ON SOME MODIFICATIONS OF THE NEKRASSOV METHOD FOR NUMERICAL SOLUTION OF LINEAR SYSTEMS OF EQUATIONS*

Anton Iliev, Nikolay Kyurkchiev, Milko Petkov

Abstract

A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.

1. Introduction. Let us consider the linear system $A x-b=0$ or
```
\(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i i} x_{i}+\cdots+a_{i n} x_{n}-b_{i}=0=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\),
\(i=1,2, \ldots, n\).
```

Suppose that the matrix A is diagonally dominant and $a_{i i}>0, i=$ $1, \ldots, n$.

[^0]One of the more effective iteration methods for solving the system (1) is the Jacobi procedure (his method is also known as the method of simultaneous displacements):

$$
\begin{align*}
& x_{i}^{k+1}=-\sum_{j \neq i}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k}+\frac{b_{i}}{a_{i i}} \\
&=x_{i}^{k}-\frac{1}{a_{i i}} f_{i}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right) \tag{2}\\
&=x_{i}^{k}-\frac{f_{i}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)}{\partial f_{i} / \partial x_{i}^{k}}, \\
& i=1,2, \ldots, n ; \quad k=0,1,2, \ldots,
\end{align*}
$$

i.e., (2) is the Newton scheme applied for the equation $f_{i}=0$.

A more powerful class of methods can be described by the recursion (Richardson iteration):

$$
\begin{equation*}
x^{k+1}=x^{k}-\alpha_{k}\left(A x^{k}-b\right), \tag{3}
\end{equation*}
$$

where $\alpha_{i}, i=1, \ldots, k$ are damping factors.
For instance, the Richardson iteration (3) with the application of Chebyshev acceleration factors is defined by

$$
\begin{gathered}
\alpha_{i}=2\left(a+b-(b-a) \cos \frac{(2 i+1) \pi}{2(k+1)}\right)^{-1} \\
i=0,1, \ldots, k
\end{gathered}
$$

$a \leq \lambda_{i} \leq b, i=1, \ldots, n\left(\lambda_{i}\right.$ are the eigenvalues of matrix $\left.A\right)$.
In [8] we give the following modification of the Richardson method:

$$
\begin{gather*}
x_{i}^{k+1}=x_{i}^{k}-\frac{1}{M_{i}^{k}}\left(\sum_{j=1}^{n} a_{i j} x_{j}^{k}-b_{i}\right) \tag{4}\\
i=1,2, \ldots, n ; \quad k=0,1,2, \ldots
\end{gather*}
$$

where

$$
M_{i}^{k}=\prod_{j \neq i}^{n}\left|x_{i}^{k}-x_{j}^{k}\right|, \quad i=1,2, \ldots, n ; \quad k=0,1, \ldots
$$

For other contributions see Saad and van der Vorst [14], Freund, Golub and Nachtigal [6], Ishihara, Muroya and Yamamoto [7], Maleev [10], Stork [17], Zawilski [18].

One geometric interpretation of method (4) is also given in [8].
In a similar manner other iterations can be obtained which are modifications of algorithms which have been explored in details in books by Björck [2], Fadeev, D. and Fadeev, V. [4] and Barrett, R., M. Berry and others [1].

As an example a scheme of the Gauss-Seidel or the Nekrassov method (see Nekrassov [13], Mehmke [11] and Nekrassov and Mehmke [12]) look thus:

$$
\begin{gather*}
x_{i}^{k+1}=-\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}-\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k}+\frac{b_{i}}{a_{i i}}, \tag{5}\\
i=1,2, \ldots, n ; k=0,1,2, \ldots
\end{gather*}
$$

2. Main results. Let us explore the following modification of the Nekrassov method (assume that $x_{i} \neq x_{j}$ and $x_{i}^{0} \neq x_{j}^{0}$ for $i \neq j$):

$$
\begin{gather*}
x_{i}^{k+1}=x_{i}^{k}-\frac{1}{N_{i}^{k}}\left(\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}+a_{i i} x_{i}^{k}+\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}-b_{i}\right), \tag{6}\\
i=1,2, \ldots, n ; \quad k=0,1,2, \ldots,
\end{gather*}
$$

where

$$
N_{i}^{k}=\prod_{j=1}^{i-1}\left|x_{i}^{k}-x_{j}^{k+1}\right| \prod_{j=i+1}^{n}\left|x_{i}^{k}-x_{j}^{k}\right|, \quad i=1,2, \ldots, n ; \quad k=0,1, \ldots
$$

