k, q);

(b) nq(k, d) = gq(k, d) for any integer d ≥ b(k, q) + 1.

In the case q ≥ k ≥ 3, Corollary 1.2 shows that if there is no [gq(k, d), k, d]q
code for d = (k − 2)qk−1 − (k − 1)qk−2, then c(k, q) = (k − 2)qk−1 − (k − 1)qk−2.

Hence we consider the following problem.

Problem 4. Investigate whether a [gq(k, d), k, d = (k − 2)qk−1 −

(k − 1)qk−2]q code exists or not for given integers k and q with q ≥ k ≥ 3.

Hamada conjectured as follows.

Conjecture 1.3. There is no [gq(k, d), k, d = (k− 2)qk−1 − (k− 1)qk−2]q
code for any integers k and q with q ≥ k ≥ 3. That is,

c(k, q) = (k − 2)qk−1 − (k − 1)qk−2

for any integers k and q with q ≥ k ≥ 3.

Conjecture 1.4. c(k, q) = b(k, q) for any integers k ≥ 3 and q ≥ 3.

As for Conjecture 1.3, the following is known, see Dodunekov [2] and

Maruta [9], [10].

Theorem 1.5 ([10]). For d = (k − 2)qk−1 − (k − 1)qk−2, it holds that

nq(k, d) ≥ gq(k, d)+1 for q ≥ k when k = 3, 4, 5 and for q ≥ 2k− 3 when k ≥ 6.

Hence Problem 4 is unsolved for any integers k and q with 2k − 3 > q ≥

k ≥ 6. For example, the cases in the next remark are still open.

Remark 1.6. For 6 ≤ k ≤ 13, Problem 4 is unsolved for the following

k and q.
(1) k = 6 and q = 7, 8, (2) k = 7 and q = 7, 8, 9,
(3) k = 8 and q = 8, 9, 11, (4) k = 9 and q = 9, 11, 13,
(5) k = 10 and q = 11, 13, 16, (6) k = 11 and q = 11, 13, 16, 17,
(7) k = 12 and q = 13, 16, 17, 19, (8) k = 13 and q = 13, 16, 17, 19.



304 Noboru Hamada, Tatsuya Maruta

In this paper we prove the following two theorems.

Theorem 1.7. There is no [gq(k, d), k, d = (k − 2)qk−1 − (k − 1)qk−2]q
code for any integers k ≥ 6 and q with q = 2k − 2u and k > 4u− 6 for u = 2, 3.

Theorem 1.8. There is no [gq(k, d), k, d = (k − 2)qk−1 − (k − 1)qk−2]q
code for any integers k ≥ 6 and q with q = 2k−2u−1 and k > 4u−4 for u = 2, 3.

Theorems 1.7 and 1.8 imply that Conjecture 1.3 is valid for the following

k and q:

(1) k = 6 and q = 7, 8, (2) k = 7 and q = 8, 9,
(3) k = 8 and q = 11, (4) k = 9 and q = 11, 13,
(5) k = 10 and q = 13, 16, (6) k = 11 and q = 16, 17,
(7) k = 12 and q = 17, 19, (8) k = 13 and q = 19.

For d′ = (k−2)qk−2− (k−1)qk−3 with q ≥ k ≥ 3, there exists a [gq(k−1, d′), k−

1, d′]q code, say C′, by Theorem 1.1. Applying Theorem 4.5 of [5] to C′, one

can get a [gq(k, d) + 1, k, d]q code for d = (k − 2)qk−1 − (k − 1)qk−2. Hence,

the nonexistence of Griesmer codes determines the exact value of nq(k, d). As a

result of the previous theorems, Theorem 1.5 for k ≤ 13 can be improved to the

following.

Theorem 1.9. For d = (k−2)qk−1−(k−1)qk−2, it holds that nq(k, d) =

gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 13 except for (k, q) = (7, 7), (8, 8), (8, 9),

(9, 9), (10, 11), (11, 11), (11, 13), (12, 13), (12, 16), (13, 13), (13, 16), (13, 17).

Remark 1.10. (1) If q = 2k − 2u and k > 4u− 6, then 2q − (3k − 6) =

k−4u+6 > 0. If q = 2k−2u−1 and k > 4u−4, then 2q−(3k−6) = k−4u+4 > 0.

Hence it holds that q > (3k − 6)/2 for both cases. When q ≤ (3k − 6)/2 (e.g.

(k, q) = (7, 7)), the situation is quite complicated, see Section 4.

(2) For the nonexistence of a [gq(k, d), k, d]q code for d = (k − 2)qk−1 − (k −

1)qk−2 − ε for some small ε, see Klein [8].

2. A geometric method. To obtain a necessary and sufficient condi-

tion for the existence of a [gq(k, d), k, d]q code for the case d ≤ qk−1, the concept

of minihyper has been introduced by Hamada [4]. To prove Theorems 1.7 and

1.8, we generalize the concept of minihyper for the case d > qk−1 and we give a

necessary and sufficient condition for the existence of a nontrivial [n, k, d]q code



An Improvement to the Achievement of the Griesmer Bound 305

for given integers n, k, d, q with n > k ≥ 3, q ≥ 3 and (s − 1)qk−1 < d ≤ sqk−1

for some positive integer s.

For k ≥ 3, let Σ = PG(k−1, q) be the finite projective space of dimension

k−1 over Fq and let Fj be the set of all j-flats in Σ, where a j-flat is a projective

subspace of dimension j in Σ. 0-flats, 1-flats, 2-flats, 3-flats and (k − 2)-flats are

called points, lines, planes, solids and hyperplanes, respectively. The number of

points in a j-flat is denoted by θj, where

θj = (qj+1 − 1)/(q − 1) = qj + qj−1 + · · · + q + 1

for j = 0, 1, . . . , k − 1. We set θ−1 = 0 for convenience.

