AN IMPROVEMENT TO THE ACHIEVEMENT OF THE GRIESMER BOUND

Noboru Hamada, Tatsuya Maruta*

Abstract

We denoted by $n_{q}(k, d)$, the smallest value of n for which an $[n, k, d]_{q}$ code exists for given q, k, d. Since $n_{q}(k, d)=g_{q}(k, d)$ for all $d \geq$ $d_{k}+1$ for $q \geq k \geq 3$, it is a natural question whether the Griesmer bound is attained or not for $d=d_{k}$, where $g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil, d_{k}=(k-2) q^{k-1}-$ $(k-1) q^{k-2}$. It was shown by Dodunekov [2] and Maruta [9], [10] that there is no $\left[g_{q}\left(k, d_{k}\right), k, d_{k}\right]_{q}$ code for $q \geq k, k=3,4,5$ and for $q \geq 2 k-3$, $k \geq 6$. The purpose of this paper is to determine $n_{q}(k, d)$ for $d=d_{k}$ as $n_{q}(k, d)=g_{q}(k, d)+1$ for $q \geq k$ with $3 \leq k \leq 8$ except for $(k, q)=(7,7)$, $(8,8),(8,9)$.

1. Introduction. Let \mathbb{F}_{q}^{n} denote the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements, where n is an integer ≥ 4 and q is a prime or a prime power. A q-ary linear code \mathcal{C} of length n and dimension k, called an $[n, k]_{q}$ code, is a

ACM Computing Classification System (1998): E.4.
Key words: linear codes, Griesmer bound, projective geometry.
*This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 20540129.
k-dimensional subspace of \mathbb{F}_{q}^{n}, where $n>k \geq 3$. An $[n, k]_{q}$ code \mathcal{C} with minimum Hamming distance d is referred to as an $[n, k, d]_{q}$ code. Let $G=\left[\boldsymbol{g}_{1}^{\mathrm{T}}, \boldsymbol{g}_{2}^{\mathrm{T}}, \ldots, \boldsymbol{g}_{n}^{\mathrm{T}}\right]$ be a $k \times n$ generator matrix of an $[n, k, d]_{q}$ code \mathcal{C} with $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n} \in \mathbb{F}_{q}^{k}$, where $\boldsymbol{g}^{\mathrm{T}}$ denotes the transpose of the vector \boldsymbol{g}. If there is no zero vector in $\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n}\right\}$, an $[n, k, d]_{q}$ code \mathcal{C} is called a nontrivial code. A fundamental problem in coding theory is to solve the following problem.

Problem 1. Find the smallest value of n, denoted by $n_{q}(k, d)$, for which an $[n, k, d]_{q}$ code exists for given integers q, k, d.

An $[n, k, d]_{q}$ code is called optimal if $n=n_{q}(k, d)$. There is a lower bound on $n_{q}(k, d)$ called the Griesmer bound [3], [11]:

$$
n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. A $\left[g_{q}(k, d), k, d\right]_{q}$ code is called a Griesmer code. In order to solve Problem 1, we consider the following problem for given integers $k \geq 3$ and $q \geq 3$.

Problem 2. For given integers k and q, find the value $c(k, q)$ such that
(a) $n_{q}(k, d) \geq g_{q}(k, d)+1$ for $d=c(k, q)$;
(b) $n_{q}(k, d)=g_{q}(k, d)$ for any integer $d \geq c(k, q)+1$.

It is known (Theorem 2.12 in [6] or [1]) that the following theorem holds. See [6] for linear codes of type $B V$.

Theorem 1.1. For given q, k and d, write

$$
d=s q^{k-1}-\sum_{i=1}^{t} q^{u_{i}-1}
$$

where $s=\left\lceil d / q^{k-1}\right\rceil, k>u_{1} \geq u_{2} \geq \cdots \geq u_{t} \geq 1$, and at most $q-1 u_{i}$'s take any given value. Then there exists a $\left[g_{q}(k, d), k, d\right]_{q}$ code of type $B V$ if and only if the following condition holds:

$$
\sum_{i=1}^{\min \{s+1, t\}} u_{i} \leq s k
$$

Corollary 1.2. If q and k are integers with $q \geq k \geq 3$, then
(1) there is no $\left[g_{q}(k, d), k, d\right]_{q}$ code of type $B V$ for $d=(k-2) q^{k-1}-(k-1) q^{k-2}$,
(2) $n_{q}(k, d)=g_{q}(k, d)$ for any integer $d \geq(k-2) q^{k-1}-(k-1) q^{k-2}+1$.

Problem 3. For given integers k and q, find the value $b(k, q)$ such that
(a) there is no $\left[g_{q}(k, d), k, d\right]_{q}$ code of type $B V$ for $d=b(k, q)$;
(b) $n_{q}(k, d)=g_{q}(k, d)$ for any integer $d \geq b(k, q)+1$.

In the case $q \geq k \geq 3$, Corollary 1.2 shows that if there is no $\left[g_{q}(k, d), k, d\right]_{q}$ code for $d=(k-2) q^{k-1}-(k-1) q^{k-2}$, then $c(k, q)=(k-2) q^{k-1}-(k-1) q^{k-2}$. Hence we consider the following problem.

Problem 4. Investigate whether $a\left[g_{q}(k, d), k, d=(k-2) q^{k-1}-\right.$ $\left.(k-1) q^{k-2}\right]_{q}$ code exists or not for given integers k and q with $q \geq k \geq 3$.

Hamada conjectured as follows.
Conjecture 1.3. There is no $\left[g_{q}(k, d), k, d=(k-2) q^{k-1}-(k-1) q^{k-2}\right]_{q}$ code for any integers k and q with $q \geq k \geq 3$. That is,

$$
c(k, q)=(k-2) q^{k-1}-(k-1) q^{k-2}
$$

for any integers k and q with $q \geq k \geq 3$.
Conjecture 1.4. $c(k, q)=b(k, q)$ for any integers $k \geq 3$ and $q \geq 3$.

As for Conjecture 1.3, the following is known, see Dodunekov [2] and Maruta [9], [10].

Theorem $1.5([10])$. For $d=(k-2) q^{k-1}-(k-1) q^{k-2}$, it holds that $n_{q}(k, d) \geq g_{q}(k, d)+1$ for $q \geq k$ when $k=3,4,5$ and for $q \geq 2 k-3$ when $k \geq 6$.

Hence Problem 4 is unsolved for any integers k and q with $2 k-3>q \geq$ $k \geq 6$. For example, the cases in the next remark are still open.

Remark 1.6. For $6 \leq k \leq 13$, Problem 4 is unsolved for the following k and q.
(1) $k=6$
and
$q=7,8$,
(2) $\quad k=7 \quad$ and $\quad q=7,8,9$,
(3) $k=8 \quad$ and $\quad q=8,9,11$,
(4) $k=9 \quad$ and $\quad q=9,11,13$,
(5) $k=10 \quad$ and $\quad q=11,13,16$,
(6) $k=11 \quad$ and $\quad q=11,13,16,17$,
(7) $k=12 \quad$ and $\quad q=13,16,17,19$,
(8) $k=13 \quad$ and $\quad q=13,16,17,19$.

In this paper we prove the following two theorems.
Theorem 1.7. There is no $\left[g_{q}(k, d), k, d=(k-2) q^{k-1}-(k-1) q^{k-2}\right]_{q}$ code for any integers $k \geq 6$ and q with $q=2 k-2 u$ and $k>4 u-6$ for $u=2,3$.

Theorem 1.8. There is no $\left[g_{q}(k, d), k, d=(k-2) q^{k-1}-(k-1) q^{k-2}\right]_{q}$ code for any integers $k \geq 6$ and q with $q=2 k-2 u-1$ and $k>4 u-4$ for $u=2,3$.

Theorems 1.7 and 1.8 imply that Conjecture 1.3 is valid for the following k and q :

(1)	$k=6$	and	$q=7,8$,	(2)	$k=7$	and
(3)	$k=8$	$q=8,9$,				
(5)	$k=10$	and	$q=11$,	(4)	$k=9$	and
and	$q=13,16$,	(6)	$k=11$	and	$q=16,17$,	
(7)	$k=12$	and	$q=17,19$,	(8)	$k=13$	and
$q=19$.						