Let

$$
\delta_{i}^{k}=\frac{a_{i i}}{N_{i}^{k}}, i=1,2, \ldots, n ; k=0,1,2, \ldots
$$

The iteration procedure (6) (successive overrelaxation procedure) can be rewritten as

$$
\begin{align*}
x_{i}^{k+1} & =x_{i}^{k}-\frac{a_{i i}}{N_{i}^{k}}\left(\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}+x_{i}^{k}+\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k}-\frac{b_{i}}{a_{i i}}\right) \\
& =x_{i}^{k}\left(1-\delta_{i}^{k}\right)-\delta_{i}^{k}\left(\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}+\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k}-\frac{b_{i}}{a_{i i}}\right) . \tag{7}
\end{align*}
$$

1. When $\delta_{i}^{k}=1$ from (7) we obtain the Nekrassov method.
2. One geometric interpretation of method (7) is the following:

Let

$$
F_{k, i}=\left(x-x_{1}^{k+1}\right) \ldots\left(x-x_{i-1}^{k+1}\right)\left(x-x_{i+1}^{k}\right) \ldots\left(x-x_{n}^{k}\right)
$$

Then

$$
F_{k, i}^{\prime}\left(x_{i}^{k}\right)=\prod_{j=1}^{i-1}\left(x_{i}^{k}-x_{j}^{k+1}\right) \prod_{j=i+1}^{n}\left(x_{i}^{k}-x_{j}^{k}\right)
$$

and the previous expression can be used for approximation of $a_{i i}$ in the Nekrassov procedure.

We give a convergence theorem for the relaxation method (7).
Theorem 1. Let

$$
\begin{aligned}
& \beta_{i}=\sum_{j=1}^{i-1} \frac{\left|a_{i j}\right|}{a_{i i}}, \gamma_{i}=\sum_{j=i+1}^{n} \frac{\left|a_{i j}\right|}{a_{i i}}, \delta_{i}^{k} \in(1,2), \\
& \beta_{i}+\gamma_{i} \in\left(0, \frac{1-\left|1-\delta_{i}^{k}\right|}{\delta_{i}^{k}}\right) \subset(0,1), \quad i=1,2, \ldots, n ; k=0,1,2, \ldots
\end{aligned}
$$

Then the iteration procedure (7) converges to the unique solution $x_{i}, i=$ $1,2, \ldots, n$ of the system (1).

Proof. For the error $x_{i}^{k+1}-x_{i}$, we have

$$
\begin{align*}
x_{i}^{k+1}-x_{i}= & x_{i}^{k}\left(1-\delta_{i}^{k}\right)-x_{i} \\
& -\delta_{i}^{k}\left(\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}+\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k}-\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}-\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}-x_{i}\right) \tag{9}\\
= & \left(x_{i}-x_{i}^{k}\right)\left(\delta_{i}^{k}-1\right)+\delta_{i}^{k} \sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}}\left(x_{j}-x_{j}^{k+1}\right)+\delta_{i}^{k} \sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}}\left(x_{j}-x_{j}^{k}\right)
\end{align*}
$$

and
(10)

$$
\begin{aligned}
\left|x_{i}^{k+1}-x_{i}\right| & \leq\left|\delta_{i}^{k}-1\right|\left|x_{i}^{k}-x_{i}\right|+\delta_{i}^{k} \sum_{j=1}^{i-1} \frac{\left|a_{i j}\right|}{a_{i i}}\left|x_{j}-x_{j}^{k+1}\right|+\delta_{i}^{k} \sum_{j=i+1}^{n} \frac{\left|a_{i j}\right|}{a_{i i}}\left|x_{j}-x_{j}^{k}\right| \\
& \leq\left|\delta_{i}^{k}-1\right|| | x-x^{k}\left\|_{1}+\delta_{i}^{k} \beta_{i}| | x-x^{k+1}\right\|_{1}+\delta_{i}^{k} \gamma_{i} \mid\left\|x-x^{k}\right\|_{1} \\
& =\left(\left|\delta_{i}^{k}-1\right|+\gamma_{i} \delta_{i}^{k}\right)\left\|x-x^{k}\right\|_{1}+\delta_{i}^{k} \beta_{i}\left\|x-x^{k+1}\right\|_{1} .
\end{aligned}
$$

