ON EXTREMAL BINARY DOUBLY-EVEN SELF-DUAL CODES OF LENGTH 88^{*}

Radinka Yorgova, Nuray At

Abstract

In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88 . Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.

1. Introduction. Binary self-dual codes are an interesting class of codes for several reasons. These codes include the extended [8, 4, 4] Hamming code, the extended binary Golay code and the extended binary quadratic residue codes. Many of the self-dual codes are related to block designs, graphs, lattices and other combinatorial structures.

All binary self-dual codes of Type II of length up to 32 and all of Type I of length up to 34 are classified and given in [1], [2], [11], [12] and [15]. It is known that with increasing length the number of self-dual codes grows very fast. For example, there are 85 inequivalent self-dual codes of Type II of length 32 and

[^0]at least 17000 of length 40 . Therefore, the question of classifying all self-dual codes of a given length loses interest for increasing values of n.

In this work we study extremal binary doubly-even self-dual codes of length 88 having an automorphism of order 21. The greatest length of an extremal doubly-even self-dual code with minimum distance 16 is 88 . The first example of such a code is given in [9, p. 633]. The next 33 codes are presented in [6]. A construction of a self-dual $[88,44,16]$ code having an automorphism of order 5 is given in [5] and 36 new codes are listed. Here we construct 35 new binary [88,44,16] doubly-even self-dual codes. These codes and the previously known 70 codes are inequivalent.

A binary $[n, k]$ code \mathcal{C} is a k-dimensional vector subspace of \mathbb{F}_{2}^{n}, where \mathbb{F}_{2} is the field of two elements. The weight of a vector is the number of its nonzero coordinates. An $[n, k, d]$ code is an $[n, k]$ code with minimum weight d. A code \mathcal{C} is self-dual if $\mathcal{C}=\mathcal{C}^{\perp}$ where \mathcal{C}^{\perp} is the dual code of \mathcal{C} under the standard inner product. A self-dual code \mathcal{C} is doubly-even if all codewords of \mathcal{C} have weight divisible by four, and singly-even if there is at least one codeword of weight $\equiv 2$ $(\bmod 4)$. Self-dual doubly-even codes exist only when n is a multiple of eight. It is known [13] that for a self-dual $[n, n / 2, d]$ code:

$$
\begin{equation*}
d \leq 4\left[\frac{n}{24}\right]+4, \text { if } n \not \equiv 22(\bmod 24) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d \leq 4\left[\frac{n}{24}\right]+6, \text { if } n \equiv 22(\bmod 24) \tag{2}
\end{equation*}
$$

If n is a multiple of 24 , then any code reaching limit (1) must be doubly-even.
Self-dual codes which reach these bounds are called extremal.
The weight enumerator of a $[n, k]$ code is the polynomial $\sum_{i=1}^{n} A_{i} y^{i}$, where A_{i} is the number of the codewords of weight i. The weight enumerator of extremal doubly-even self-dual codes of a given length is uniquely determined [4]. Two binary codes are equivalent if one can be obtained from the other by a permutation of the coordinates. A permutation σ of n elements is an automorphism of a code \mathcal{C} if \mathcal{C} coincides with its image $\sigma(\mathcal{C})$. The set of all automorphisms of a code \mathcal{C} forms the automorphism group $A u t(\mathcal{C})$ of \mathcal{C}.

In the next section we investigate the possible types of automorphisms of order 21 of a binary doubly-even $[88,44,16]$ self-dual code. Further, we present a construction of a binary $[88,44,16]$ self-dual code having an automorphism of order 21 , and at last we list the new 35 codes.

2. Automorphisms of order 21 of a binary doubly-even [88,

 $44,16]$ self-dual code. Let \mathcal{C} be a $[88,44,16]$ self-dual code having an automorphism σ of order 21. Then, σ is a permutation and, without loss of generality we may write$$
\begin{align*}
\sigma= & \Omega_{1} \Omega_{2} \ldots \Omega_{t_{1}} \Omega_{t_{1}+1} \Omega_{t_{1}+2} \ldots \Omega_{t_{1}+t_{2}} \\
& \Omega_{t_{1}+t_{2}+1} \Omega_{t_{1}+t_{2}+2} \ldots \Omega_{t_{1}+t_{2}+t_{3}} \tag{3}\\
& \Omega_{t_{1}+t_{2}+t_{3}+1} \Omega_{t_{1}+t_{2}+t_{3}+2} \ldots \Omega_{t_{1}+t_{2}+t_{3}+f}
\end{align*}
$$