For $d^{\prime}=(k-2) q^{k-2}-(k-1) q^{k-3}$ with $q \geq k \geq 3$, there exists a $\left[g_{q}\left(k-1, d^{\prime}\right), k-\right.$ $\left.1, d^{\prime}\right]_{q}$ code, say \mathcal{C}^{\prime}, by Theorem 1.1. Applying Theorem 4.5 of [5] to \mathcal{C}^{\prime}, one can get a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code for $d=(k-2) q^{k-1}-(k-1) q^{k-2}$. Hence, the nonexistence of Griesmer codes determines the exact value of $n_{q}(k, d)$. As a result of the previous theorems, Theorem 1.5 for $k \leq 13$ can be improved to the following.

Theorem 1.9. For $d=(k-2) q^{k-1}-(k-1) q^{k-2}$, it holds that $n_{q}(k, d)=$ $g_{q}(k, d)+1$ for $q \geq k$ with $3 \leq k \leq 13$ except for $(k, q)=(7,7),(8,8),(8,9)$, $(9,9),(10,11),(11,11),(11,13),(12,13),(12,16),(13,13),(13,16),(13,17)$.

Remark 1.10. (1) If $q=2 k-2 u$ and $k>4 u-6$, then $2 q-(3 k-6)=$ $k-4 u+6>0$. If $q=2 k-2 u-1$ and $k>4 u-4$, then $2 q-(3 k-6)=k-4 u+4>0$. Hence it holds that $q>(3 k-6) / 2$ for both cases. When $q \leq(3 k-6) / 2$ (e.g. $(k, q)=(7,7))$, the situation is quite complicated, see Section 4.
(2) For the nonexistence of a $\left[g_{q}(k, d), k, d\right]_{q}$ code for $d=(k-2) q^{k-1}-(k-$ 1) $q^{k-2}-\varepsilon$ for some small ε, see Klein [8].
2. A geometric method. To obtain a necessary and sufficient condition for the existence of a $\left[g_{q}(k, d), k, d\right]_{q}$ code for the case $d \leq q^{k-1}$, the concept of minihyper has been introduced by Hamada [4]. To prove Theorems 1.7 and 1.8, we generalize the concept of minihyper for the case $d>q^{k-1}$ and we give a necessary and sufficient condition for the existence of a nontrivial $[n, k, d]_{q}$ code
for given integers n, k, d, q with $n>k \geq 3, q \geq 3$ and $(s-1) q^{k-1}<d \leq s q^{k-1}$ for some positive integer s.

For $k \geq 3$, let $\Sigma=\mathrm{PG}(k-1, q)$ be the finite projective space of dimension $k-1$ over \mathbb{F}_{q} and let \mathcal{F}_{j} be the set of all j-flats in Σ, where a j-flat is a projective subspace of dimension j in Σ. 0-flats, 1-flats, 2-flats, 3-flats and ($k-2$)-flats are called points, lines, planes, solids and hyperplanes, respectively. The number of points in a j-flat is denoted by θ_{j}, where

$$
\theta_{j}=\left(q^{j+1}-1\right) /(q-1)=q^{j}+q^{j-1}+\cdots+q+1
$$

for $j=0,1, \ldots, k-1$. We set $\theta_{-1}=0$ for convenience.
A point in Σ is denoted by (\boldsymbol{h}) using a nonzero vector $\boldsymbol{h} \in \mathbb{F}_{q}^{k}$, where two points $\left(\boldsymbol{h}_{1}\right)$ and $\left(\boldsymbol{h}_{2}\right)$ are same points if and only if there exists a nonzero element $\sigma \in \mathbb{F}_{q}$ with $\boldsymbol{h}_{2}=\sigma \boldsymbol{h}_{1}$. Each hyperplane of Σ can be expressed as the set of all points $(\boldsymbol{g}) \in \mathcal{F}_{0}$ such that $(\boldsymbol{g}, \boldsymbol{h})=0$ and $\boldsymbol{g} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}$ for some nonzero vector $\boldsymbol{h} \in \mathbb{F}_{q}^{k}$, where $(\boldsymbol{g}, \boldsymbol{h})$ denotes the inner product of two vectors \boldsymbol{g} and \boldsymbol{h}, i.e., $(\boldsymbol{g}, \boldsymbol{h})=\boldsymbol{g} \boldsymbol{h}^{\mathrm{T}}$ over \mathbb{F}_{q}. In this case, the hyperplane H is denoted by $H(\boldsymbol{h})$, i.e.,

$$
H(\boldsymbol{h})=\left\{(\boldsymbol{g}) \mid(\boldsymbol{g}, \boldsymbol{h})=0 \text { and } \boldsymbol{g} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}\right\}
$$

for some nonzero vector $\boldsymbol{h} \in \mathbb{F}_{q}^{k}$.
Let \mathcal{C} be a nontrivial $[n, k, d]_{q}$ code and let $G=\left[\boldsymbol{g}_{1}^{\mathrm{T}}, \boldsymbol{g}_{2}^{\mathrm{T}}, \ldots, \boldsymbol{g}_{n}^{\mathrm{T}}\right]$ be a generator matrix of \mathcal{C} with $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{n} \in \mathbb{F}_{q}^{k}$. Let $\mathbf{M}(G)$ be the multiset of n points of Σ corresponding to the n columns of G, i.e.,

$$
\mathbf{M}(G)=\left\{\left(\boldsymbol{g}_{1}\right), \ldots,\left(\boldsymbol{g}_{n}\right)\right\}
$$

A point P of Σ is an i-point if P has multiplicity i in $\mathbf{M}(G)$. Let γ_{0} be the maximum multiplicity of points in Σ and let C_{i} be the set of i-points in Σ. For any subset K of \mathcal{F}_{0} we define the multiplicity of K as

$$
m(K)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|K \cap C_{i}\right|
$$

where $|T|$ denotes the number of points in a subset T of \mathcal{F}_{0}. Then the multiset $\mathbf{M}(G)$ gives a partition $\bigcup_{i=0}^{\gamma_{0}} C_{i}$ of \mathcal{F}_{0}. For a t-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{m(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq t
$$

We denote simply by γ_{j} instead of $\gamma_{j}\left(\mathcal{F}_{0}\right)$. A line l is called a w-line if $m(l)=w$. A w-plane, a w-solid and so on are defined similarly. We prove Theorems 1.7 and 1.8 using the following theorem.

Theorem 2.1. For $k \geq 3$, there exists a nontrivial $[n, k, d]_{q}$ code if and only if there exists a partition $\bigcup_{i=0}^{\gamma_{0}} C_{i}$ of \mathcal{F}_{0} which satisfies the following conditions:
(a) $m\left(\mathcal{F}_{0}\right)=n$,
(b) $\gamma_{k-2}=n-d$.

Proof. Suppose there exists a nontrivial $[n, k, d]_{q}$ code \mathcal{C} which has a generator matrix $G=\left[\boldsymbol{g}_{1}^{\mathrm{T}}, \boldsymbol{g}_{2}^{\mathrm{T}}, \ldots, \boldsymbol{g}_{n}^{\mathrm{T}}\right]$. Then it holds that $m\left(\mathcal{F}_{0}\right)=n$. Since the minimum weight of \mathcal{C} is equal to d, \mathcal{C} must satisfies the following conditions:

$$
\begin{equation*}
d=\min \left\{w t(\boldsymbol{h} G) \mid \boldsymbol{h} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}\right\} \tag{2.1}
\end{equation*}
$$

where $w t(\boldsymbol{c})$ stands for the number of nonzero entries in the vector $\boldsymbol{c} \in \mathbb{F}_{q}^{n}$. Since $w t(\boldsymbol{h} G)$ denotes the number of vectors \boldsymbol{g}_{i} such that $\left(\boldsymbol{g}_{i}, \boldsymbol{h}\right) \neq 0$ and $m(H(\boldsymbol{h}))$ denotes the number of vectors \boldsymbol{g}_{i} such that $\left(\boldsymbol{g}_{i}, \boldsymbol{h}\right)=0$, we have $w t(\boldsymbol{h} G)+$ $m(H(\boldsymbol{h}))=n$. It follows from (2.1) that $\gamma_{k-2}=\max \left\{m(H(\boldsymbol{h})) \mid \boldsymbol{h} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}\right\}=$ $n-d$. Hence the part of "only if" holds.

Conversely, suppose there exists a partition in Theorem 2.1 which satisfies the conditions (a) and (b). Let λ_{i} denote the number of points in C_{i}. We construct a matrix G consisting of i matrices G_{i} for $1 \leq i \leq \gamma_{0}$ as follows.

$$
G=\left[G_{1}, G_{2}, G_{2}, G_{3}, G_{3}, G_{3}, \ldots, G_{\gamma_{0}}, G_{\gamma_{0}}, \ldots, G_{\gamma_{0}}\right]
$$

where G_{i} denotes a matrix constructed by λ_{i} colomun vectors $\boldsymbol{g}^{\mathrm{T}}$ with $\boldsymbol{g} \in \mathbb{F}_{q}^{k}$ such that $(\boldsymbol{g}) \in C_{i}$. Then G is a generator matrix of a nontrivial $[n, k, d]_{q}$ code \mathcal{C}.