Let

$$
\max _{i}\left|x_{i}^{k+1}-x_{i}\right|=\left|x_{i_{0}}^{k+1}-x_{i_{0}}\right| .
$$

Then from (10) we get

$$
\begin{aligned}
\left\|x-x^{k+1}\right\|_{1} & =\max _{i}\left|x_{i}-x_{i}^{k+1}\right|=\left|x_{i_{0}}^{k+1}-x_{i_{0}}\right| \\
& \leq\left(\left|\delta_{i_{0}}^{k}-1\right|+\gamma_{i_{0}} \delta_{i_{0}}^{k}\right)\left\|x-x^{k}\right\|_{1}+\delta_{i_{0}}^{k} \beta_{i_{0}}| | x-x^{k+1} \|_{1}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|x-x^{k+1}\right\|_{1} \leq \frac{\left|\delta_{i_{0}}^{k}-1\right|+\gamma_{i_{0}} \delta_{i_{0}}^{k}}{1-\delta_{i_{0}}^{k} \beta_{i_{0}}}\left\|x-x^{k}\right\|_{1}=K_{i_{0}}\left\|x-x^{k}\right\|_{1} . \tag{11}
\end{equation*}
$$

Evidently from (8) we have

$$
K_{i_{0}}=\frac{\left|\delta_{i_{0}}^{k}-1\right|+\gamma_{i_{0}} \delta_{i_{0}}^{k}}{1-\delta_{i_{0}}^{k} \beta_{i_{0}}} \leq \frac{\left|\delta_{i_{0}}^{k}-1\right|+\delta_{i_{0}}^{k}\left(\frac{1-\left|\delta_{i_{0}}^{k}-1\right|}{\delta_{i_{0}}^{k}}-\beta_{i_{0}}\right)}{1-\delta_{i_{0}}^{k} \beta_{i_{0}}}=1 .
$$

This proves Theorem 1.
Let

$$
\begin{gathered}
L=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
a_{21} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & 0
\end{array}\right), R=\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right), X^{k}=\left(\begin{array}{c}
x_{1}^{k} \\
x_{2}^{k} \\
\vdots \\
x_{n}^{k}
\end{array}\right), \\
P=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right), \delta^{k}=\left(\begin{array}{cccc}
\delta_{11}^{k} & 0 & \cdots & 0 \\
0 & \delta_{22}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \delta_{n n}^{k}
\end{array}\right)
\end{gathered}
$$

Theorem 2. The iteration (6) (or (7)) is convergent when all roots (eigenvalues) of the equation

$$
\begin{equation*}
\left|A \delta^{k}-\left(P+\delta^{k} L\right)+t\left(P+\delta^{k} L\right)\right|=0 \tag{12}
\end{equation*}
$$

are $\left|t_{i}\right|<1, i=1, \ldots, n$.
Proof. In matrix terms the successive overrelaxation procedure (7) can be written as follows:

$$
\begin{equation*}
X^{k+1}=\left(P+\delta^{k} L\right)^{-1}\left(\left(I-\delta^{k}\right) P-\delta^{k} R\right) X^{k}+\left(P+\delta^{k} L\right)^{-1} \delta^{k} b, \tag{13}
\end{equation*}
$$

i.e.

$$
X^{k+1}=B X^{k}+c .
$$

Evidently, $|B-t I|=0$ can be represented as

$$
|B-t I|=\left|\left(P+\delta^{k} L\right)^{-1}\right|\left|A \delta^{k}-\left(P+\delta^{k} L\right)+t\left(P+\delta^{k} L\right)\right|=0
$$

and the statement of Theorem 2 follows from the standard iteration theory.
3. In a number of cases the success of the procedures of type (5) depends on the proper ordering of the equations (and $x_{i}, i=1, \ldots, n$) in system (1).