A point in Σ is denoted by (h) using a nonzero vector h ∈ F
k
q , where

two points (h1) and (h2) are same points if and only if there exists a nonzero

element σ ∈ Fq with h2 = σh1. Each hyperplane of Σ can be expressed as the

set of all points (g) ∈ F0 such that (g,h) = 0 and g ∈ F
k
q \ {0} for some nonzero

vector h ∈ F
k
q , where (g,h) denotes the inner product of two vectors g and h,

i.e., (g,h) = ghT over Fq. In this case, the hyperplane H is denoted by H(h),

i.e.,

H(h) = {(g) | (g,h) = 0 and g ∈ F
k
q \ {0}}

for some nonzero vector h ∈ F
k
q .

Let C be a nontrivial [n, k, d]q code and let G = [gT
1 ,gT

2 , . . . ,gT
n ] be a

generator matrix of C with g1,g2, . . . ,gn ∈ F
k
q . Let M(G) be the multiset of n

points of Σ corresponding to the n columns of G, i.e.,

M(G) = {(g1), . . . , (gn)}.

A point P of Σ is an i-point if P has multiplicity i in M(G). Let γ0 be the

maximum multiplicity of points in Σ and let Ci be the set of i-points in Σ. For

any subset K of F0 we define the multiplicity of K as

m(K) =

γ0
∑

i=1

i·|K ∩ Ci|,

where |T | denotes the number of points in a subset T of F0. Then the multiset

M(G) gives a partition
⋃γ0

i=0
Ci of F0. For a t-flat Π in Σ we define

γj(Π) = max{m(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ t.
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We denote simply by γj instead of γj(F0). A line l is called a w-line if m(l) = w.

A w-plane, a w-solid and so on are defined similarly. We prove Theorems 1.7 and

1.8 using the following theorem.

Theorem 2.1. For k ≥ 3, there exists a nontrivial [n, k, d]q code if

and only if there exists a partition
⋃γ0

i=0
Ci of F0 which satisfies the following

conditions:

(a) m(F0) = n,

(b) γk−2 = n − d.

P r o o f. Suppose there exists a nontrivial [n, k, d]q code C which has a

generator matrix G = [gT
1 ,gT

2 , . . . ,gT
n ]. Then it holds that m(F0) = n. Since the

minimum weight of C is equal to d, C must satisfies the following conditions:

d = min{wt(hG) | h ∈ F
k
q \ {0}}(2.1)

where wt(c) stands for the number of nonzero entries in the vector c ∈ F
n
q . Since

wt(hG) denotes the number of vectors gi such that (gi,h) 6= 0 and m(H(h))

denotes the number of vectors gi such that (gi,h) = 0, we have wt(hG) +

m(H(h)) = n. It follows from (2.1) that γk−2 = max{m(H(h)) | h ∈ F
k
q \{0}} =

n − d. Hence the part of “only if” holds.

Conversely, suppose there exists a partition in Theorem 2.1 which satisfies

the conditions (a) and (b). Let λi denote the number of points in Ci. We construct

a matrix G consisting of i matrices Gi for 1 ≤ i ≤ γ0 as follows.

G = [G1, G2, G2, G3, G3, G3, . . . , Gγ0
, Gγ0

, . . . , Gγ0
]

where Gi denotes a matrix constructed by λi colomun vectors gT with g ∈ F
k
q

such that (g) ∈ Ci. Then G is a generator matrix of a nontrivial [n, k, d]q code

C. �

For d = (k − 2)qk−1 − (k − 1)qk−2, gq(k, d) can be expressed as follows.

gq(k, d) = (k − 2)qk−1 − θk−2.(2.2)

If n = gq(k, d), then n − d = (k − 1)qk−2 − θk−2 = (k − 2)qk−2 − θk−3. Hence we

have the following corollary from Theorem 2.1.

Corollary 2.2. For q ≥ k ≥ 3, there exists a [gq(k, d), k, d = (k −

2)qk−1 − (k − 1)qk−2]q code if and only if there exists a partition
⋃k−2

i=0
Ci of F0

with γ0 = k − 2 in PG(k − 1, q) which satisfies the following conditions:
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(a) m(F0) = (k − 2)qk−1 − θk−2,

(b) γk−2 = (k − 2)qk−2 − θk−3.

Hence in order to prove Theorems 1.7 and 1.8, it is sufficient to prove the

following theorem for integers k and q in the theorems.

Theorem 2.3. For any integers k and q in Theorems 1.7 and 1.8, there

is no partition
⋃k−2

i=0
Ci of F0 with γ0 = k − 2 in PG(k − 1, q) which satisfies the

following conditions:

(a) m(F0) = (k − 2)qk−1 − θk−2,

(b) γk−2 = (k − 2)qk−2 − θk−3.

In Sections 3, 4, 5, 6, we shall use repeatedly the following well known

result.

Proposition 2.4. Let k, u, w be integers such that k ≥ 3, k − 1 ≥ w ≥

u + 2 and u ≥ 0. Let δ ∈ Fu, Π ∈ Fw.

(1) In Π, there are b flats ∆1,∆2, . . . ,∆b ∈ Fu+1 containing δ, where b =

θw−u−1.

(2) If there exists such a partition of F0 as Theorem 2.1, then

b
∑

i=1

m(∆i) = m(Π) + (b − 1)m(δ).(2.3)

Remark 2.5. In Proposition 2.4 (2), there is a partition of Π as follows.