For $d=(k-2) q^{k-1}-(k-1) q^{k-2}, g_{q}(k, d)$ can be expressed as follows.

$$
\begin{equation*}
g_{q}(k, d)=(k-2) q^{k-1}-\theta_{k-2} . \tag{2.2}
\end{equation*}
$$

If $n=g_{q}(k, d)$, then $n-d=(k-1) q^{k-2}-\theta_{k-2}=(k-2) q^{k-2}-\theta_{k-3}$. Hence we have the following corollary from Theorem 2.1.

Corollary 2.2. For $q \geq k \geq 3$, there exists a $\left[g_{q}(k, d), k, d=(k-\right.$ 2) $\left.q^{k-1}-(k-1) q^{k-2}\right]_{q}$ code if and only if there exists a partition $\bigcup_{i=0}^{k-2} C_{i}$ of \mathcal{F}_{0} with $\gamma_{0}=k-2$ in $\operatorname{PG}(k-1, q)$ which satisfies the following conditions:
(a) $m\left(\mathcal{F}_{0}\right)=(k-2) q^{k-1}-\theta_{k-2}$,
(b) $\gamma_{k-2}=(k-2) q^{k-2}-\theta_{k-3}$.

Hence in order to prove Theorems 1.7 and 1.8, it is sufficient to prove the following theorem for integers k and q in the theorems.

Theorem 2.3. For any integers k and q in Theorems 1.7 and 1.8, there is no partition $\bigcup_{i=0}^{k-2} C_{i}$ of \mathcal{F}_{0} with $\gamma_{0}=k-2$ in $P G(k-1, q)$ which satisfies the following conditions:
(a) $m\left(\mathcal{F}_{0}\right)=(k-2) q^{k-1}-\theta_{k-2}$,
(b) $\gamma_{k-2}=(k-2) q^{k-2}-\theta_{k-3}$.

In Sections $3,4,5,6$, we shall use repeatedly the following well known result.

Proposition 2.4. Let k, u, w be integers such that $k \geq 3, k-1 \geq w \geq$ $u+2$ and $u \geq 0$. Let $\delta \in \mathcal{F}_{u}, \Pi \in \mathcal{F}_{w}$.
(1) In Π, there are b flats $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{b} \in \mathcal{F}_{u+1}$ containing δ, where $b=$ θ_{w-u-1}.
(2) If there exists such a partition of \mathcal{F}_{0} as Theorem 2.1, then

$$
\begin{equation*}
\sum_{i=1}^{b} m\left(\Delta_{i}\right)=m(\Pi)+(b-1) m(\delta) . \tag{2.3}
\end{equation*}
$$

Remark 2.5. In Proposition 2.4 (2), there is a partition of Π as follows.

$$
\begin{equation*}
\left(\bigcup_{i=1}^{b}\left(\Delta_{i} \backslash \delta\right)\right) \cup \delta=\Pi . \tag{2.4}
\end{equation*}
$$

Remark 2.6. In the case $d=s q^{k-1}$ for some positive integer s, it is known that there exists a $\left[g_{q}(k, d)=s \theta_{k-2}, k, d=s q^{k-1}\right]_{q}$ code (take s copies of
Σ as the multiset $\mathbf{M}(G)$). Hence, to solve Problem 1, we only need to consider the case $(s-1) q^{k-1}<d<s q^{k-1}$ for some positive integer s.
3. Preliminary results. Recall from the previous section that γ_{j} is defined for $1 \leq j \leq k-1$ as

$$
\begin{equation*}
\gamma_{j}=\max \left\{m(\Delta) \mid \Delta \in \mathcal{F}_{j}\right\} . \tag{3.1}
\end{equation*}
$$

Throughout this section, we assume that there exists a partition $\bigcup_{i=0}^{k-2} C_{i}$ of \mathcal{F}_{0} with $\gamma_{0}=k-2$ in $\operatorname{PG}(k-1, q)$ which satisfies the conditions (a) and (b) in Corollary 2.2 for $q \geq k \geq 5$. The following lemma due to Maruta [10] plays an important role in proving Theorems 1.7 and 1.8.

Lemmma 3.1 ([10]).
(1) $\gamma_{j}=(k-2) q^{j}-\theta_{j-1}$ for $0 \leq j \leq k-1$.
(2) $A j$-flat Δ satisfies $m(\Delta)=\gamma_{j}$ if and only if $\gamma_{0}(\Delta)=k-2$, for $1 \leq j \leq k-2$.

It is already known by Lemma 3.4 of [10] that every line l satisfies $\gamma_{0}(l) \geq$ 1.

Lemma 3.2. $m(l) \geq t q-1$ for any line l with $\gamma_{0}(l)=t$.
Proof. Our assertion follows from the previous lemma for $t=k-2$. Let l be a line with $\gamma_{0}(l)=t, 1 \leq t \leq k-3$. Take a point P of C_{k-2} and let $\delta=\langle l, P\rangle$, where $\left\langle\chi_{1}, \chi_{2}, \ldots\right\rangle$ denotes the smallest flat containing subsets $\chi_{1}, \chi_{2}, \ldots$ of \mathcal{F}_{0}. Then $m(\delta)=\gamma_{2}=(k-2) q^{2}-\theta_{1}$ by Lemma 3.1. Let Q be a t-point on l and let l_{1}, \ldots, l_{q} be the lines in δ through Q other than l. It follows from (2.3) that

$$
m(l)+\sum_{i=1}^{q} m\left(l_{i}\right)=m(\delta)+m(Q) q=\gamma_{2}+t q .
$$

Since $m\left(l_{i}\right) \leq \gamma_{1}=(k-2) q-1$ for $1 \leq i \leq q$, we have

$$
m(l) \geq \gamma_{2}+t q-q \gamma_{1}=t q-1
$$

Lemma 3.3. Assume that there is no line l with $\gamma_{0}(l)=k-3$ and $m(l)=(k-3) q+s, 0 \leq s \leq k-3$, where $q \geq k \geq 5$. If l_{0} is a line with $\gamma_{0}\left(l_{0}\right)=t \leq k-4$, then $m\left(l_{0}\right)=t q-1$.

Proof. Suppose $\gamma_{0}\left(l_{0}\right)=t$ and $m\left(l_{0}\right)=t q+t^{\prime}, 0 \leq t^{\prime} \leq t \leq k-4$. Let δ be a plane containing l_{0} and a $(k-2)$-point. Then, by Lemma 3.1, we have $m(\delta)=\gamma_{2}$. Let P be a t-point on l_{0} and let l_{1} be another line through P in δ. Considering the lines through P in δ, we obtain

$$
\gamma_{2}=m(\delta) \leq m\left(l_{0}\right)+m\left(l_{1}\right)+(q-1) \gamma_{1}-q t,
$$

whence $m\left(l_{1}\right) \geq(k-2) q-2-t^{\prime}>(k-3) q-1$, for $t^{\prime}+1 \leq k-3<k \leq q$. This implies that all lines through P in δ other than l_{0} are γ_{1}-lines from our assumption, and we have $\gamma_{2}=\gamma_{1} q+t^{\prime}>\gamma_{2}$, a contradiction.

Lemma 3.4. Let Π be a hyperplane of Σ with $\gamma_{0}(\Pi)=t, 1 \leq t \leq k-3$. Assume that every line l in Π with $\gamma_{0}(l)=u \leq k-3$ satisfies $m\left(l_{0}\right)=u q-1$. Then
(1) $c(\Pi)=t q^{k-2}-\theta_{k-3}$.
(2) For a $(t+1)$-flat π in Π containing a t-point, the partition $\pi=\bigcup_{i=0}^{t}\left(\pi \cap C_{i}\right)$ gives $a\left[t q^{t+1}-\theta_{t}, t+2, t q^{t+1}-(t+1) q^{t}\right]_{q}$ code.

Proof. See Lemma 3.5 of [10].
Since there exists no $\left[t q^{t+1}-\theta_{t}, t+2, t q^{t+1}-(t+1) q^{t}\right]_{q}$ code for $q \geq t+2$ with $1 \leq t \leq 3$ from Theorem 1.5, we get a contradiction using induction on k for $k \geq 6$. Hence, from Lemmas 3.3 and 3.4, we get the following theorem.