where Ω_{i} is a cycle of length 3 for $1 \leq i \leq t_{1}$, a cycle of length 7 for $t_{1}+1 \leq$ $i \leq t_{1}+t_{2}$, and a cycle of length 21 for $t_{1}+t_{2}+1 \leq i \leq t_{1}+t_{2}+t_{3}$. For $t_{1}+t_{2}+t_{3}+1 \leq i \leq t_{1}+t_{2}+t_{3}+f$ the symbol Ω_{i} represents a fixed point. For short we say that σ is of type $21-\left(t_{1}, t_{2}, t_{3} ; f\right)$. From [3, Proposition 3.1] it follows that \mathcal{C} has also automorphisms of type $3-\left(7 t_{3}+t_{1} ; 7 t_{2}+f\right)$ and type $7-\left(3 t_{3}+t_{2} ; 3 t_{1}+f\right)$. The possible automorphisms of order 3 and order 7 of an extremal self-dual binary code of length 88 are of types $3-(28 ; 4), 3-(26 ; 10)$, $3-(24 ; 16), 3-(22 ; 22), 3-(16 ; 40), 3-(14 ; 46), 7-(12 ; 4)$ and $7-(11 ; 11)$ [14, Theorem 1]. Hence, the type of the automorphism σ can be $21-(0,0,4 ; 4)$, $21-(1,3,3 ; 1), 21-(0,6,2 ; 4), 21-(2,5,2 ; 5), 21-(0,5,2 ; 11), 21-(1,2,3 ; 8)$ and $21-(3,2,3 ; 2)$.

Similar to [3] we define

$$
\begin{equation*}
F_{\sigma}(\mathcal{C})=\{v \in \mathcal{C} \mid \quad v \sigma=v\} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
E_{\sigma}(\mathcal{C})=\left\{v \in \mathcal{C} \mid w t\left(v \mid \Omega_{i}\right)\right. & \equiv 0(\bmod 2) \tag{5}\\
& \left.i=1, \ldots, t_{1}+t_{2}+t_{3}+f\right\}
\end{align*}
$$

where $v \mid \Omega_{i}$ is the restriction of v to Ω_{i}.
It is clear that $v \in F_{\sigma}(\mathcal{C})$, if and only if $v \in \mathcal{C}$ and the coordinates of v are constant on each cycle $\Omega_{j}, j=1,2, \ldots, t_{1}+t_{2}+t_{3}+f$. The map π is defined by

$$
\begin{equation*}
\pi: F_{\sigma}(\mathcal{C}) \rightarrow \mathbb{F}_{2}^{t_{1}+t_{2}+t_{3}+f}, \quad \pi\left(v \mid \Omega_{i}\right)=v_{j} \tag{6}
\end{equation*}
$$

for some $j \in \Omega_{i}, i=1,2, \ldots, t_{1}+t_{2}+t_{3}+f$.
Let σ be of type $21-(0,5,2 ; 11)$. Then, $\pi\left(F_{\sigma}(\mathcal{C})\right)$ is a binary self-dual [18,9] code [3, Proposition 3.2].

Theorem 1 [10, Theorem 11]. Let \mathcal{C} be a self-dual code of length $n=$ $n_{a}+n_{b}$ over $G F(q)$. Partition the generator matrix of \mathcal{C} as follows:

$$
\begin{gathered}
n_{a} \\
n_{b} \\
k_{a} \\
k_{b} \\
k_{d}
\end{gathered} \quad\left(\begin{array}{cc}
A & O \\
O & B \\
D & E
\end{array}\right),
$$

where k_{a} and k_{b} are to be chosen as large as possible. Then
i) $k_{d}=\operatorname{rank} D=\operatorname{rank} E$,
ii) $k_{b}=1 / 2 n-\left(n_{a}-k_{a}\right)$,
iii) the code generated by the rows of A and D is the dual of the code generated by the rows of A.

Therefore, the generator matrix of any binary $[18,9]$ self-dual code can be presented in the form:

$$
\begin{gathered}
\\
k_{a} \\
k_{b} \\
k_{d}
\end{gathered} \quad\left(\begin{array}{cl}
7 & 11 \\
A & O \\
O & B \\
D & E
\end{array}\right),
$$

where $k_{b}=2+k_{a}$. Then, $k_{b} \geq 2$. If a binary self-dual [18, 9] code generates $\pi\left(F_{\sigma}(\mathcal{C})\right)$, then the matrix B generates $\left[11, k_{b}, d_{b}\right]$ code where $k_{b} \geq 2, d_{b} \geq 16$. So, the automorphism σ is not of type $21-(0,5,2 ; 11)$.

