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A NEW APPROACH TO FUZZY ARITHMETIC*

Antony T. Popov

Abstract. This work shows an application of a generalized approach for
constructing dilation-erosion adjunctions on fuzzy sets. More precisely, op-
erations on fuzzy quantities and fuzzy numbers are considered. By the gener-
alized approach an analogy with the well known interval computations could
be drawn and thus we can define outer and inner operations on fuzzy ob-
jects. These operations are found to be useful in the control of bioprocesses,
ecology and other domains where data uncertainties exist.

1. Introduction. There are several approaches for fuzzifying mathe-
matical morphology, see for instance [1, 4]. In our work we step on the framework
of Deng and Heijmans (see for details [3]) based on adjoint fuzzy logical oper-
ators – conjunctors and implicators. We generalize this definition presenting a
universal framework. Thus we can define naturally fuzzy geodesic morphologi-
cal operations [10]. Also, this model is applicable to fuzzy arithmetic, built by
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analogy with the interval arithmetic [9] which makes possible the definition of
inner addition and multiplication of fuzzy numbers. Inner and outer operations
on other kind of fuzzy quantities like fuzzy vectors (dot and cross product), fuzzy
complex numbers etc. could be considered as well.

In this work we use the same notions and notations about complete lat-
tices and the morphological operations on them as in [5]. For instance, let L be
a complete lattice with a supremum generating family l, and let T be an Abelian
group of automorphisms of L acting transitively over l. The elements of T are
denoted by τx, namely for any x ∈ l, τx(o) = x, where o is a fixed element
of l interpreted as an origin. Then also, we can consider a symmetry in L as
Ǎ =

∨

a∈l(A) τ
−1
a (o). Evidently ǎ = τ−1

a (o) = τǎ(o) for any a ∈ l. If A is an
arbitrary element of the lattice L let us denote by l(A) = {a ∈ l | a ≤ A} the
supremum-generating set of A. Following [5] we define the operations

(1) δA =
∨

a∈l(A)

τa

and

(2) εA =
∧

a∈l(A)

τ−1
a =

∧

a∈l(A)

τǎ

which form an adjunction. δA and εA are T -invariant operators called dilation

and erosion by the structuring element A. Recall that a pair of operators (ε, δ)
between two lattices, ε : M 7→ L and δ : L 7→ M, is called an adjunction if for
every two elements X ∈ L and Y ∈ M it follows that

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ).

In [5] it is proved that if (ε, δ) is an adjunction then ε is erosion and δ is dilation.
On the other hand, every dilation δ : L 7→ M has a unique adjoint erosion
ε : M 7→ L, and vice-versa.

In the case of standard morphological operations when the lattice L is
made of the subsets of the Euclidean space Rd we shall use the standard notations
for Minkowski subtraction and addition for the adjoint pair (εA, δA) [5, 11]:

δA(X) = X ⊕A = {x+ a|x ∈ X, a ∈ A, }

εA(X) = X ⊖A = {y| A+ y ⊆ X}.

2. Interval operations and mathematical morphology. Fol-
lowing [7] we introduce the following notations: Let L = I(R) be the family of
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all closed finite intervals of the real line. For completeness we may assume that
the empty set ∅ is an element of I(R). The non-empty finite intervals from I(R)
are denoted by Roman capitals, namely A = [a−, a+], i.e. a− is the left endpoint
of the interval A and a+ is its right endpoint such that a− ≤ a+. By ω(A) we
denote the length of the interval A, ω(A) = a+ − a−.

Consider the outer and inner interval additive operations as defined by
S. Markov in [7]:

A+B = [a− + b−, a+ + b+], A+− B = [a−s + bs, as + b−s],

A−B = [a− − b+, a+ − b−], A−− B = [a−s − b−s, as − bs],

where

s =

{

+, ω(A) ≥ ω(B),
−, ω(A) < ω(B).

Here as with s ∈ {+,−} denotes a certain endpoint of the interval A: the
left one if s = − and the right one if s = +. As proved in [9] the outer and inner
interval operations in I(R) are related to dilations and erosions as follows:

(3) A+B = A⊕B = δA(B) = δB(A),

(4) A+− B = A⊖ (−B) ∪B ⊖ (−A) = ε−B(A) ∪ ε−A(B).