(

b
⋃

i=1

(∆i \ δ)

)

∪ δ = Π.(2.4)

Remark 2.6. In the case d = sqk−1 for some positive integer s, it is

known that there exists a [gq(k, d) = sθk−2, k, d = sqk−1]q code (take s copies of
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Σ as the multiset M(G)). Hence, to solve Problem 1, we only need to consider

the case (s − 1)qk−1 < d < sqk−1 for some positive integer s.

3. Preliminary results. Recall from the previous section that γj is

defined for 1 ≤ j ≤ k − 1 as

γj = max{m(∆) | ∆ ∈ Fj}.(3.1)

Throughout this section, we assume that there exists a partition
⋃k−2

i=0
Ci of F0

with γ0 = k − 2 in PG(k − 1, q) which satisfies the conditions (a) and (b) in

Corollary 2.2 for q ≥ k ≥ 5. The following lemma due to Maruta [10] plays an

important role in proving Theorems 1.7 and 1.8.

Lemmma 3.1 ([10]).

(1) γj = (k − 2)qj − θj−1 for 0 ≤ j ≤ k − 1.

(2) A j-flat ∆ satisfies m(∆) = γj if and only if γ0(∆) = k−2, for 1 ≤ j ≤ k−2.

It is already known by Lemma 3.4 of [10] that every line l satisfies γ0(l) ≥

1.

Lemma 3.2. m(l) ≥ tq − 1 for any line l with γ0(l) = t.

P r o o f. Our assertion follows from the previous lemma for t = k−2. Let

l be a line with γ0(l) = t, 1 ≤ t ≤ k−3. Take a point P of Ck−2 and let δ = 〈l, P 〉,

where 〈χ1, χ2, . . . 〉 denotes the smallest flat containing subsets χ1, χ2, . . . of F0.

Then m(δ) = γ2 = (k − 2)q2 − θ1 by Lemma 3.1. Let Q be a t-point on l and let

l1, . . . , lq be the lines in δ through Q other than l. It follows from (2.3) that

m(l) +

q
∑

i=1

m(li) = m(δ) + m(Q)q = γ2 + tq.

Since m(li) ≤ γ1 = (k − 2)q − 1 for 1 ≤ i ≤ q, we have

m(l) ≥ γ2 + tq − qγ1 = tq − 1. �

Lemma 3.3. Assume that there is no line l with γ0(l) = k − 3 and

m(l) = (k − 3)q + s, 0 ≤ s ≤ k − 3, where q ≥ k ≥ 5. If l0 is a line with

γ0(l0) = t ≤ k − 4, then m(l0) = tq − 1.



An Improvement to the Achievement of the Griesmer Bound 309

P r o o f. Suppose γ0(l0) = t and m(l0) = tq + t′, 0 ≤ t′ ≤ t ≤ k − 4. Let

δ be a plane containing l0 and a (k − 2)-point. Then, by Lemma 3.1, we have

m(δ) = γ2. Let P be a t-point on l0 and let l1 be another line through P in δ.

Considering the lines through P in δ, we obtain

γ2 = m(δ) ≤ m(l0) + m(l1) + (q − 1)γ1 − qt,

whence m(l1) ≥ (k − 2)q − 2 − t′ > (k − 3)q − 1, for t′ + 1 ≤ k − 3 < k ≤ q.

This implies that all lines through P in δ other than l0 are γ1-lines from our

assumption, and we have γ2 = γ1q + t′ > γ2, a contradiction. �

Lemma 3.4. Let Π be a hyperplane of Σ with γ0(Π) = t, 1 ≤ t ≤ k − 3.

Assume that every line l in Π with γ0(l) = u ≤ k − 3 satisfies m(l0) = uq − 1.

Then

(1) c(Π) = tqk−2 − θk−3.

(2) For a (t+1)-flat π in Π containing a t-point, the partition π =
⋃t

i=0
(π∩Ci)

gives a [tqt+1 − θt, t + 2, tqt+1 − (t + 1)qt]q code.

P r o o f. See Lemma 3.5 of [10]. �

Since there exists no [tqt+1 − θt, t + 2, tqt+1 − (t + 1)qt]q code for q ≥ t + 2

with 1 ≤ t ≤ 3 from Theorem 1.5, we get a contradiction using induction on k

for k ≥ 6. Hence, from Lemmas 3.3 and 3.4, we get the following theorem.

Theorem 3.5. For q ≥ k ≥ 5, there is no [gq(k, d), k, d = (k − 2)qk−1 −

(k−1)qk−2]q code if there is no line l in Σ with γ0(l) = k−3 and m(l) = (k−3)q+s

for 0 ≤ s ≤ k − 3.

4. A γ3-solid containing a putative ((k − 3)q + s)-line. In this

section, we assume that there exists a partition
⋃k−2

i=0
Ci of F0 with γ0 = k − 2

in Σ = PG(k − 1, q) which satisfies the conditions (a) and (b) in Corollary 2.2

for given integers q and k with q > (3k − 6)/2, k ≥ 6. Since it is known that

Theorems 1.7 and 1.8 hold for q ≥ 2k − 3 and k ≥ 6, it is sufficient to prove the

theorems for q and k with

2k − 4 ≥ q > (3k − 6)/2 and k ≥ 6.(4.1)

Hence, to prove the theorems, it suffices to prove the following three theorems by

Theorem 3.5.
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Theorem 4.1. For any integers k and q with (a) q = 2k−4, k ≥ 6 or (b)

q = 2k − 5, k ≥ 6, there is no line l in Σ = PG(k − 1, q) such that γ0(l) = k − 3

and m(l) = (k − 3)q + s for some integer s with 0 ≤ s ≤ k − 3.

Theorem 4.2. For any integers k and q with q = 2k − 6, k ≥ 7, there is

no line l in Σ = PG(k − 1, q) such that γ0(l) = k − 3 and m(l) = (k − 3)q + s for

some integer s with 0 ≤ s ≤ k − 3.