Theorem 3.5. For $q \geq k \geq 5$, there is no $\left[g_{q}(k, d), k, d=(k-2) q^{k-1}-\right.$ $\left.(k-1) q^{k-2}\right]_{q}$ code if there is no line l in Σ with $\gamma_{0}(l)=k-3$ and $m(l)=(k-3) q+s$ for $0 \leq s \leq k-3$.
4. A γ_{3}-solid containing a putative $((k-3) q+s)$-line. In this section, we assume that there exists a partition $\bigcup_{i=0}^{k-2} C_{i}$ of \mathcal{F}_{0} with $\gamma_{0}=k-2$ in $\Sigma=\mathrm{PG}(k-1, q)$ which satisfies the conditions (a) and (b) in Corollary 2.2 for given integers q and k with $q>(3 k-6) / 2, k \geq 6$. Since it is known that Theorems 1.7 and 1.8 hold for $q \geq 2 k-3$ and $k \geq 6$, it is sufficient to prove the theorems for q and k with

$$
\begin{equation*}
2 k-4 \geq q>(3 k-6) / 2 \text { and } k \geq 6 . \tag{4.1}
\end{equation*}
$$

Hence, to prove the theorems, it suffices to prove the following three theorems by Theorem 3.5.

Theorem 4.1. For any integers k and q with (a) $q=2 k-4, k \geq 6$ or (b) $q=2 k-5, k \geq 6$, there is no line l in $\Sigma=\operatorname{PG}(k-1, q)$ such that $\gamma_{0}(l)=k-3$ and $m(l)=(k-3) q+s$ for some integer s with $0 \leq s \leq k-3$.

Theorem 4.2. For any integers k and q with $q=2 k-6, k \geq 7$, there is no line l in $\Sigma=\operatorname{PG}(k-1, q)$ such that $\gamma_{0}(l)=k-3$ and $m(l)=(k-3) q+s$ for some integer s with $0 \leq s \leq k-3$.

Theorem 4.3. For any integers k and q with $q=2 k-7, k \geq 9$, there is no line l in $\Sigma=\operatorname{PG}(k-1, q)$ such that $\gamma_{0}(l)=k-3$ and $m(l)=(k-3) q+s$ for some integer s with $0 \leq s \leq k-3$.

The proofs of Theorems 4.2 and 4.3 are given in Sections 5 and 6 , respectively. In order to prove these theorems, we shall prepare four lemmas in this section. Theorem 4.1 is a corollary of one of these lemmas. Suppose for some integers k and q satisfying the condition (4.1) that there exists a line l in Σ such that $\gamma_{0}(l)=k-3$ and

$$
\begin{equation*}
m(l)=(k-3) q+s \tag{4.2}
\end{equation*}
$$

for some integer s with $0 \leq s \leq k-3$. Let Δ be a solid in Σ containing l and a $(k-2)$-point. Then $m(\Delta)=\gamma_{3}=(k-2) q^{3}-\theta_{2}$ by Lemma 3.1. Let $\delta_{0}, \delta_{1}, \ldots, \delta_{q}$ be the planes in Δ containing l. Without loss of generality, we may assume that $m\left(\delta_{0}\right) \leq m\left(\delta_{1}\right) \leq \cdots \leq m\left(\delta_{q}\right)$. It follows from (2.3) and (4.2) that

$$
\begin{equation*}
\sum_{i=0}^{q} m\left(\delta_{i}\right)=m(\Delta)+m(l) q=(k-2) q^{3}+(k-4) q^{2}+(s-1) q-1 \tag{4.3}
\end{equation*}
$$

If $\gamma_{0}\left(\delta_{i}\right)=k-2$ for all i with $0 \leq i \leq q$, it follows from Lemma 3.1 that the left hand side of (4.3) is equal to

$$
\begin{aligned}
(q+1)\left((k-2) q^{2}-\theta_{1}\right)=(k-2) q^{3}+ & (k-4) q^{2}+(q-2) q-1 \\
& >(k-2) q^{3}+(k-4) q^{2}+(s-1) q-1
\end{aligned}
$$

a contradiction, since

$$
(q-2)-(s-1)=q-s-1>(3 k-6) / 2-(k-3)-1=(k-2) / 2>0
$$

by (4.1). Hence $\gamma_{0}\left(\delta_{0}\right)=k-3$. Since $m\left(\delta_{i}\right) \leq \gamma_{2}$, it follows from (4.3) and Lemma 3.1 that

$$
\begin{equation*}
m\left(\delta_{0}\right)+m\left(\delta_{1}\right)+m\left(\delta_{2}\right) \geq(3 k-7) q^{2}+(s-2) q-3 \tag{4.4}
\end{equation*}
$$

Lemma 4.4. If $2 q>3 k-6$, then $\gamma_{0}\left(\delta_{0}\right)=k-3$ and $\gamma_{0}\left(\delta_{i}\right)=k-2$ for $2 \leq i \leq q$.

Proof. It suffices to prove $\gamma_{0}\left(\delta_{2}\right)=k-2$. Suppose $\gamma_{0}\left(\delta_{2}\right)=k-3$. Then it holds that

$$
m\left(\delta_{0}\right)+m\left(\delta_{1}\right)+m\left(\delta_{2}\right) \leq 3(k-3) \theta_{2} .
$$

If $2 q>3 k-6$, then
$\left((3 k-7) q^{2}+(s-2) q-3\right)-3(k-3) \theta_{2}=(2 q-3 k+6)(q+1)+(s-1) q \geq s q+1>0$,
which implies that

$$
m\left(\delta_{0}\right)+m\left(\delta_{1}\right)+m\left(\delta_{2}\right)<(3 k-7) q^{2}+(s-2) q-3 .
$$

This is contradictory to (4.4). Hence $\gamma_{0}\left(\delta_{2}\right)=k-2$.
Let P be a $(k-3)$-point in l and let l_{1}, \ldots, l_{q} be the lines in δ_{q} through P other than l. Without loss of generality, we may assume that $m\left(l_{1}\right) \leq \cdots \leq m\left(l_{q}\right)$. It follows from (2.3) and $m(P)=k-3$ that

$$
\begin{equation*}
\sum_{i=1}^{q} m\left(l_{i}\right)+m(l)=m\left(\delta_{q}\right)+m(P) q=(k-2) q^{2}+(k-4) q-1 . \tag{4.5}
\end{equation*}
$$

If $\gamma_{0}\left(l_{i}\right)=k-2$ for $2 \leq i \leq q$, it follows from Lemma 3.1 and (4.5) that $m\left(l_{i}\right)=(k-2) q-1$ for $2 \leq i \leq q$ and

$$
\begin{equation*}
m(l)+m\left(l_{1}\right)=(2 k-5) q-2 . \tag{4.6}
\end{equation*}
$$

Since $m\left(l_{i}\right) \leq \gamma_{1}$, it follows from (4.5) that

$$
\begin{equation*}
m(l)+m\left(l_{1}\right)+m\left(l_{2}\right) \geq(3 k-7) q-3 . \tag{4.7}
\end{equation*}
$$

Lemma 4.5. If $2 q>3 k-6$, then $\gamma_{0}\left(l_{i}\right)=k-2$ for $2 \leq i \leq q$, $\gamma_{0}\left(l_{1}\right)=k-3$ and $m\left(l_{1}\right)=(k-3) q+q-s-2$.

Proof. Suppose $\gamma_{0}\left(l_{2}\right)=k-3$. Then, from our assumptions $\gamma_{0}(l)=k-3$ and $m\left(l_{1}\right) \leq m\left(l_{2}\right)$, we have $m(l)+m\left(l_{1}\right)+m\left(l_{2}\right) \leq 3(k-3) \theta_{1}$. If $2 q>3 k-6$, then $(3 k-7) q-3-3(k-3) \theta_{1}=2 q-3 k+6>0$. This implies that

$$
m(l)+m\left(l_{1}\right)+m\left(l_{2}\right)<(3 k-7) q-3
$$

contradicting (4.7). Hence $\gamma_{0}\left(l_{i}\right)=k-2$ for $2 \leq i \leq q$, and $m\left(l_{1}\right)=(k-$ 3) $q+q-s-2$ by (4.6). It holds that $\gamma_{0}\left(l_{1}\right)=k-3$ by Lemma 3.1 since $(k-3) q+q-s-2<\gamma_{1}$.