It is easy to demonstrate that for the outer and inner subtraction we have
the following relations [9]:

A−B = A+ (−B) = A⊕ (−B),(5)

A−− B = A+− (−B) = A⊖B ∪−(B ⊖A).(6)

In many applications such as locating the roots of a polynomial with
interval coefficients, it is desirable to also spread the multiplicative operations
over the set of real intervals. Let L be the set of all closed finite and infinite real
intervals different from the singleton [0, 0]. The order relation is the set inclusion,
while the supremum is defined as the closed convex hull of the union, and the
infimum is defined as intersection. There is an Abelian group of automorphisms

T = {τh | h ∈ R \ {0}, τh({x}) = {xh}},

which acts transitively on l and τh(A) = [min(a−h, a+h),max(a−h, a+h)]. Then
we can define dilation and erosion operations by the structuring element A using
expressions (1) and (2):

δA(B) =
∨

a∈l(A)

τa(B), εA(B) =
∧

a∈l(A)

τ1/a(B).
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Having in mind outer and inner multiplications in I(R) as defined in [7]
by Markov, we claim that [9]:

• For the dilation defined above we have δB(A) = δA(B) = A×B.

• Denoting
1

B
=

[

1

b+
,

1

b−

]

, we have A×−B = ε 1

A

(B)∪ε 1

B

(A) for any intervals

A and B not containing zero (denoting by Z the collection of intervals
containing 0) under the inner multiplication operation “×−” defined in [7],
which can be represented as:

(7) A×−B =



























[aσ(B)ǫb−σ(A)ǫ, a−σ(B)ǫbσ(A)ǫ], ǫ = ψ(A,B), A,B ∈ L \ Z,

[a−σ(A)b−σ(A), a−σ(A)bσ(A)], A ∈ L \ Z, B ∈ Z

[a−σ(B)b−σ(B), aσ(B)b−σ(B)], A ∈ Z, B ∈ L \ Z,

[max(a−b+, a+b−),min(a−b−, a+b+)], A,B ∈ Z.

Here ψ(A,B) = + if χ(A) ≥ χ(B) and ψ(A,B) = − otherwise, where
χ(A) = a−/a+ if a− + a+ ≥ 0 and χ(A) = a+/a− if a− + a+ < 0.

If A doesn’t contain zero

σ(A) =

{

+, if 0 < a−;
−, if a+ < 0.

It is proved that A+− B ⊆ A+B and A×− B ⊆ A×B [7, 9].

3. Fuzzy sets and fuzzy morphological operations. Consider
the set E called the universal set. A fuzzy subset A of the universal set E can be
considered as a function µA : E 7→ [0, 1], called the membership function of A.
µA(x) is called the degree of membership of the point x to the set A. The ordinary
subsets of E, sometimes called ‘crisp sets’, can be considered as a particular case
of a fuzzy set with membership function taking only the values 0 and 1.

Let 0 < α ≤ 1. An α-cut of the set X (denoted by [X]α) is the set of
points x, for which µX(x) ≥ α.

The usual set-theoretical operations can be defined naturally on fuzzy
sets: Union and intersection of a collection of fuzzy sets is defined as supre-
mum, resp. infimum of their membership functions. Also, we say that A ⊆ B if
µA(x) ≤ µB(x) for all x ∈ E. The complement of A is the set Ac with member-
ship function µAc(x) = 1 − µA(x) for all x ∈ E. If the universal set E is linear,
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like the d-dimensional Euclidean vector space Rd or the space of integer vectors
with length d, then any geometrical transformation arising from a point mapping
can be generalised from sets to fuzzy sets by taking the formula of this trans-
formation for graphs of numerical functions, i.e. for any transformation ψ like
scaling, translation, rotation etc. we have that ψ(µA(x)) = µA(ψ−1(x)). There-
fore we can transform fuzzy sets by transforming their α-cuts like ordinary sets.
Further on, for simplicity, we shall write simply A(x) instead of µA(x).

Say that the function c(x, y) : [0, 1] × [0, 1] 7→ [0, 1] is conjunctor if c is
increasing in both arguments, c(0, 1) = c(1, 0) = 0, and c(1, 1) = 1. We say that
a conjunctor is a t-norm if it is commutative, i.e. c(x, y) = c(y, x), associative
c(c(x, y), z) = c(x, c(y, z)) and c(x, 1) = x for every number x ∈ [0, 1], see for
instance [1, 8].

Say that the function i(x, y) : [0, 1] × [0, 1] 7→ [0, 1] is an implicator if i is
increasing in y and decreasing in x, i(0, 0) = i(1, 1) = 1, and i(1, 0) = 0.