Theorem 4.3. For any integers k and q with q = 2k − 7, k ≥ 9, there is

no line l in Σ = PG(k − 1, q) such that γ0(l) = k − 3 and m(l) = (k − 3)q + s for

some integer s with 0 ≤ s ≤ k − 3.

The proofs of Theorems 4.2 and 4.3 are given in Sections 5 and 6, respec-

tively. In order to prove these theorems, we shall prepare four lemmas in this

section. Theorem 4.1 is a corollary of one of these lemmas. Suppose for some

integers k and q satisfying the condition (4.1) that there exists a line l in Σ such

that γ0(l) = k − 3 and

m(l) = (k − 3)q + s(4.2)

for some integer s with 0 ≤ s ≤ k − 3. Let ∆ be a solid in Σ containing l and a

(k− 2)-point. Then m(∆) = γ3 = (k− 2)q3 − θ2 by Lemma 3.1. Let δ0, δ1, . . . , δq

be the planes in ∆ containing l. Without loss of generality, we may assume that

m(δ0) ≤ m(δ1) ≤ · · · ≤ m(δq). It follows from (2.3) and (4.2) that

(4.3)

q
∑

i=0

m(δi) = m(∆) + m(l)q = (k − 2)q3 + (k − 4)q2 + (s − 1)q − 1.

If γ0(δi) = k − 2 for all i with 0 ≤ i ≤ q, it follows from Lemma 3.1 that

the left hand side of (4.3) is equal to

(q + 1)((k − 2)q2 − θ1) = (k − 2)q3 + (k − 4)q2 + (q − 2)q − 1

> (k − 2)q3 + (k − 4)q2 + (s − 1)q − 1,

a contradiction, since

(q − 2) − (s − 1) = q − s − 1 > (3k − 6)/2 − (k − 3) − 1 = (k − 2)/2 > 0

by (4.1). Hence γ0(δ0) = k − 3. Since m(δi) ≤ γ2, it follows from (4.3) and

Lemma 3.1 that

m(δ0) + m(δ1) + m(δ2) ≥ (3k − 7)q2 + (s − 2)q − 3.(4.4)
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Lemma 4.4. If 2q > 3k − 6, then γ0(δ0) = k − 3 and γ0(δi) = k − 2 for

2 ≤ i ≤ q.

P r o o f. It suffices to prove γ0(δ2) = k− 2. Suppose γ0(δ2) = k− 3. Then

it holds that

m(δ0) + m(δ1) + m(δ2) ≤ 3(k − 3)θ2.

If 2q > 3k − 6, then

((3k−7)q2 +(s−2)q−3)−3(k−3)θ2 = (2q−3k+6)(q+1)+(s−1)q ≥ sq+1 > 0,

which implies that

m(δ0) + m(δ1) + m(δ2) < (3k − 7)q2 + (s − 2)q − 3.

This is contradictory to (4.4). Hence γ0(δ2) = k − 2. �

Let P be a (k−3)-point in l and let l1, . . . , lq be the lines in δq through P

other than l. Without loss of generality, we may assume that m(l1) ≤ · · · ≤ m(lq).

It follows from (2.3) and m(P ) = k − 3 that

(4.5)

q
∑

i=1

m(li) + m(l) = m(δq) + m(P )q = (k − 2)q2 + (k − 4)q − 1.

If γ0(li) = k − 2 for 2 ≤ i ≤ q, it follows from Lemma 3.1 and (4.5) that

m(li) = (k − 2)q − 1 for 2 ≤ i ≤ q and

(4.6) m(l) + m(l1) = (2k − 5)q − 2.

Since m(li) ≤ γ1, it follows from (4.5) that

(4.7) m(l) + m(l1) + m(l2) ≥ (3k − 7)q − 3.

Lemma 4.5. If 2q > 3k − 6, then γ0(li) = k − 2 for 2 ≤ i ≤ q,

γ0(l1) = k − 3 and m(l1) = (k − 3)q + q − s − 2.

P r o o f. Suppose γ0(l2) = k−3. Then, from our assumptions γ0(l) = k−3

and m(l1) ≤ m(l2), we have m(l) + m(l1) + m(l2) ≤ 3(k − 3)θ1. If 2q > 3k − 6,

then (3k − 7)q − 3 − 3(k − 3)θ1 = 2q − 3k + 6 > 0. This implies that

m(l) + m(l1) + m(l2) < (3k − 7)q − 3,
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contradicting (4.7). Hence γ0(li) = k − 2 for 2 ≤ i ≤ q, and m(l1) = (k −

3)q + q − s − 2 by (4.6). It holds that γ0(l1) = k − 3 by Lemma 3.1 since

(k − 3)q + q − s − 2 < γ1. �

Let s1 = q − 2 − s. When 2q > 3k − 6, we have m(l1) = (k − 3)q + s1 by

Lemma 4.5. Since s + s1 = q − 2, we may assume without loss of generality that

(4.8) s ≥ s1, (q − 2)/2 ≤ s ≤ k − 3.

Thus, if γ0(δi) = k− 2, there always exists a pair of lines l and li1 in δi such that

m(l) = (k − 3)q + s, m(li1) = (k − 3)q + s1,

where s + s1 = q − 2. Hence, to prove Theorem 4.1, it is sufficient to show that

there is no line l in Σ such that γ0(l) = k − 3 and m(l) = (k − 3) + s for any

integer s satisfying the condition (4.8).