In spite of this fact the following variant of the Nekrassov method is known [4]:

$$
\begin{equation*}
x_{i}^{k+1}=-\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k}-\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}+\frac{b_{i}}{a_{i i}} . \tag{14}
\end{equation*}
$$

Further, we are interested in the successive overrelaxation procedure (14) based on the method (7):

$$
\begin{equation*}
x_{i}^{k+1}=x_{i}^{k}\left(1-\delta_{i}^{k}\right)-\delta_{i}^{k}\left(\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k}+\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}-\frac{b_{i}}{a_{i i}}\right) . \tag{15}
\end{equation*}
$$

In matrix terms the successive overrelaxation procedure (15) can be written as follows:

$$
\begin{equation*}
X^{k+1}=\left(P+\delta^{k} R\right)^{-1}\left(\left(I-\delta^{k}\right) P-\delta^{k} L\right) X^{k}+\left(P+\delta^{k} R\right)^{-1} \delta^{k} b . \tag{16}
\end{equation*}
$$

The pseudocode for the modification of Nekrassov method (6) is given in Figure 1.

Choose an initial guess x^{0} for the solution x.
for $k=1,2, \ldots$,

$$
\begin{aligned}
& \text { for } \quad i=1,2, \ldots, n \\
& x_{i}=a_{i i} x_{i}^{k-1} \\
& N_{i}^{k-1}=1 \\
& \text { for } j=1,2, \ldots, i-1 \\
& N_{i}^{k-1}=N_{i}^{k-1}\left|x_{i}^{k-1}-x_{j}^{k}\right| \\
& x_{i}=x_{i}+a_{i j} x_{j}^{k} \\
& \text { end } \\
& \text { for } j=i+1, \ldots, n \\
& N_{i}^{k-1}=N_{i}^{k-1}\left|x_{i}^{k-1}-x_{j}^{k-1}\right| \\
& x_{i}=x_{i}+a_{i j} x_{j}^{k-1} \\
& \text { end } \\
& x_{i}=\left(x_{i}-b_{i}\right) / N_{i}^{k-1}
\end{aligned}
$$

Fig. 1. The modification of the Nekrassov method (6)
3. Numerical example. As an example we will consider the system:

$$
\begin{array}{r}
x_{1}+3 x_{2}-2 x_{3}=5 \\
3 x_{1}+5 x_{2}+6 x_{3}=7 \\
2 x_{1}+4 x_{2}+3 x_{3}=8
\end{array}
$$

The exact solution of the system is $x(-15,8,2)$.
For an initial approximation we choose $x^{0}(-15.02,8.02,2.02)$.
We give the results of numerical experiments (8 iterations) for each of methods (5) and (6).

In Table 1 the following notations are used:

- in the first column the serial number of the iteration is given;
- using the modified scheme (6) in the second column the obtained results are given (array $x[]$);
- using the classical Nekrassov scheme (5) in the third column the obtained results are given (array $y[]$).

Table 1

1	$X[1]=-15.02000000000000$	$Y[1]=-15.02000000000000$
	$X[2]=8.01884259259259$	$Y[2]=7.98800000000000$
	$X[3]=2.01906701123844$	$Y[3]=2.02933333333333$
2	$X[1]=-15.01999590828629$	$Y[1]=-14.90533333333333$
	$X[2]=8.01776735852021$	$Y[2]=7.90800000000000$
	$X[3]=2.01820333133504$	$Y[3]=2.059555555555556$
3	$X[1]=-15.01998800937772$	$Y[1]=-14.60488888888888$
	$X[2]=8.01676825375272$	$Y[2]=7.69146666666666$
	$X[3]=2.01740388676229$	$Y[3]=2.14797037037037$
4	$X[1]=-15.01997656688334$	$Y[1]=-13.77845925925925$
	$X[2]=8.01583967575863$	$Y[2]=7.08951111111110$
	$X[3]=2.01666397500912$	$Y[3]=2.39962469135803$
5	$X[1]=-15.01996182501415$	$Y[1]=-11.46928395061725$
	$X[2]=8.01497643146312$	$Y[2]=5.40202074074072$
	$X[3]=2.01597923762914$	$Y[3]=3.11016164609054$
6	$X[1]=-15.01994400998709$	$Y[1]=-4.98573893004107$
	$X[2]=8.01417370750044$	$Y[2]=0.65924938271599$
	$X[3]=2.01534563522253$	$Y[3]=5.11149344307273$
7	$X[1]=-15.01992333132901$	$Y[1]=13.24523873799748$
	$X[2]=8.01342704260065$	$Y[2]=-12.68093537448576$
	$X[3]=2.01475942421623$	$Y[3]=10.74442134064936$
8	$X[1]=-15.01989998308720$	$Y[1]=64.53164880475601$
	$X[2]=8.01273230196133$	$Y[2]=-50.21229489163284$
	$X[3]=2.01421713531614$	$Y[3]=26.59529398567311$

4. A wide area of problems and practical tasks in tomography and image processing are reduced to the problem of solving a system of algebraic equations with constraint conditions for the initial approximations $x_{i}^{0}, i=1, \ldots, n$ (see Björck [2], A. van der Sluis and H. van der Vorst [16], A. Louis and F. Natterer [9] and R. Santos and A. de Pierro [15]).