In [3] a number of conjunctor–implicator pairs are proposed. Here we give
examples of two of them:

c(b, y) = min(b, y),

i(b, x) =

{

x x < b,
1 x ≥ b

.

c(b, y) = max(0, b+ y − 1),

i(b, x) = min(1, x− b+ 1).

The first pair is known as operations of Gödel-Brouwer, while the second
pair is suggested by Lukasiewicz.

Also, a widely used conjunctor is c(b, y) = by, see [8]. Its adjoint implica-
tor is

i(b, x) =

{

min
(

1, x
b

)

b 6= 0,
1 b = 0

.

3.1. General definition of fuzzy morphology. There are different
ways to define fuzzy morphological operations. An immediate paradigm for defin-
ing fuzzy morphological operators is to lift each binary operator to a grey-scale
operator by fuzzifying its primitive composing operations. However in this way
we rarely obtain erosion–dilation adjunctions, which leads to non-idempotent
openings and closings. Therefore we use the idea from [3], saying that having
an adjoint conjunctor–implicator pair, we can define a fuzzy erosion–dilation ad-
junction.
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So let us consider the universal set E and a class of fuzzy sets {Ay, | y ∈
E}. Then for any fuzzy subset X of the universal set E, let us define fuzzy
dilation and erosion as follows:

δ(X)(x) =
∨

y∈E

c(Ax(y),X(y)),(8)

ε(X)(x) =
∧

y∈E

i(Ay(x),X(y)).(9)

Theorem. (ε(X), δ(X)) is adjunction.

P r o o f. To prove that this pair of operations is an adjunction, let us
consider the case δ(X) ⊆ Z in fuzzy sense, which means that for every x, y ∈ E
c(Ax(y),X(y)) ≤ Z(x). Then X(y) ≤ i(Ax(y), Z(x)) for all x, y ∈ E. Since
ε(Z)(y) =

∧

x∈E i(Ax(y), Z(x)), then we consider that X ⊆ ε(Z), which ends the
proof. �

3.2. How to define T -invariant fuzzy morphological operations?

Let us consider an universal set E. Also let there exist an abelian group of autom-
prphisms T in P(E) such that T acts transitively on the supremum- generating
family l = {{e}|e ∈ E} as defined previously. In this case, for shortness we shall
say that T acts transitively on E. Then having an arbitrary fuzzy subset B from
E, we can define a family of fuzzy sets {AB

y | y ∈ E} such as AB
y (x) = B(τ−1

y (x)).
Recall that for any τ ∈ T there exists a unique y ∈ E such that τ = τy, and for
any fuzzy subset M we have that (τ(M))(x) = M(τ−1(x)). Then having in mind
equations (8) we can define a fuzzy adjunction by the structuring element B by:

δB(X)(x) =
∨

y∈E

c(AB
x (y),X(y)),(10)

εB(X)(x) =
∧

y∈E

i(AB
y (x),X(y)).(11)

We show that the upper operations are T -invariant. Following [5], it is
sufficient to demonstrate that every such erosion commutes with an arbitrary
automorphism τb for any b ∈ E. Evidently

εB(τb(X))(x) =
∧

y∈E

i(B(τ−1
y (x)),X(τ−1

b (y))).

suppose that τ−1
b (y) = z, which means that τy = τz τb. Then

εB(τb(X))(x) =
∧

z∈E

i(B(τ−1
z (τ−1

b (x)),X(z)) = εB(X)(τ−1
b (x)),
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which simply means that εB(τb(X)) = τb(εB(X)), which ends the proof of the
proposition.

Now consider that in E we have a continuous operation ∗ : E × E 7→ E.
Then let us define τb(x) = b ∗ x. In the case of the Gödel-Brouwer conjunctor–
implicator pair the respective dilation has the form

(δB(X))(x) =
∨

y∗z=x

min(X(y), B(z)).

If the operation ∗ is commutative, then δB(X) = δX(B).

4. Fuzzy quantities, fuzzy numbers and operations on them.

A fuzzy set from the universal set E = Rd is said to be a fuzzy quantity if its
support is bounded. A fuzzy quantity is said to be convex if its α-cuts are convex,
which is the same as A(y) ≥ min(A(x), A(z)) for all y from the closed segment
between x and z [8]. A convex fuzzy quantity P is a fuzzy point, or a fuzzy vector
in E when its membership function is upper semicontinuous and there exists a
unique point z ∈ E such that P (z) = 1. Than we say that P is a fuzzy point
around z. In the case d = 1 we talk about fuzzy numbers whose α-cuts are closed
intervals.