Let $s_{1}=q-2-s$. When $2 q>3 k-6$, we have $m\left(l_{1}\right)=(k-3) q+s_{1}$ by Lemma 4.5. Since $s+s_{1}=q-2$, we may assume without loss of generality that

$$
\begin{equation*}
s \geq s_{1}, \quad(q-2) / 2 \leq s \leq k-3 \tag{4.8}
\end{equation*}
$$

Thus, if $\gamma_{0}\left(\delta_{i}\right)=k-2$, there always exists a pair of lines l and $l_{i 1}$ in δ_{i} such that

$$
m(l)=(k-3) q+s, \quad m\left(l_{i 1}\right)=(k-3) q+s_{1}
$$

where $s+s_{1}=q-2$. Hence, to prove Theorem 4.1, it is sufficient to show that there is no line l in Σ such that $\gamma_{0}(l)=k-3$ and $m(l)=(k-3)+s$ for any integer s satisfying the condition (4.8).

Assume $2 q>3 k-6, k \geq 6$. Let l be a $((k-3) q+s)$-line with $0 \leq s \leq k-3$ and let Δ be a γ_{3}-solid containing l and a $(k-2)$-point in Σ. Let $\delta_{0}, \delta_{1}, \ldots, \delta_{q}$ be the planes through l in Δ with $m\left(\delta_{0}\right) \leq m\left(\delta_{1}\right) \leq \cdots \leq m\left(\delta_{q}\right)$. Then $\gamma_{0}\left(\delta_{0}\right)=k-3$, $\gamma_{0}\left(\delta_{1}\right)=k-3$ or $k-2$ and $\gamma_{0}\left(\delta_{i}\right)=k-2$ for $2 \leq i \leq q$ by Lemma 4.4. Let P be a $(k-3)$-point on l and let $l_{i 1}, l_{i 2}, \ldots, l_{i q}$ be the lines in δ_{i} through P other than l with $m\left(l_{i 1}\right) \leq m\left(l_{i 2}\right) \leq \cdots \leq m\left(l_{i q}\right)$ for $1 \leq i \leq q$. When $\gamma_{0}\left(\delta_{i}\right)=k-2$, it follows from Lemma 4.5 that $\gamma_{0}\left(l_{i j}\right)=k-2$ for $2 \leq j \leq q$ and that $\gamma_{0}\left(l_{i 1}\right)=k-3, m\left(l_{i 1}\right)=(k-3) q+s_{1}$, where $s_{1}=q-s-2$. Note that $s_{1} \geq 0$ since $q>3(k-2) / 2 \geq 3(s+1) / 2$.

Lemma 4.6. If $2 q>3 k-6, k \geq 6$, then
(1) $\gamma_{0}\left(\delta_{0}\right)=k-3, \gamma_{0}\left(\delta_{i}\right)=k-2$ for $1 \leq i \leq q$ and $m\left(\delta_{0}\right)=(k-3) q^{2}+s q-1$,
(2) there are $q((k-3) q+s)$-lines and one $((k-3) q-1)$-line through P in δ_{0},
(3) there is a $\left((k-3) q^{2}+s_{1} q-1\right)$-plane $\tilde{\delta_{1}}$ through P meeting δ_{0} in a $((k-3) q-1)$ line,
(4) for any $(k-3)$-point P^{\prime} in δ_{0} there are $q((k-3) q+s)$-lines and one $((k-3) q-1)$-line through P^{\prime} in δ_{0},
(5) $s \leq k-4, s_{1} \leq k-4$ and $q \leq 2 k-6$.

Proof. (1) To prove (1), it suffices to determine $\gamma_{0}\left(\delta_{1}\right)$ and $m\left(\delta_{0}\right)$ by Lemma 4.4. Recall that in a γ_{2}-plane containing l, the lines through P consist of
l and a $\left((k-3) q+s_{1}\right)$-line and $q-1 \gamma_{1}$-lines. So, the γ_{2}-plane $\left\langle l_{q 1}, l_{q-1, j}\right\rangle$ meets δ_{0} in a $((k-3) q+s)$-line, say $l_{0 j}$, for $2 \leq j \leq q$. Hence $\left\langle l_{q 1}, l_{q-1, j}\right\rangle$ with $2 \leq j \leq q$ meets δ_{u} in a γ_{1}-line for $1 \leq u \leq q-2$. Thus $\gamma_{0}\left(\delta_{1}\right)=k-2$. By Lemma 3.1 we get

$$
\begin{aligned}
m\left(\delta_{0}\right) & =m(\Delta)-\sum_{i=1}^{q} m\left(\delta_{i}\right)+m(l) q \\
& =\gamma_{3}-\gamma_{2} q+((k-3) q+s) q=(k-3) q^{2}+s q-1
\end{aligned}
$$

(2) From the proof of (1), there are $q((k-3) q+s)$-lines $l, l_{02}, l_{03}, \ldots, l_{0 q}$ through P in δ_{0}. Let l_{01} be the other line through P in δ_{0}. Then it follows from (1) that

$$
\begin{aligned}
m\left(l_{01}\right) & =m\left(\delta_{0}\right)-\sum_{i=2}^{q} m\left(l_{0 i}\right)-m(l)+m(P) q \\
& =(k-3) q^{2}+s q-1-((k-3) q+s) q+(k-3) q=(k-3) q-1
\end{aligned}
$$

(3) Put $\tilde{\delta_{1}}=\left\langle l_{q 1}, l_{q-1,1}\right\rangle$. Then $\tilde{\delta_{1}}$ meets $\tilde{\delta}_{u}$ in a $\left((k-3) q+s_{1}\right)$-line for $1 \leq u \leq q$. Hence $\gamma_{0}\left(\tilde{\delta}_{1}\right)=k-3$. Since $m\left(\delta_{0} \cap \tilde{\delta_{1}}\right)=m\left(l_{01}\right)=(k-3) q-1$, it holds that

$$
\begin{aligned}
m\left(\tilde{\delta_{1}}\right) & =\sum_{i=0}^{q} m\left(\delta_{i} \cap \tilde{\delta_{1}}\right)-m(P) q=(k-3) q-1+\left((k-3) q+s_{1}\right) q-(k-3) q \\
& =(k-3) q^{2}+s_{1} q-1
\end{aligned}
$$

(4) Note from (1) that for any $((k-3) q+s)$-line l with $0 \leq s \leq k-3$, there is only one plane through l in Δ which has no $(k-2)$-point. If all the lines through P^{\prime} in δ_{0} are $((k-3) q-1)$-lines, then

$$
m\left(\delta_{0}\right)=((k-3) q-1) \theta_{1}-(k-3) q=(k-3) q^{2}-\theta_{1}
$$

a contradiction. Hence there is a $\left((k-3) q+s^{\prime}\right)$-line l^{\prime} in δ_{0} through P^{\prime} for some $0 \leq s^{\prime} \leq k-3$. In Δ there is only one plane, say δ^{\prime}, through l^{\prime} which has no $(k-2)$-point. From (1) we have $m\left(\delta^{\prime}\right)=(k-3) q^{2}+s^{\prime} q-1$. Since δ_{0} is also a plane containing l^{\prime} which has no $(k-2)$-point, we obtain $\delta^{\prime}=\delta_{0}$ and $s^{\prime}=s$. Hence our assertion follows from (1) and (2).
(5) Suppose $s=k-3$. Then $l \subset C_{k-3}$, and every line in δ_{0} contains a $(k-3)$-point. So, from (4), every line in δ_{0} is a $\left((k-3) \theta_{1}\right)$-line or a $((k-3) q-1)$ line. Let R be a t-point on a $((k-3) q-1)$-line in δ_{0} with $t \leq k-4$. Since all the
lines in δ_{0} through R are $((k-3) q-1)$-lines, we get $m\left(\delta_{0}\right)=((k-3) q-1) \theta_{1}-t q$, whence $k-4-t=s=k-3$, i.e., $t=-1$, a contradiction. Hence $s \neq k-3$. Since $s \geq s_{1}$ from (4.8), we have $s_{1} \leq k-4$. From $s \leq k-4$ and $s_{1}=q-s-2 \leq k-4$, we have $q-k+2 \leq s \leq k-4$, so $q \leq 2 k-6$.

Remark 4.7. (1) In the proof of Lemma 4.6(3), it is easily checked that the $q-1$ planes through l_{01} other than $\delta_{0}, \tilde{\delta}_{1}$ are γ_{2}-planes.
(2) It follows from Lemma 4.6(4) that every $\left((k-3) q+s^{\prime}\right)$-line with $0 \leq s^{\prime} \leq k-3$ in δ_{0} satisfies $s^{\prime}=s$ since $(k-3) q+s^{\prime}>(k-4) \theta_{1}$.
(3) We obtain Theorem 4.1 as a consequence of Lemma 4.6(5).