In a similar way one can show that the automorphism σ is not of type $21-(1,2,3 ; 8)$ either.

Therefore if an extremal binary [88, 44, 16] self-dual doubly-even code has an automorphism of order 21 , then its type is $21-(0,0,4 ; 4), 21-(1,3,3 ; 1)$, $21-(0,6,2 ; 4), 21-(2,5,2 ; 5)$ or $21-(3,2,3 ; 2)$.
3. Construction of a Self-Dual [88, 44, 16] code with an automorphism of type $21-(\mathbf{0}, \mathbf{0}, \mathbf{4} ; \mathbf{4})$. Let now the permutation σ of type $21-(0,0,4 ; 4)$ be an automorphism of $\mathcal{C} . F_{\sigma}(\mathcal{C})$ and $E_{\sigma}(\mathcal{C})$ are defined as in (4) and (5).

The next proposition follows from [8, Theorems 1-3].
Proposition 2. Let \mathcal{C} be a self-dual doubly-even code of length 88 with an automorphism σ of type $21-(0,0,4 ; 4)$. Then,
(1) $\mathcal{C}=F_{\sigma}(\mathcal{C}) \oplus E_{\sigma}(\mathcal{C})$.
(2) $F_{\sigma}(\mathcal{C})$ and $E_{\sigma}(\mathcal{C})$ are σ-invariant, that is, invariant under the action of σ.
(3) The subcodes $F_{\sigma}(\mathcal{C})$ and $E_{\sigma}(\mathcal{C})$ have dimensions 4 and 44 respectively.
(4) $\pi\left(F_{\sigma}(\mathcal{C})\right)$ is a self-dual code of length 8.

The image $\pi\left(F_{\sigma}(\mathcal{C})\right)$ is a binary self-dual [8, 4] code. The only such codes are C_{2}^{4} and A_{8}. Let $\pi\left(F_{\sigma}(\mathcal{C})\right)=A_{8}$. Then as a generator matrix of $F_{\sigma}(\mathcal{C})$ we can consider the following matrix:

$$
X=\left(\begin{array}{llll|llll}
\mathbf{1} & & & & & 1 & 1 & 1 \tag{7}\\
& \mathbf{1} & & & 1 & & 1 & 1 \\
& & \mathbf{1} & & 1 & 1 & & 1 \\
& & & \mathbf{1} & 1 & 1 & 1 &
\end{array}\right)
$$

where $\mathbf{1}$ is the all-one vector of length 21 and the blanks are zeroes.
Denote by \mathcal{P} the set of even-weight polynomials in the factor-ring $\mathcal{R}_{21}=\mathbb{F}_{2}[x] /\left(x^{21}-1\right)$. The factorization of the polynomial $x^{21}-1$ over the binary field is given by $x^{21}-1=h_{0}(x) h_{1}(x) h_{2}(x) h_{3}(x) h_{4}(x) h_{5}(x)$, where
$h_{0}(x)=1+x, h_{1}(x)=1+x+x^{2}, h_{2}(x)=1+x+x^{3}, h_{3}(x)=1+x^{2}+x^{3}$, $h_{4}(x)=1+x+x^{2}+x^{4}+x^{6}$ and $h_{5}(x)=1+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}$ are irreducible polynomials over \mathbb{F}_{2}.

Let I_{j} be the ideal of \mathcal{R}_{21} generated by the polynomial $\frac{x^{21}-1}{h_{j}(x)}$. Then I_{j} is a cyclic code which is isomorphic to the field $\mathbb{F}_{2}^{\operatorname{deg} h_{j}(x)}$ for $j=1,2,3,4,5$ and, moreover, $\mathcal{P}=I_{1} \oplus I_{2} \oplus I_{3} \oplus I_{4} \oplus I_{5}$. The orthogonal idempotent of I_{j}, $j=1, \ldots, 5$ is $\epsilon_{j}(x)=e_{0}+e_{1} x+e_{2} x^{2}+\cdots+e_{20} x^{20}$, where ϵ_{j} are:

j	$e_{0} e_{1} \ldots e_{20}$
1	011011011011011011011
2	111010011101001110100
3	100101110010111001011
4	011010011001001010000
5	000001010010011001011