Assume 2q > 3k−6, k ≥ 6. Let l be a ((k−3)q+s)-line with 0 ≤ s ≤ k−3

and let ∆ be a γ3-solid containing l and a (k− 2)-point in Σ. Let δ0, δ1, . . . , δq be

the planes through l in ∆ with m(δ0) ≤ m(δ1) ≤ · · · ≤ m(δq). Then γ0(δ0) = k−3,

γ0(δ1) = k − 3 or k − 2 and γ0(δi) = k − 2 for 2 ≤ i ≤ q by Lemma 4.4.

Let P be a (k − 3)-point on l and let li1, li2, . . . , liq be the lines in δi through

P other than l with m(li1) ≤ m(li2) ≤ · · · ≤ m(liq) for 1 ≤ i ≤ q. When

γ0(δi) = k − 2, it follows from Lemma 4.5 that γ0(lij) = k − 2 for 2 ≤ j ≤ q and

that γ0(li1) = k − 3, m(li1) = (k − 3)q + s1, where s1 = q − s − 2. Note that

s1 ≥ 0 since q > 3(k − 2)/2 ≥ 3(s + 1)/2.

Lemma 4.6. If 2q > 3k − 6, k ≥ 6, then

(1) γ0(δ0) = k− 3, γ0(δi) = k− 2 for 1 ≤ i ≤ q and m(δ0) = (k− 3)q2 + sq− 1,

(2) there are q ((k − 3)q + s)-lines and one ((k − 3)q − 1)-line through P in δ0,

(3) there is a ((k−3)q2+s1q−1)-plane δ̃1 through P meeting δ0 in a ((k−3)q−1)-

line,

(4) for any (k − 3)-point P ′ in δ0 there are q ((k − 3)q + s)-lines and one

((k − 3)q − 1)-line through P ′ in δ0,

(5) s ≤ k − 4, s1 ≤ k − 4 and q ≤ 2k − 6.

P r o o f. (1) To prove (1), it suffices to determine γ0(δ1) and m(δ0) by

Lemma 4.4. Recall that in a γ2-plane containing l, the lines through P consist of
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l and a ((k − 3)q + s1)-line and q − 1 γ1-lines. So, the γ2-plane 〈lq1, lq−1,j〉 meets

δ0 in a ((k−3)q + s)-line, say l0j , for 2 ≤ j ≤ q. Hence 〈lq1, lq−1,j〉 with 2 ≤ j ≤ q

meets δu in a γ1-line for 1 ≤ u ≤ q − 2. Thus γ0(δ1) = k − 2. By Lemma 3.1 we

get

m(δ0) = m(∆) −

q
∑

i=1

m(δi) + m(l)q

= γ3 − γ2q + ((k − 3)q + s)q = (k − 3)q2 + sq − 1.

(2) From the proof of (1), there are q ((k − 3)q + s)-lines l, l02, l03, . . . , l0q

through P in δ0. Let l01 be the other line through P in δ0. Then it follows from

(1) that

m(l01) = m(δ0) −

q
∑

i=2

m(l0i) − m(l) + m(P )q

= (k − 3)q2 + sq − 1 − ((k − 3)q + s)q + (k − 3)q = (k − 3)q − 1.

(3) Put δ̃1 = 〈lq1, lq−1,1〉. Then δ̃1 meets δu in a ((k − 3)q + s1)-line for

1 ≤ u ≤ q. Hence γ0(δ̃1) = k − 3. Since m(δ0 ∩ δ̃1) = m(l01) = (k − 3)q − 1, it

holds that

m(δ̃1) =

q
∑

i=0

m(δi ∩ δ̃1) − m(P )q = (k − 3)q − 1 + ((k − 3)q + s1)q − (k − 3)q

= (k − 3)q2 + s1q − 1.

(4) Note from (1) that for any ((k − 3)q + s)-line l with 0 ≤ s ≤ k − 3,

there is only one plane through l in ∆ which has no (k − 2)-point. If all the lines

through P ′ in δ0 are ((k − 3)q − 1)-lines, then

m(δ0) = ((k − 3)q − 1)θ1 − (k − 3)q = (k − 3)q2 − θ1,

a contradiction. Hence there is a ((k − 3)q + s′)-line l′ in δ0 through P ′ for some

0 ≤ s′ ≤ k − 3. In ∆ there is only one plane, say δ′, through l′ which has no

(k − 2)-point. From (1) we have m(δ′) = (k − 3)q2 + s′q − 1. Since δ0 is also

a plane containing l′ which has no (k − 2)-point, we obtain δ′ = δ0 and s′ = s.

Hence our assertion follows from (1) and (2).

(5) Suppose s = k − 3. Then l ⊂ Ck−3, and every line in δ0 contains a

(k−3)-point. So, from (4), every line in δ0 is a ((k−3)θ1)-line or a ((k−3)q−1)-

line. Let R be a t-point on a ((k− 3)q − 1)-line in δ0 with t ≤ k− 4. Since all the
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lines in δ0 through R are ((k−3)q−1)-lines, we get m(δ0) = ((k−3)q−1)θ1− tq,

whence k−4− t = s = k−3, i.e., t = −1, a contradiction. Hence s 6= k−3. Since

s ≥ s1 from (4.8), we have s1 ≤ k− 4. From s ≤ k− 4 and s1 = q− s− 2 ≤ k− 4,

we have q − k + 2 ≤ s ≤ k − 4, so q ≤ 2k − 6. �

Remark 4.7. (1) In the proof of Lemma 4.6(3), it is easily checked that

the q − 1 planes through l01 other than δ0, δ̃1 are γ2-planes.

(2) It follows from Lemma 4.6(4) that every ((k − 3)q + s′)-line with

0 ≤ s′ ≤ k − 3 in δ0 satisfies s′ = s since (k − 3)q + s′ > (k − 4)θ1.

(3) We obtain Theorem 4.1 as a consequence of Lemma 4.6(5).