Lemma 4.8. Assume that δ_{0} contains an s-point S and that l_{01} contains a 0-point R and a $(k-4)$-point Q. Then
(1) $l_{R}=\langle R, S\rangle$ is an $((s+1) q-1)$-line containing $q-1(s+1)$-points and $l_{Q}=\langle Q, S\rangle$ is a $((k-4) q+s)$-line with $l_{Q} \backslash\{S\} \subset C_{k-4}$, and any point of $\delta_{0} \backslash\left(l_{Q} \cup l_{R}\right)$ is a $(k-3)$-point.
(2) Every line through R in δ_{0} other than l_{R} is a $((k-3) q-1)$-line.
(3) Every line through Q in δ_{0} other than l_{01}, l_{Q} is a $((k-3) q+s)$-line.

Proof. Since $m\left(l_{01}\right)=(k-3) q-1, l_{01}$ contains $q-1(k-3)$-points, say $P_{1}, P_{2}, \ldots, P_{q-1}$. It follows from Lemma 4.6(4) that each line $\left\langle S, P_{i}\right\rangle$ is a $((k-3) q+s)$-line containing $q(k-3)$-points for $1 \leq i \leq q-1$. Hence any line l^{\prime} through R in δ_{0} other than l_{R}, l_{01} contains $q-1(k-3)$-points. Then we have $m\left(l^{\prime}\right)=(k-3) q-1$ by Lemma 4.6(4) again, and l^{\prime} meets l_{Q} in a $(k-4)$-point. Thus $m\left(l_{Q}\right)=(k-4) q+s$ and l_{Q} contains $q(k-4)$-points except the s-point S. Hence

$$
m\left(l_{R}\right)=m\left(\delta_{0}\right)-((k-3) q-1) q=(s+1) q-1 .
$$

If $\gamma_{0}\left(l_{R}\right) \geq s+2$, we have $m\left(l_{R}\right) \geq(s+2) q-1$ by Lemma 3.4, a contradiction. It follows from $(s+1) q-1>s \theta_{1}$ that $\gamma_{0}\left(l_{R}\right)=s+1$ and that l_{R} contains $q-1$ $(s+1)$-points. Hence our assertions follow.
5. Proof of Theorem 4.2. Throughout this section, we assume that $2 k-6 \geq q>(3 k-6) / 2, k \geq 6, s=k-4$ and that $l, P, \Delta, \delta_{0}, l_{01}, l_{02}, \ldots, l_{0 q}, \tilde{\delta_{1}}$, s_{1} are as in the proof of Lemma 4.6. We also use the following notations:

$$
\eta_{1}=(k-3) q+k-4, \eta_{j}=\eta_{j-1} q-1 \text { for } 2 \leq j \leq k-2,
$$

$$
\mu_{1}=(k-3) q-1, \mu_{j}=\mu_{j-1} q-1 \text { for } 2 \leq j \leq k-2
$$

Note that $\gamma_{1}=(k-2) q-1$ and $\gamma_{j}=\gamma_{j-1} q-1$ for $2 \leq j \leq k-2$ by Lemma 3.1.
Lemma 5.1. Assume $2 k-6 \geq q>(3 k-6) / 2, k \geq 6$ and $s=k-4$.
(1) The η_{2}-plane δ_{0} consists of one 0-point R, θ_{1} collinear $(k-4)$-points and $q^{2}-1(k-3)$-points.
(2) The lines in δ_{0} are the $\left((k-4) \theta_{1}\right)$-line $L\left(\subset C_{k-4}\right)$, $\theta_{1} \mu_{1}$-lines through R and $q^{2}-1 \eta_{1}$-lines.

Proof. We first note that each of η_{1}-lines $l, l_{02}, \ldots, l_{0 q}$ through a $(k-3)$ point P in the η_{2}-plane δ_{0} contains exactly $q(k-3)$-points and one $(k-4)$-point. Let $Q_{0}, Q_{2}, \ldots, Q_{q}$ be the $(k-4)$-points in $l, l_{02}, \ldots, l_{0 q}$, respectively and let $P_{1}, P_{2}, \ldots, P_{q-1}$ be the $(k-3)$-points in $l_{0 q}$ other than P.

Suppose that l_{01} contains no t-point for $t \leq k-5$. Then the number of $(k-4)$-points in the μ_{1}-line l_{01} in δ_{0} through P is $(k-3) \theta_{1}-\mu_{1}=k-2$. Since $k \geq 6$, there are at least four $(k-4)$-points in l_{01}. Since P_{i} is a $(k-3)$-point in δ_{0} for $1 \leq i \leq q-1$, it follows from Lemma 4.6 and $m\left(Q_{0}\right)=k-4$ that $\left\langle Q_{0}, P_{i}\right\rangle$ must be an η_{1}-line for $1 \leq i \leq q-1$. That is, $\left\langle Q_{0}, P_{i}\right\rangle$ contains $q(k-3)$-points and one $(k-4)$-point Q_{0} for $1 \leq i \leq q-1$. This implies that the q points $Q_{0}, Q_{2}, \ldots, Q_{q}$ must be on the line $\left\langle Q_{0}, Q_{q}\right\rangle$ and that there are $q(k-3)$-points and at most one $(k-4)$-point in l_{01}, a contradiction. Hence there is a t-point R in l_{01} with $t \leq k-5$.

Next, we show that every line in δ_{0} through R is a μ_{1}-line. Actually, such a line other than $\left\langle Q_{0}, R\right\rangle$ is a μ_{1}-line since it meets l in a $(k-3)$-point. Hence we have

$$
m\left(\left\langle Q_{0}, R\right\rangle\right)=m\left(\delta_{0}\right)-\mu_{1} q+t q=(k-3+t) q-1
$$

Since $\gamma_{0}\left(\delta_{0}\right)=k-3$, it follows from Lemma 3.1 that $t=0$. Hence the line $\left\langle Q_{0}, R\right\rangle$ is also a μ_{1}-line, and l_{01} contains exactly one $(k-4)$-point, say Q_{1}. The points of l_{01} other than R, Q_{1} are $(k-3)$-points. Note that each of other lines in δ_{0} through R also contains only one ($k-4$)-point. Put $L=\delta_{0} \cap C_{k-4}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$. Then L forms a line by Lemma 4.8. Hence our assertions follow.

Since $m(\Delta)=m\left(\delta_{0}\right)+\gamma_{2} q-m(L) q-q^{2}$ and $\gamma_{2}-q^{2}=(k-3) q^{2}-\theta_{1}>$ $(k-4) \theta_{2}$, it holds that $m(\Delta)>m\left(\delta_{0}\right)+\gamma_{2}(q-1)+(k-4) \theta_{2}-m(L) q$. Hence we get the following.

Lemma 5.2. Every plane δ^{\prime} in Δ through L with $m\left(\delta^{\prime}\right)<\gamma_{2}$ satisfies $\gamma_{0}\left(\delta^{\prime}\right)=k-3$.

From now on, we assume that $q=2 k-6$ in this section. Then, $s_{1}=$ $q-s-2=k-4=s$ and $k \geq 7$ from our assumption $q>(3 k-6) / 2$. Hence, $\tilde{\delta}_{1}$ in Lemma 4.6 is an η_{2}-plane meeting δ_{0} in the μ_{1}-line l_{01}. By Lemma 5.1, $\tilde{\delta_{1}}$ contains a $\left((k-4) \theta_{1}\right)$-line $\left(\subset C_{k-4}\right)$, say \tilde{L}. Put $\delta_{L}=\langle L, \tilde{L}\rangle$. Suppose $\gamma_{0}\left(\delta_{L}\right)=k-2$. Considering the lines in δ_{L} through the $(k-4)$-point $L \cap \tilde{L}$, we get

$$
\gamma_{2} \leq 2(k-4) \theta_{1}+\gamma_{1}(q-1)-(k-4) q=\gamma_{2}-q<\gamma_{2}
$$

a contradiction. Hence we have $\gamma_{0}\left(\delta_{L}\right)=k-3$ by Lemma 5.2. Next, we determine $m\left(\delta_{L}\right)$. Suppose there is another plane $\delta^{\prime}\left(\neq \delta_{L}\right)$ in Δ through L with $\gamma_{0}\left(\delta^{\prime}\right)=$ $k-3$. Then, by Lemma 5.1, δ^{\prime} meets $\tilde{\delta_{1}}$ in an η_{1}-line, which contradicts to the fact that there is only one plane in Δ containing no $(k-2)$-point through a fixed η_{1}-line by Lemma 4.6(1). Thus, all planes through L other than δ_{L} and δ_{0} are γ_{2}-planes, and we have

$$
m\left(\delta_{L}\right)=m(\Delta)-\gamma_{2}(q-1)-m\left(\delta_{0}\right)+m(L) q=\mu_{2}
$$