As a primitive element of $I_{j}, j=1, \ldots, 5$, we use $\mu_{j}(x)=m_{0}+m_{1} x+$ $m_{2} x^{2}+\cdots+m_{20} x^{20}$, where μ_{j} are:

j	$m_{0} m_{1}$	\ldots	m_{20}
1	110110110110110110110		
2	100111010011101001110		
3	101110010111001011100		
4	011011110000101110101		
5	010101110100001111011		

Using Gap [17], the minimum distance of the cyclic codes I_{1}, \ldots, I_{5} is calculated. We obtain that $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5} are respectively [21, 2, 14], [21, $3,12],[21,3,12],[21,6,8]$ and $[21,6,8]$ codes.

Let $E_{\sigma}(\mathcal{C})^{*}$ be the subcode $E_{\sigma}(\mathcal{C})$ with the last four coordinates deleted. We define the map $\varphi: E_{\sigma}(\mathcal{C})^{*} \rightarrow \mathcal{P}^{4}$ by identifying the restricted vector $v \mid \Omega_{i}=$ $\left(v_{0}, v_{1}, \ldots, v_{20}\right)$ with the polynomial $\varphi\left(v \mid \Omega_{i}\right)(x)=v_{0}+v_{1} x+\cdots+v_{20} x^{20}$ for $i=1,2,3,4$.

From [16, Lemma 6] $\varphi\left(E_{\sigma}(\mathcal{C})^{*}\right)$ is a self-orthogonal code in \mathcal{P}^{4} under the inner product $\langle u, v\rangle=\sum_{i=1}^{4} u_{i}(x) v_{i}\left(x^{-1}\right)$. Therefore, we can take a generator matrix for $\varphi\left(E_{\sigma}(\mathcal{C})^{*}\right)$ of the form

$$
Y^{\prime}=\left(\begin{array}{cccc}
\epsilon_{1}(x) & 0 & \alpha_{1}(x) & \alpha_{2}(x) \\
0 & \epsilon_{1}(x) & \alpha_{3}(x) & \alpha_{4}(x) \\
\epsilon_{2}(x) & 0 & \beta_{1}(x) & \beta_{2}(x) \\
0 & \epsilon_{2}(x) & \beta_{3}(x) & \beta_{4}(x) \\
\beta_{1}\left(x^{-1}\right) & \beta_{3}\left(x^{-1}\right) & \epsilon_{3}(x) & 0 \\
\beta_{2}\left(x^{-1}\right) & \beta_{4}\left(x^{-1}\right) & 0 & \epsilon_{3}(x) \\
\epsilon_{4}(x) & 0 & \gamma_{1}(x) & \gamma_{2}(x) \\
0 & \epsilon_{4}(x) & \gamma_{3}(x) & \gamma_{4}(x) \\
\gamma_{1}\left(x^{-1}\right) & \gamma_{3}\left(x^{-1}\right) & \epsilon_{5}(x) & 0 \\
\gamma_{2}\left(x^{-1}\right) & \gamma_{4}\left(x^{-1}\right) & 0 & \epsilon_{5}(x)
\end{array}\right)
$$

where $\alpha_{i}(x) \in I_{1}$, for $i=1,2,3,4, \beta_{i}(x) \in I_{2}$ and $\beta_{i}\left(x^{-1}\right) \in I_{3}, i=1,2,3,4$, and $\gamma_{i}(x) \in I_{4}, \gamma_{i}\left(x^{-1}\right) \in I_{5}$ for $i=1,2,3,4$, whereas $\epsilon_{i}(x), i=1,2,3,4,5$ are defined above.

The corresponding generator matrix of the subcode $E_{\sigma}(\mathcal{C})^{*}$ is

$$
Y=\left(\begin{array}{rll}
y_{1,1} & \ldots & y_{1,4} \tag{8}\\
\vdots & \ddots & \vdots \\
y_{10,1} & \ldots & y_{10,4}
\end{array}\right)
$$

where $y_{i, j}, i=1,2, j=1, \ldots, 4$ are right-circulant 2×21 matrices, $y_{i, j}$ for $i=3, \ldots, 6, j=1, \ldots, 4$ are right-circulant 3×21 matrices, $y_{i, j}$ for $i=7, \ldots, 10$, $j=1, \ldots, 4$, are right-circulant 6×21 matrices. The first rows of the circulants correspond to the polynomials of the matrix Y^{\prime}. Thus, we constructed a possible generator matrix of \mathcal{C}.