Acknowledgement. The authors are pleased to acknowledge a referee's helpful remarks to the first version of this work.

REFERENCES

[1] Barrett R., M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.
[2] BנÖRck A. Numerical methods for least squares problems. SIAM, Philadelphia, PA, 1996.
[3] De Boor C., J. Rice. Extremal polynomials with application to Richardson iteration for indefinite linear system. Technical Rept., Wisconsin Univ. Madison Mathematics Research Center, 1980.
[4] Fadeev D., V. Fadeev. Numerical methods of linear algebra. Fizmatgiz M., 1963.
[5] Fisher B., L. Reichel. A stable Richardson iteration method for complex linear systems. Numer. Math., 54 (1989), No 2, 225-242.
[6] Freund R., G. Golub, N. Nachtigal. Iterative solution of linear systems. Acta Numerica, (1992), 1-44.
[7] Ishihara K., Y. Muroya, T. Yamamoto. On linear SOR-like methods, II-convergence on the SOR-Newton method for mildly nonlinear equations. Japan J. Indust. Appl. Math., 14 (1997), No 1, 99-110.
[8] Kyurkchiev N., M. Petkov, A. Iliev. On a modification of Richardson method for numerical solution of linear system of equations. Compt. rend. Acad. bulg. Sci., 61 (2008), No 10, 1257-1264.
[9] Louis A., F. Natterer. Mathematical problems of computerized tomography. Proceedings of the IEEE, 71 (1983), No 3, 379-389.
[10] Maleev A. A lower bound for order of convergence of methods of Jacobi's type. Comp. Math. and Math. Phys., 46 (2006), 2128-2137 (in Russian).
[11] Mehmie R. On the Seidel scheme for iterative solution of linear system of equations with a very large number of unknowns by successive approximations. Math. Sb., 16 (1892), No 2, 342-345 (in Russian).
[12] Mehmke R., P. Nekrassov, Solution of linear system of equations by means of successive approximations, Math. Sb., 16 (1892), 437-459 (in Russian).
[13] Nekrassov P. Determination of the unknowns by the least squares when the number of unknowns is considerable. Math. Sb., 12 (1885), 189-204 (in Russian).
[14] SaAd Y., H. van der Vorst. Iterative solution of linear systems in the 20th century. JCAM, 123 (2000), No 1-2, 1-33.
[15] Santos R., A. De Pierro. The effect of the nonlinearity on GCV applied to conjugate gradients in computerized tomography. Comp. and Appl. Math., 25 (2006), No 1, 111-128.
[16] van der Sluis A., H. van der Vorst. Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In: Seismic Tomography (Ed. G. Notel), D. Reidel Publ. Comp., Dordrecht, The Netherlands (1987), 49-84.
[17] Stork Ch. Comparison of Richardson's iteration with Chebyshev acceleration factors to conjugate gradient iteration. Stanford Expl. Proj. SEP-57 (1988), 479-503.
[18] Zawilski A., Numerical stability of the cyclic Richardson iteration, Numer. Math., 60 (1991), No 1, 251-290.

Anton Iliev
Faculty of Mathematics and Informatics
Paisii Hilendarski
University of Plovdiv
24 Tsar Assen Str.
4000 Plovdiv, Bulgaria
e-mail: aii@uni-plovdiv.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria

Nikolay Kyurkchiev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: nkyurk@math.bas.bg

Milko Petkov
Faculty of Mathematics and Informatics
Episkop Konstantin Preslavski University of Shumen
115 Universitetska Str.
9712 Shumen, Bulgaria

[^0]: ACM Computing Classification System (1998): G.1.3.
 Key words: Solving linear systems of equations, Jacobi method, Richardson method, Nekrassov method, Chebyshev's acceleration factors, pseudocode.
 *This paper is partly supported by project IS-M-4 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.