Lemma 4.8. Assume that δ0 contains an s-point S and that l01 contains

a 0-point R and a (k − 4)-point Q. Then

(1) lR = 〈R,S〉 is an ((s + 1)q − 1)-line containing q − 1 (s + 1)-points and

lQ = 〈Q,S〉 is a ((k − 4)q + s)-line with lQ \ {S} ⊂ Ck−4, and any point of

δ0 \ (lQ ∪ lR) is a (k − 3)-point.

(2) Every line through R in δ0 other than lR is a ((k − 3)q − 1)-line.

(3) Every line through Q in δ0 other than l01, lQ is a ((k − 3)q + s)-line.

P r o o f. Since m(l01) = (k − 3)q − 1, l01 contains q − 1 (k − 3)-points,

say P1, P2, . . . , Pq−1. It follows from Lemma 4.6(4) that each line 〈S,Pi〉 is a

((k − 3)q + s)-line containing q (k − 3)-points for 1 ≤ i ≤ q − 1. Hence any line

l′ through R in δ0 other than lR, l01 contains q − 1 (k − 3)-points. Then we have

m(l′) = (k − 3)q − 1 by Lemma 4.6(4) again, and l′ meets lQ in a (k − 4)-point.

Thus m(lQ) = (k− 4)q + s and lQ contains q (k − 4)-points except the s-point S.

Hence

m(lR) = m(δ0) − ((k − 3)q − 1)q = (s + 1)q − 1.

If γ0(lR) ≥ s + 2, we have m(lR) ≥ (s + 2)q − 1 by Lemma 3.4, a contradiction.

It follows from (s + 1)q − 1 > sθ1 that γ0(lR) = s + 1 and that lR contains q − 1

(s + 1)-points. Hence our assertions follow. �

5. Proof of Theorem 4.2. Throughout this section, we assume that

2k− 6 ≥ q > (3k− 6)/2, k ≥ 6, s = k− 4 and that l, P , ∆, δ0, l01, l02, . . . , l0q, δ̃1,

s1 are as in the proof of Lemma 4.6. We also use the following notations:

η1 = (k − 3)q + k − 4, ηj = ηj−1q − 1 for 2 ≤ j ≤ k − 2,
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µ1 = (k − 3)q − 1, µj = µj−1q − 1 for 2 ≤ j ≤ k − 2.

Note that γ1 = (k − 2)q − 1 and γj = γj−1q − 1 for 2 ≤ j ≤ k − 2 by Lemma 3.1.

Lemma 5.1. Assume 2k − 6 ≥ q > (3k − 6)/2, k ≥ 6 and s = k − 4.

(1) The η2-plane δ0 consists of one 0-point R, θ1 collinear (k − 4)-points and

q2 − 1 (k − 3)-points.

(2) The lines in δ0 are the ((k − 4)θ1)-line L(⊂ Ck−4), θ1 µ1-lines through R

and q2 − 1 η1-lines.

P r o o f. We first note that each of η1-lines l, l02, . . . , l0q through a (k−3)-

point P in the η2-plane δ0 contains exactly q (k−3)-points and one (k−4)-point.

Let Q0, Q2, . . . , Qq be the (k − 4)-points in l, l02, . . . , l0q, respectively and let

P1, P2, . . . , Pq−1 be the (k − 3)-points in l0q other than P .

Suppose that l01 contains no t-point for t ≤ k − 5. Then the number of

(k − 4)-points in the µ1-line l01 in δ0 through P is (k − 3)θ1 − µ1 = k − 2. Since

k ≥ 6, there are at least four (k − 4)-points in l01. Since Pi is a (k − 3)-point in

δ0 for 1 ≤ i ≤ q − 1, it follows from Lemma 4.6 and m(Q0) = k − 4 that 〈Q0, Pi〉

must be an η1-line for 1 ≤ i ≤ q − 1. That is, 〈Q0, Pi〉 contains q (k − 3)-points

and one (k − 4)-point Q0 for 1 ≤ i ≤ q − 1. This implies that the q points

Q0, Q2, . . . , Qq must be on the line 〈Q0, Qq〉 and that there are q (k − 3)-points

and at most one (k − 4)-point in l01, a contradiction. Hence there is a t-point R

in l01 with t ≤ k − 5.

Next, we show that every line in δ0 through R is a µ1-line. Actually, such

a line other than 〈Q0, R〉 is a µ1-line since it meets l in a (k − 3)-point. Hence

we have

m(〈Q0, R〉) = m(δ0) − µ1q + tq = (k − 3 + t)q − 1.

Since γ0(δ0) = k−3, it follows from Lemma 3.1 that t = 0. Hence the line 〈Q0, R〉

is also a µ1-line, and l01 contains exactly one (k−4)-point, say Q1. The points of

l01 other than R, Q1 are (k−3)-points. Note that each of other lines in δ0 through

R also contains only one (k−4)-point. Put L = δ0∩Ck−4 = {Q0, Q1, Q2, . . . , Qq}.

Then L forms a line by Lemma 4.8. Hence our assertions follow. �

Since m(∆) = m(δ0) + γ2q − m(L)q − q2 and γ2 − q2 = (k − 3)q2 − θ1 >

(k − 4)θ2, it holds that m(∆) > m(δ0) + γ2(q − 1) + (k − 4)θ2 − m(L)q. Hence

we get the following.

Lemma 5.2. Every plane δ′ in ∆ through L with m(δ′) < γ2 satisfies

γ0(δ
′) = k − 3.
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From now on, we assume that q = 2k − 6 in this section. Then, s1 =

q−s−2 = k−4 = s and k ≥ 7 from our assumption q > (3k−6)/2. Hence, δ̃1 in

Lemma 4.6 is an η2-plane meeting δ0 in the µ1-line l01. By Lemma 5.1, δ̃1 contains

a ((k − 4)θ1)-line (⊂ Ck−4), say L̃. Put δL = 〈L, L̃〉. Suppose γ0(δL) = k − 2.