It follows from

$$
\begin{aligned}
\mu_{2} & =\mu_{1} \theta_{1}-(k-3) q \\
& =\mu_{1}(q-1)+2(k-4) \theta_{1}-(k-4) q
\end{aligned}
$$

that every line in δ_{L} through a $(k-3)$-point is a μ_{1}-line and that every line in δ_{L} through the $(k-4)$-point $L \cap \tilde{L}$ other than L, \tilde{L} is a μ_{1}-line. Recall from Lemma 4.6 that for any $(k-3)$-point P on the η_{1}-line l, there is another η_{2}-plane through P meeting the η_{2}-plane δ_{0} in a μ_{1}-line. Hence, for any μ_{1}-line l_{1}^{\prime} in δ_{0} through R, one can find an η_{2}-plane meeting δ_{0} in l_{1}^{\prime}. Since there is only one plane through L (other than δ_{0}) containing no $(k-2)$-point, each $(k-4)$-point of L is on exactly two $\left((k-4) \theta_{1}\right)$-lines in δ_{L}. Thus there are exactly $q+2\left((k-4) \theta_{1}\right)$-lines in δ_{L}, say $L, L_{0}, L_{1}, \ldots, L_{q}$. Put $\mathcal{L}=\left\{L, L_{0}, L_{1}, \ldots, L_{q}\right\}$. Let $L \cap L_{i}=\left\{Q_{i}\right\}$ and let ℓ_{i} be any line in δ_{L} through the $(k-4)$-point Q_{i} other than $L, L_{i}, 0 \leq i \leq q$. Since ℓ_{i} is a μ_{1}-line, ℓ_{i} must contain $q / 2(k-4)$-points and $q / 2(k-3)$-points except for Q_{i}. Since $\left|\ell_{i} \cap L_{j}\right|=1$ for $0 \leq i \leq q, 0 \leq j \leq q$ with $i \neq j$, this implies that no three lines of \mathcal{L} are concurrent. Thus \mathcal{L} forms a $(q+2)$-arc of lines in δ_{L} (see [7] for arcs). Hence $\left|\delta_{L} \cap C_{k-4}\right|=\left|L \cup L_{0} \cup L_{1} \cup \cdots \cup L_{q}\right|=\binom{q+2}{2}$ and any point of δ_{L} out of the $\left((k-4) \theta_{1}\right)$-lines is a $(k-3)$-point. Just like δ_{0} or $\tilde{\delta_{1}}$, the plane $\left\langle R, L_{i}\right\rangle$ is an η_{2}-plane for $1 \leq i \leq q$. Any line l^{*} in δ_{L} containing a $(k-3)$-point is a μ_{1}-line and l^{*} contains exactly $(q+2) / 2(k-4)$-points and $q / 2(k-3)$-points, since \mathcal{L} forms a $(q+2)$-arc of lines. It follows from $m(\Delta)=\gamma_{2} q+m\left(\delta_{L}\right)-\mu_{1} q$ that
every plane through l^{*} other than δ_{L} is a γ_{2}-plane. Hence, $\left\langle R, l^{*}\right\rangle$ is a γ_{2}-plane. Since every line containing R and a $(k-4)$-point of l^{*} is a μ_{1}-line, the other $q / 2$ lines through R and a $(k-3)$-point of l^{*} are γ_{1}-lines containing exactly $q-1$ $(k-2)$-points. Therefore we get the following.

Lemma 5.3. Assume $q=2 k-6, k \geq 7$ and that a γ_{3}-solid Δ contains an η_{1}-line. Then
(1) Δ has one 0 -point R and one μ_{2}-plane δ_{L}.
(2) δ_{L} contains a $(q+2)$-arc of lines \mathcal{L}. Each line of \mathcal{L} consists of $(k-4)$-points. And any point of δ_{L} out of the lines in \mathcal{L} is a $(k-3)$-point.
(3) The plane $\langle R, L\rangle$ is an η_{2}-plane for any $L \in \mathcal{L}$.
(4) The line $\langle P, R\rangle$ contains $q-1(k-2)$-points for any $P \in \delta_{L} \cap C_{k-3}$, and the line $\langle Q, R\rangle$ contains $q-1(k-3)$-points for any $Q \in \delta_{L} \cap C_{k-4}$.
(5) Any plane in Δ other than δ_{L} and $q+2 \eta_{2}$-planes in (3) is a γ_{2}-plane.

Now, let Π be a 4 -flat with $m(\Pi)=\gamma_{4}$ containing the γ_{3}-solid Δ. Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{q}$ be the solids in Π other than Δ containing the η_{2}-plane δ_{0} with $m\left(\Delta_{1}\right) \leq m\left(\Delta_{2}\right) \leq \cdots \leq m\left(\Delta_{q}\right) \leq m(\Delta)=\gamma_{3}$. It can be proved similarly to Lemma 4.4 that $\gamma_{0}\left(\Delta_{1}\right)=k-3$ and $\gamma_{0}\left(\Delta_{q}\right)=k-2$. Let l_{0} be any line in δ_{0} through the 0 -point R. Then l_{0} is a μ_{1}-line, and there is only one η_{2}-plane, say δ_{1}, in Δ through l_{0} other than δ_{0}. Let $\delta_{i 1}, \delta_{i 2}, \ldots, \delta_{i q}$ be the planes in Δ_{i} through l_{0} other than δ_{0} with $m\left(\delta_{i 1}\right) \leq \cdots \leq m\left(\delta_{i q}\right)$ for $1 \leq i \leq q$. When $\gamma_{0}\left(\Delta_{i}\right)=k-2$, we have

$$
\begin{equation*}
m\left(\delta_{i 1}\right)=\eta_{2}, m\left(\delta_{i j}\right)=\gamma_{2} \text { for } 2 \leq j \leq q \tag{5.1}
\end{equation*}
$$

by Lemma 5.3. Put $\Delta_{1 j}=\left\langle\delta_{1}, \delta_{q j}\right\rangle$ for $1 \leq j \leq q$. Then, from (5.1), we have $\gamma_{0}\left(\Delta_{1 j}\right)=k-2$ for $2 \leq j \leq q$. For $2 \leq j \leq q, \Delta_{1 j}$ contains only one η_{2}-plane, say δ_{j}^{\prime}, through l_{0} other than δ_{0} so that $\Delta_{1 j} \cap \Delta_{1}=\delta_{j}^{\prime}$. Hence the $q-1 \gamma_{2}$-planes through l_{0} in $\Delta_{1 j}$ other than $\delta_{0}, \delta_{j}^{\prime}$ are the planes $\Delta_{1 j} \cap \Delta_{2}, \ldots, \Delta_{1 j} \cap \Delta_{q}$. Hence, $m\left(\Delta_{j}\right)=\gamma_{3}$ for $2 \leq j \leq q$, and we get

$$
m\left(\Delta_{1}\right)=m(\Pi)-\sum_{j=2}^{q} m\left(\Delta_{j}\right)-m(\Delta)+m\left(\delta_{0}\right) q=\gamma_{4}-\gamma_{3} q+\eta_{2} q=\eta_{3}
$$

Since $\Delta_{1 j} \cap \Delta_{1}$ is an η_{2}-plane through l_{0} for $2 \leq j \leq q$, we have

$$
m\left(\Delta_{11} \cap \Delta_{1}\right)=m\left(\Delta_{1}\right)-\eta_{2} q+m\left(l_{0}\right) q=\eta_{3}-\eta_{2} q+\mu_{1} q=\mu_{2}
$$