Proposition 3. Let a binary self-dual doubly-even code \mathcal{C} of length 88 have an automorphism σ of type $21-(0,0,4 ; 4)$. Then a possible generator matrix
of \mathcal{C} can be written as

$$
\begin{equation*}
G=\left(\right), \tag{9}
\end{equation*}
$$

where X and Y are defined in (7) and (8).
A computer check shows that many self-dual doubly-even codes with a generator matrix of the type (9) are extremal. Here we present 35 examples \mathcal{C}_{1}, $\mathcal{C}_{2}, \ldots, \mathcal{C}_{35}$ of extremal codes. To define completely their generator matrices G_{1}, \ldots, G_{35}, it is sufficient to give the submatrix Y of G in (9). The matrix Y is determined by the circulant matrices $y_{i, j}, i=1, \ldots, 12, j=1, \ldots, 6$ whose first rows are vectors corresponding to polynomials of the matrix Y^{\prime}. The values of the polynomials in Y^{\prime} for the codes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{35}$ are as follows: $\alpha_{1}(x)=\alpha_{4}(x)=0$, $\alpha_{2}(x)=\alpha_{3}(x)=\mu_{1}(x) ; \beta_{1}(x)=0, \beta_{i}(x)$ is 0 or $\mu_{2}^{t_{i}}(x)$ for $i=2,3,4$ and $t_{i}=1, \ldots, 7 ; \gamma_{1}(x)=\epsilon_{4}(x), \gamma_{i}(x)$ is 0 or $\mu_{4}^{s_{i}}(x)$ for $i=2,3,4$ and $s_{i}=1, \ldots, 63$. The values of the degrees t_{i} and s_{i} for $i=2,3,4$ are listed in Table 1. We note that if the value of $\gamma_{i}(x)$ or $\beta_{i}(x)$ is 0 , then the corresponding entry for t_{i} or s_{i} is empty.

The weight enumerator of an extremal doubly-even self-dual [88,44,16] code is uniquely determined [4]:

$$
\begin{aligned}
W_{C}= & 1+32164 y^{16}+6992832 y^{20}+535731625 y^{24}+16623384448 y^{28}+ \\
& 225426781470 y^{32}+\cdots
\end{aligned}
$$

To prove the inequivalence of the codes we use the same invariants as in [6] and [5]. Let M be the set of all 32164 codewords of weight 16 and $A_{i, j}$ be the number of the codewords of M that have one at the coordinate positions i and j. It is clear that the set of numbers $\left\{A_{i, j} \mid 1 \leq i<j \leq 88\right\}$ is an invariant for equivalent codes. So, the smallest and the largest element $m(2)$ and $M(2)$, respectively, in the set are invariants as well.

The values of $m(2)$ and $M(2)$ for the codes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{35}$ are listed in Table 1.

Table 1 implies that the presented new 35 extremal self-dual codes of length 88 are inequivalent and, moreover, together with the data in [7] and [5] it follows that these codes and the codes given in [6] and [5] are inequivalent as well.

Table 1. Matrices Y^{\prime} and invariants

Code	t_{2}	t_{3}	t_{4}	s_{2}	s_{3}	s_{4}	$M(2)$	$m(2)$
\mathcal{C}_{1}	1	1	1	63	1	21	1071	672
\mathcal{C}_{2}	1	1	1	3	2	30	1080	819
\mathcal{C}_{3}	1	1	1	3	1	27	1089	777
\mathcal{C}_{4}	5	3	1		1	28	1092	756
\mathcal{C}_{5}	7	1	1		2	42	1095	714
\mathcal{C}_{6}	1	1	1		1	54	1098	714
\mathcal{C}_{7}	1	1	1	3	2	39	1101	777
\mathcal{C}_{8}	1	1	1		2	26	1104	777
\mathcal{C}_{9}	1	1	1	3	1	3	1107	801
\mathcal{C}_{10}	7	1	1		2	19	1110	864
\mathcal{C}_{11}	7	1	1		2	11	1113	738
\mathcal{C}_{12}	7	7	1		1	26	1113	777
\mathcal{C}_{13}	1	1	1		1	6	1116	672
\mathcal{C}_{14}	7	7	1		1	25	1131	861
\mathcal{C}_{15}	1	1	1	3	1	20	1134	819
\mathcal{C}_{16}	1	1	1	3	1	45	1137	777
\mathcal{C}_{17}	1	1	1	1	1	5	1152	882
\mathcal{C}_{18}	1	1	1		1	8	1155	630
\mathcal{C}_{19}	1	1	1		1	21	1158	780
\mathcal{C}_{20}	7	1	1		2	62	1176	630
\mathcal{C}_{21}	1	1	1		1	52	1179	735
\mathcal{C}_{22}	1	1	1		2	23	1197	693
\mathcal{C}_{23}	7	1	1		2	61	1218	717
\mathcal{C}_{24}	7	7	1		1	12	1221	903
\mathcal{C}_{25}	1	1	1		2	30	1239	693
\mathcal{C}_{26}	7	1	1		3	1	1242	840
\mathcal{C}_{27}	7	1	1		2	59	1263	885
\mathcal{C}_{28}	7	1	1		2	21	1281	735
\mathcal{C}_{29}	5	3	1		1	12	1302	756
\mathcal{C}_{30}	1	1	1		1	55	1323	612
\mathcal{C}_{31}	7	1	1		2	57	1344	843
\mathcal{C}_{32}	1	1	1	63	1	37	1347	798
\mathcal{C}_{33}	1	1	1	3	1	21	1365	840
\mathcal{C}_{34}	7	1	1		3	8	1368	840
\mathcal{C}_{35}	1	1	1	3	1	6	1389	861