Considering the lines in δL through the (k − 4)-point L ∩ L̃, we get

γ2 ≤ 2(k − 4)θ1 + γ1(q − 1) − (k − 4)q = γ2 − q < γ2,

a contradiction. Hence we have γ0(δL) = k−3 by Lemma 5.2. Next, we determine

m(δL). Suppose there is another plane δ′(6= δL) in ∆ through L with γ0(δ
′) =

k − 3. Then, by Lemma 5.1, δ′ meets δ̃1 in an η1-line, which contradicts to the

fact that there is only one plane in ∆ containing no (k− 2)-point through a fixed

η1-line by Lemma 4.6(1). Thus, all planes through L other than δL and δ0 are

γ2-planes, and we have

m(δL) = m(∆) − γ2(q − 1) − m(δ0) + m(L)q = µ2.

It follows from

µ2 = µ1θ1 − (k − 3)q

= µ1(q − 1) + 2(k − 4)θ1 − (k − 4)q

that every line in δL through a (k− 3)-point is a µ1-line and that every line in δL

through the (k − 4)-point L∩ L̃ other than L, L̃ is a µ1-line. Recall from Lemma

4.6 that for any (k−3)-point P on the η1-line l, there is another η2-plane through

P meeting the η2-plane δ0 in a µ1-line. Hence, for any µ1-line l′1 in δ0 through R,

one can find an η2-plane meeting δ0 in l′1. Since there is only one plane through L

(other than δ0) containing no (k − 2)-point, each (k − 4)-point of L is on exactly

two ((k − 4)θ1)-lines in δL. Thus there are exactly q + 2 ((k − 4)θ1)-lines in δL,

say L,L0, L1, . . . , Lq. Put L = {L,L0, L1, . . . , Lq}. Let L ∩ Li = {Qi} and let ℓi

be any line in δL through the (k − 4)-point Qi other than L, Li, 0 ≤ i ≤ q. Since

ℓi is a µ1-line, ℓi must contain q/2 (k − 4)-points and q/2 (k − 3)-points except

for Qi. Since |ℓi ∩ Lj| = 1 for 0 ≤ i ≤ q, 0 ≤ j ≤ q with i 6= j, this implies that

no three lines of L are concurrent. Thus L forms a (q + 2)-arc of lines in δL (see

[7] for arcs). Hence |δL ∩ Ck−4| = |L ∪ L0 ∪ L1 ∪ · · · ∪ Lq| =
(

q+2

2

)

and any point

of δL out of the ((k − 4)θ1)-lines is a (k − 3)-point. Just like δ0 or δ̃1, the plane

〈R,Li〉 is an η2-plane for 1 ≤ i ≤ q. Any line l∗ in δL containing a (k−3)-point is

a µ1-line and l∗ contains exactly (q + 2)/2 (k − 4)-points and q/2 (k − 3)-points,

since L forms a (q+2)-arc of lines. It follows from m(∆) = γ2q+m(δL)−µ1q that
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every plane through l∗ other than δL is a γ2-plane. Hence, 〈R, l∗〉 is a γ2-plane.

Since every line containing R and a (k − 4)-point of l∗ is a µ1-line, the other q/2

lines through R and a (k − 3)-point of l∗ are γ1-lines containing exactly q − 1

(k − 2)-points. Therefore we get the following.

Lemma 5.3. Assume q = 2k − 6, k ≥ 7 and that a γ3-solid ∆ contains

an η1-line. Then

(1) ∆ has one 0-point R and one µ2-plane δL.

(2) δL contains a (q+2)-arc of lines L. Each line of L consists of (k−4)-points.

And any point of δL out of the lines in L is a (k − 3)-point.

(3) The plane 〈R,L〉 is an η2-plane for any L ∈ L.

(4) The line 〈P,R〉 contains q − 1 (k − 2)-points for any P ∈ δL ∩ Ck−3, and

the line 〈Q,R〉 contains q − 1 (k − 3)-points for any Q ∈ δL ∩ Ck−4.

(5) Any plane in ∆ other than δL and q + 2 η2-planes in (3) is a γ2-plane.

Now, let Π be a 4-flat with m(Π) = γ4 containing the γ3-solid ∆. Let

∆1, ∆2, . . . ,∆q be the solids in Π other than ∆ containing the η2-plane δ0 with

m(∆1) ≤ m(∆2) ≤ · · · ≤ m(∆q) ≤ m(∆) = γ3. It can be proved similarly to

Lemma 4.4 that γ0(∆1) = k − 3 and γ0(∆q) = k − 2. Let l0 be any line in δ0

through the 0-point R. Then l0 is a µ1-line, and there is only one η2-plane, say

δ1, in ∆ through l0 other than δ0. Let δi1, δi2, . . . , δiq be the planes in ∆i through

l0 other than δ0 with m(δi1) ≤ · · · ≤ m(δiq) for 1 ≤ i ≤ q. When γ0(∆i) = k − 2,

we have

(5.1) m(δi1) = η2, m(δij) = γ2 for 2 ≤ j ≤ q

by Lemma 5.3. Put ∆1j = 〈δ1, δqj〉 for 1 ≤ j ≤ q. Then, from (5.1), we have

γ0(∆1j) = k − 2 for 2 ≤ j ≤ q. For 2 ≤ j ≤ q, ∆1j contains only one η2-plane,

say δ′j , through l0 other than δ0 so that ∆1j ∩∆1 = δ′j . Hence the q− 1 γ2-planes

through l0 in ∆1j other than δ0, δ
′
j are the planes ∆1j ∩∆2, . . . ,∆1j ∩∆q. Hence,

m(∆j) = γ3 for 2 ≤ j ≤ q, and we get

m(∆1) = m(Π) −

q
∑

j=2

m(∆j) − m(∆) + m(δ0)q = γ4 − γ3q + η2q = η3.
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Since ∆1j ∩ ∆1 is an η2-plane through l0 for 2 ≤ j ≤ q, we have

m(∆11 ∩ ∆1) = m(∆1) − η2q + m(l0)q = η3 − η2q + µ1q = µ2.