Thus it holds that $m\left(\delta_{11}\right)=\mu_{2}$ and $m\left(\delta_{1 j}\right)=\eta_{2}$ for $2 \leq j \leq q$.
Let Q_{0} be the $(k-4)$-point on l_{0}. Take a $(k-4)$-point $Q_{1}\left(\neq Q_{0}\right)$ in δ_{0} and put $l_{1}=\left\langle Q_{1}, R\right\rangle$. Then, like as for l_{0}, the planes in Δ_{1} through l_{1} are η_{2}-planes except for one plane (which is a μ_{2}-plane). These $q \eta_{2}$-planes meet δ_{11} in a μ_{1}-line through R. Hence the remaining line, say \tilde{l}, through R in δ_{11} satisfies

$$
m(\tilde{l})=m\left(\delta_{11}\right)-\mu_{1} q=\mu_{2}-\mu_{1} q=-1
$$

a contradiction. This completes the proof of Theorem 4.2.
6. Proof of Theorem 4.3. In this section, we assume that $q=2 k-7$, $k \geq 9$ so that the condition $2 q>3 k-6$ holds, and let $l, P, \Delta, \delta_{0}, l_{01}, \tilde{\delta_{1}}, s, s_{1}$ be as in the proof of Lemma 4.6. We also use the notations $\eta_{1}=(k-3) q+k-4$, $\eta_{2}=\eta_{1} q-1, \mu_{1}=(k-3) q-1$ and $\mu_{2}=\mu_{1} q-1$ as in the previous section and

$$
\eta_{1}^{\prime}=(k-3) q+k-5, \eta_{2}^{\prime}=\eta_{1}^{\prime} q-1 .
$$

Since $0 \leq s \leq k-4$ and $0 \leq s_{1} \leq k-4$ with $s+s_{1}=q-2=2 k-9$ by Lemma 4.6(5), we may assume that $s=k-4, s_{1}=k-5$. Hence we have

$$
m\left(\delta_{0}\right)=\eta_{2}, m\left(\tilde{\delta}_{1}\right)=\eta_{2}^{\prime}, \quad m\left(\delta_{0} \cap \tilde{\delta}_{1}\right)=m\left(l_{01}\right)=\mu_{1}
$$

by Lemma 4.6. Since $s=k-4$, the η_{2}-plane δ_{0} consists of one 0 -point R, θ_{1} collinear $(k-4)$-points and $q^{2}-1(k-3)$-points by Lemma 5.1. Note that an η_{1}^{\prime}-line contains either one $(k-5)$-point or two $(k-4)$-points.

Lemma 6.1. $\tilde{\delta_{1}}$ contains no $(k-5)$-point.
Proof. Recall from the proof of Lemma 5.1 that the μ_{1}-line l_{01} contains the 0 -point R, a $(k-3)$-point P and the $(k-4)$-point Q_{1}. Suppose $\tilde{\delta}_{1}$ contains a $(k-5)$-point S. Then, by Lemma 4.8, $l_{Q_{1}}=\left\langle Q_{1}, S\right\rangle$ is a $((k-4) q+k-5)$-line containing $q(k-4)$-points and every line through R in $\tilde{\delta}_{1}$ other than $l_{R}=\langle R, S\rangle$ is a $((k-3) q-1)$-line. If there exists a plane through L in Δ whose multiplicity is less than γ_{2} except for δ_{0} and $\delta_{L}=\left\langle L, l_{Q_{1}}\right\rangle$, it meets $\tilde{\delta_{1}}$ in an η_{1}^{\prime}-line, contradicting to Lemma 4.6(1). Hence we have

$$
m\left(\delta_{L}\right)=m(\Delta)-\gamma_{2}(q-1)-m\left(\delta_{0}\right)+m(L) q=\mu_{2}
$$

and $\gamma_{0}\left(\delta_{L}\right)=k-3$ by Lemma 5.2. It can be proved similarly that every plane through $l_{Q_{1}}$ other than $\tilde{\delta_{1}}, \delta_{L}$ is a γ_{2}-plane.

Take a $(k-4)$-point $Q^{\prime}\left(\neq Q_{1}\right)$ on $l_{Q_{1}}$ and put $P^{\prime}=\left\langle R, Q^{\prime}\right\rangle \cap\langle S, P\rangle$. Since P^{\prime} is a $(k-3)$-point on the η_{1}^{\prime}-line $\langle S, P\rangle$, one can find another η_{2}-plane δ_{0}^{\prime} through P^{\prime} meeting $\tilde{\delta_{1}}$ in the $((k-3) q-1)$-line $\left\langle R, P^{\prime}\right\rangle$. Let L^{\prime} be the $\left((k-4) \theta_{1}\right)$-line in δ_{0}^{\prime}. It turns out similarly to δ_{L} that the plane $\delta_{L^{\prime}}=\left\langle L^{\prime}, l_{Q_{1}}\right\rangle$ is a μ_{2}-plane with $\gamma_{0}\left(\delta_{L^{\prime}}\right)=k-3$. Since $\delta_{L^{\prime}}$ contains $l_{Q_{1}}$, we have $\delta_{L^{\prime}}=\delta_{L}$, and L^{\prime} is on δ_{L}. It follows from the multiplicity of δ_{L} and Lemma 4.6(1) that every line l^{\prime} in δ_{L} with $\gamma_{0}\left(l^{\prime}\right)=k-3$ is a μ_{1}-line. Considering the lines in δ_{L} through $L \cap L^{\prime}$, we have

$$
m\left(\delta_{L}\right)=m(L)+m\left(L^{\prime}\right)+\mu_{1}(q-1)-m\left(L \cap L^{\prime}\right) q-1,
$$

giving the existence of a $\left(\mu_{1}-1\right)$-line in δ_{L}. This is a contradiction, for $\mu_{1}-1>$ $(k-4) \theta_{1}$.

It follows from Lemma 6.1 that every line through P in $\tilde{\delta_{1}}$ other than l_{01} contains exactly two $(k-4)$-points and that the points of $\tilde{\delta}_{1}$ out of l_{01} are the $2 q$ $(k-4)$-points and $q^{2}-2 q(k-3)$-points. Let $m_{1}, m_{2}, \ldots, m_{q}$ be the lines through R in $\tilde{\delta_{1}}$ other than l_{01} with $m\left(m_{1}\right) \leq m\left(m_{2}\right) \leq \cdots \leq m\left(m_{q}\right)$. If $\gamma_{0}\left(m_{1}\right)=k-3$, we have

$$
\eta_{2}^{\prime}=m\left(\tilde{\delta_{1}}\right)=m\left(l_{01}\right)+\sum_{i=1}^{q} m\left(m_{i}\right) \geq \mu_{1} \theta_{1}=(k-3) q^{2}+(k-4) q-1>\eta_{2}^{\prime}
$$

a contradiction. Hence $\gamma_{0}\left(m_{1}\right)=k-4$ and m_{1} contains $q(k-4)$-points. If m_{q} contains no $(k-4)$-point, then we have $m\left(m_{q}\right)=(k-3) q$, which is contradictory to Lemma 4.6(4). Hence each of m_{2}, \ldots, m_{q} contains a ($k-4$)-point. Since the number of $(k-4)$-points in $\tilde{\delta}_{1}$ out of $l_{01} \cup m_{1}$ is equal to $(k-3)\left(q^{2}+q\right)-\eta_{2}^{\prime}-(q+1)=$ q, m_{2} contains two $(k-4)$-points. Hence $m\left(m_{2}\right)=\mu_{1}-1$, a contradiction again. This completes the proof of Theorem 4.3.

REFERENCES

[1] Dodunekov S. M. Optimal linear codes. Doctor of Mathematical Sciences Dissertation, Institute of Mathematics, Sofia, 1985.
[2] Dodunekov S. M. On the achievement of Solomon-Stiffler bound. Comptes Rendus del I'Academie Bulgare des Sciences, 39 (1986), 39-41.
[3] Griesmer J. H. A bound for error-correcting codes, IBM J. Res. Develop., 4 (1960), 532-542.
[4] Hamada N. A characterization of some $[n, k, d ; q]$-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math., 116 (1993), 229-268.
[5] Hamada N. A survey of recent work on characterization of minihypers in $\mathrm{PG}(t, q)$ and nonbinary linear codes meeting the Griesmer bound, J. Comb. Inf. Syst. Sci., 18 (1993), 161-191.
[6] Hill R. Optimal linear codes. In: Cryptography and Coding II (Ed. C. Mitchell), Oxford Univ. Press, Oxford, 1992, 75-104.
[7] Hirschfeld J. W. P. Projective Geometries over Finite Fields. Clarendon Press, Oxford, 2nd ed., 1998.
[8] Klein A. On codes meeting the Griesmer bound. Discrete Math., 274 (2004), 289-297.
[9] Maruta T. On the nonexistence of linear codes of dimension four attaining the Griesmer bound. In: Proc. of the International Workshop on Optimal Codes and Related Topics, Sozopol, Bulgaria, 1995, 117-120.
[10] Maruta T. On the achievement of the Griesmer bound. Des. Codes Cryptogr., 12 (1997), 83-87.
[11] Solomon G., J. J. Stiffler. Algebraically punctured cyclic codes. Inform. Control, 8 (1965), 170-179.

Noboru Hamada
Emeritus Professor at
Osaka Women's University
e-mail: n-hamada@koala.odn.ne.jp
Tatsuya Maruta
Department of Mathematics
and Information Sciences
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
Received December 2, 2009
e-mail: maruta@mi.s.osakafu-u.ac.jp
Final Accepted February 5, 2010