Theorem 4. Up to equivalence there are at least 105 binary extremal self-dual doubly-even codes of length 88, where 35 are new.

Acknowledgment. The authors would like to thank the anonymous referees for their useful comments.

REFERENCES

[1] Conway J. H., V. Pless. On the enumeration of self-dual codes. J. Combin. Theory, ser. A, 28 (1980), 26-53.
[2] Conway J. H., V. Pless, N. J. Sloane. The binary self-dual codes of length up to 32: a revised enumeration. J. Combin. Theory, ser. A, 60 (1992), 183-195.
[3] Dontcheva R., A. J. van Zanten, S. M. Dodunekov. Binary self-dual codes with automorphisms of composite order. IEEE Trans. Inform. Theory, 50 (2004), 311-318.
[4] Dougherty S. T., T. A. Gulliver, M. Harada. Extremal binary selfdual codes. IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.
[5] Goodwin V., V. Yorgov. New extremal self-dual doubly-even binary codes of length 88. Finite Fields and Applications, 11 (2005), 1-5.
[6] Gulliver T. A., M. Harada, J-L. Kim. Construction of new extremal self-dual codes. Discrete. Mathematics, 263 (2003), 81-91.
[7] Harada M. Private correspondence.
[8] Huffman W. C. Decomposing and shortening codes using automorphisms. IEEE Trans. Inform. Theory, 32 (1986), 833-836.
[9] MacWilliams F. J., N. J. A. Sloane. The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1977.
[10] Pless V., N. J. A. Sloane, H. N. Ward. Ternary codes of minimum weight 6 and the classification of the self-dual codes of length 20. IEEE Trans. Inform. Theory, IT-26 (1980), 305-316.
[11] Pless V. A classification of self-orthogonal codes over GF(2). Discrete Mathematics, 3 (1972), 209-246.
[12] Pless V., N. J. A. Sloane. On the Classification and Enumeration of Self-Dual Codes. J.Combinatorial Theory, 18 (1975), 313-335.
[13] Rains E. M. Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory, 44 (1998), 134-139.
[14] Yorgov V. Y. Binary self-dual codes with automorphisms of odd order (in Russian). Problemi Peredachi Informatcii, 19 (1983), 11-24, English translation in Probl. Inform. Transm. 19 (1983), 260-270.
[15] Yorgov V. Y. On the extremal binary codes of length 32. In: Proceedings of the 4th Joint Swedish-Russian International Workshop on Information Theory, Gotland, Sweden, 1989, 275-279.
[16] Yorgova R. On binary self-dual codes with automorphisms. IEEE Trans. Inform. Theory, 54 (2008), 3345-3351.
[17] www.gap-system.org.

Radinka Yorgova
CIPR, University of Bergen, Norway
e-mail: radinka. yorgova@cipr.uib.no
Nuray At
Dept. of Electrical and Electronics Engineering
Anadolu University, Turkey
Received April 2, 2009
e-mail: nat@anadolu.edu.tr
Final Accepted June 11, 2009

[^0]: ACM Computing Classification System (1998): E.4, H.1.1.
 Key words: Automorphisms, self-dual codes.
 *This work was partly supported by the Norwegian Government Scholarship.