Let A and B be two fuzzy numbers with α-cuts Aα = [a(α)−, a(α)+]
and Bα = [b(α)−, b(α)+] for any α between zero and one. Then we can define a
strong ordering relation A ≤s B such as a(α)− ≤ b(α)− and a(α)+ ≤ b(α)+ for
every 0 < α ≤ 1, and a weak ordering A ≤w B such as a(α)+ ≤ b(α)+ for every
0 < α ≤ 1.

If given two fuzzy points P ′ and P ′′, one can define a distance between
them as follows [2]: Given a metric D in Rd, let us consider for every α ∈ (0, 1]
the set

Ω(α) = {D(u, v) |u ∈ P ′

α and v ∈ P ′′

α}.

Then let us define a fuzzy set by its cuts: Df (P ′, P ′′)α = Ω(α). As it is proved
in [2], Df is a nonnegative fuzzy number which nearly satisfies the condition
of a distance. It is clear that Df (P ′, P ′′) = Df (P ′′, P ′). However the triangle
inequality is satisfied as a weak ordering, and Df (P ′, P ′′) is a fuzzy number
around zero if and only if P ′ and P ′′ are fuzzy points around one and the same
crisp point. So, it is clear that we need to exploit arithmetic operations between
fuzzy numbers, and fuzzy quantities in general. For a detailed study of arithmetic
operations on fuzzy numbers one can refer to [6]. In general, fuzzy arithmetic is
strongly connected to decision making.



120 Antony T. Popov

Following the extension principle (see [8]) for the definition of any op-
eration X ∗ B between fuzzy sets if ∗ is a continuous binary operation in the
universal set E, it has been demonstrated that X ∗B =

∨

y∗z=x min(X(y), B(z)),
and therefore

(12) [X ∗B]α = [X]α ∗ [B]α = {z ∈ E| z = a ∗ b, a ∈ [X]α, b ∈ [B]α}.

It is evident that this is the expression for the dilation in the case of Gödel-
Brouwer logical operations.

Now consider the group of automorhisms τb(x) = b∗x in R and the fuzzy
operations on F (R) defined by Gödel-Brouwer’s conjunctor–implicator pair:

(δB(A))(x) =
∨

y∗z=x

min(A(y), B(z)),

(εB(A))(x) = inf
y∈R

(

h
(

A(y) −B(τ−1
x (y)

)

(1 −A(y)) +A(y)
)

,

where h(x) = 1 when x ≥ 0 and is zero otherwise. These are the operations
defined by (10) in this particular case.

So it is clear that if τb(x) = x+ b and ∗ = + then

(δB(A)) = A+B.

Then by analogy to the interval operations we can use (3) as definition for inner

addition operation by A+− B = ε−B(A) ∪ ε−A(B). If τb(x) = xb for b 6= 0 and
y ∗ z = yz then (δB(A)) = A× B. In this case an inner multiplication exists as
well:

A×− B = ε 1

B

(A) ∪ ε 1

A

(B).

Note that in this definition we can work with fuzzy numbers which do not contain
0 in their support, but this is the main practically useful case in the control
systems when we measure imprecisely some physical quantities. It is not difficult
to show directly that A+−B ⊆ A+B and A×−B ⊆ A×B in a fuzzy sense[10].

5. Conclusions. We have shown that fuzzy inner and outer arith-
metical operations can be represented as morphological ones, and choosing an
arbitrary t-norm we can obtain a large variety of different commutative outer
and inner additions and multiplications (see also [10].) Also, we can define outer
and inner versions of operations on fuzzy vectors like vector (cross) product and
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scalar (dot) product for solving geometric problems with uncertainties, for in-
stance finding whether a polygon is nearly convex. An immediate result is also,
that since dilation is continuous but erosion is not (it is upper semicontinuous)
[5] it is seen that we can prove continuity immediately only for the outer oper-
ations both in interval and fuzzy cases, not for the inner ones. Also, for inner
operations expression (12) is not valid in general. However inner operations are
useful for obtaining plausible and more exact numerical solutions, therefore they
are worth studying in detail [7]. Our further plans include a more detailed study
of the algebraic and analitical properties of fuzzy operations such as conditions
for validity of the distributive law and existence of opposite element. Also, a
fuzzy control scheme based on fuzzy arithmetic for biological water cleaning shall
be designed.
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