Thus it holds that m(δ11) = µ2 and m(δ1j) = η2 for 2 ≤ j ≤ q.

Let Q0 be the (k − 4)-point on l0. Take a (k − 4)-point Q1(6= Q0) in

δ0 and put l1 = 〈Q1, R〉. Then, like as for l0, the planes in ∆1 through l1 are

η2-planes except for one plane (which is a µ2-plane). These q η2-planes meet δ11

in a µ1-line through R. Hence the remaining line, say l̃, through R in δ11 satisfies

m(l̃) = m(δ11) − µ1q = µ2 − µ1q = −1,

a contradiction. This completes the proof of Theorem 4.2.

6. Proof of Theorem 4.3. In this section, we assume that q = 2k−7,

k ≥ 9 so that the condition 2q > 3k− 6 holds, and let l, P , ∆, δ0, l01, δ̃1, s, s1 be

as in the proof of Lemma 4.6. We also use the notations η1 = (k − 3)q + k − 4,

η2 = η1q − 1, µ1 = (k − 3)q − 1 and µ2 = µ1q − 1 as in the previous section and

η′1 = (k − 3)q + k − 5, η′2 = η′1q − 1.

Since 0 ≤ s ≤ k − 4 and 0 ≤ s1 ≤ k − 4 with s + s1 = q − 2 = 2k − 9 by Lemma

4.6(5), we may assume that s = k − 4, s1 = k − 5. Hence we have

m(δ0) = η2, m(δ̃1) = η′2, m(δ0 ∩ δ̃1) = m(l01) = µ1

by Lemma 4.6. Since s = k − 4, the η2-plane δ0 consists of one 0-point R, θ1

collinear (k − 4)-points and q2 − 1 (k − 3)-points by Lemma 5.1. Note that an

η′1-line contains either one (k − 5)-point or two (k − 4)-points.

Lemma 6.1. δ̃1 contains no (k − 5)-point.

P r o o f. Recall from the proof of Lemma 5.1 that the µ1-line l01 contains

the 0-point R, a (k − 3)-point P and the (k − 4)-point Q1. Suppose δ̃1 contains

a (k − 5)-point S. Then, by Lemma 4.8, lQ1
= 〈Q1, S〉 is a ((k − 4)q + k− 5)-line

containing q (k−4)-points and every line through R in δ̃1 other than lR = 〈R,S〉

is a ((k−3)q−1)-line. If there exists a plane through L in ∆ whose multiplicity is

less than γ2 except for δ0 and δL = 〈L, lQ1
〉, it meets δ̃1 in an η′1-line, contradicting

to Lemma 4.6(1). Hence we have

m(δL) = m(∆) − γ2(q − 1) − m(δ0) + m(L)q = µ2
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and γ0(δL) = k − 3 by Lemma 5.2. It can be proved similarly that every plane

through lQ1
other than δ̃1, δL is a γ2-plane.

Take a (k−4)-point Q′(6= Q1) on lQ1
and put P ′ = 〈R,Q′〉∩〈S,P 〉. Since

P ′ is a (k−3)-point on the η′1-line 〈S,P 〉, one can find another η2-plane δ′0 through

P ′ meeting δ̃1 in the ((k − 3)q − 1)-line 〈R,P ′〉. Let L′ be the ((k − 4)θ1)-line in

δ′0. It turns out similarly to δL that the plane δL′ = 〈L′, lQ1
〉 is a µ2-plane with

γ0(δL′) = k − 3. Since δL′ contains lQ1
, we have δL′ = δL, and L′ is on δL. It

follows from the multiplicity of δL and Lemma 4.6(1) that every line l′ in δL with

γ0(l
′) = k − 3 is a µ1-line. Considering the lines in δL through L ∩ L′, we have

m(δL) = m(L) + m(L′) + µ1(q − 1) − m(L ∩ L′)q − 1,

giving the existence of a (µ1 − 1)-line in δL. This is a contradiction, for µ1 − 1 >

(k − 4)θ1. �

It follows from Lemma 6.1 that every line through P in δ̃1 other than l01
contains exactly two (k− 4)-points and that the points of δ̃1 out of l01 are the 2q

(k−4)-points and q2−2q (k−3)-points. Let m1,m2, . . . ,mq be the lines through

R in δ̃1 other than l01 with m(m1) ≤ m(m2) ≤ · · · ≤ m(mq). If γ0(m1) = k − 3,

we have

η′2 = m(δ̃1) = m(l01) +

q
∑

i=1

m(mi) ≥ µ1θ1 = (k − 3)q2 + (k − 4)q − 1 > η′2,

a contradiction. Hence γ0(m1) = k − 4 and m1 contains q (k − 4)-points. If mq

contains no (k−4)-point, then we have m(mq) = (k−3)q, which is contradictory

to Lemma 4.6(4). Hence each of m2, . . . ,mq contains a (k − 4)-point. Since the

number of (k−4)-points in δ̃1 out of l01∪m1 is equal to (k−3)(q2+q)−η′2−(q+1) =

q, m2 contains two (k− 4)-points. Hence m(m2) = µ1 − 1, a contradiction again.

This completes the proof of Theorem 4.3.
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