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ON EXTREMAL BINARY DOUBLY-EVEN SELF-DUAL
CODES OF LENGTH 88*

Radinka Yorgova, Nuray At

Abstract. In this paper we present 35 new extremal binary self-dual
doubly-even codes of length 88. Their inequivalence is established by in-
variants. Moreover, a construction of a binary self-dual [88, 44, 16] code,
having an automorphism of order 21, is given.

1. Introduction. Binary self-dual codes are an interesting class of
codes for several reasons. These codes include the extended [8, 4, 4] Hamming
code, the extended binary Golay code and the extended binary quadratic residue
codes. Many of the self-dual codes are related to block designs, graphs, lattices
and other combinatorial structures.

All binary self-dual codes of Type II of length up to 32 and all of Type
I of length up to 34 are classified and given in [1], [2], [11], [12] and [15]. It is
known that with increasing length the number of self-dual codes grows very fast.
For example, there are 85 inequivalent self-dual codes of Type II of length 32 and
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at least 17000 of length 40. Therefore, the question of classifying all self-dual
codes of a given length loses interest for increasing values of n.

In this work we study extremal binary doubly-even self-dual codes of
length 88 having an automorphism of order 21. The greatest length of an extremal
doubly-even self-dual code with minimum distance 16 is 88. The first example
of such a code is given in [9, p. 633]. The next 33 codes are presented in [6].
A construction of a self-dual [88,44,16] code having an automorphism of order
5 is given in [5] and 36 new codes are listed. Here we construct 35 new binary
[88,44,16] doubly-even self-dual codes. These codes and the previously known 70
codes are inequivalent.

A binary [n, k] code C is a k-dimensional vector subspace of F
n
2 , where F2

is the field of two elements. The weight of a vector is the number of its nonzero
coordinates. An [n, k, d] code is an [n, k] code with minimum weight d. A code
C is self-dual if C = C⊥ where C⊥ is the dual code of C under the standard inner
product. A self-dual code C is doubly-even if all codewords of C have weight
divisible by four, and singly-even if there is at least one codeword of weight ≡ 2
(mod 4). Self-dual doubly-even codes exist only when n is a multiple of eight. It
is known [13] that for a self-dual [n, n/2, d] code:

(1) d ≤ 4
[ n

24

]

+ 4, if n 6≡ 22 (mod 24),

and

(2) d ≤ 4
[ n

24

]

+ 6, if n ≡ 22 (mod 24).

If n is a multiple of 24, then any code reaching limit (1) must be doubly-even.
Self-dual codes which reach these bounds are called extremal.

The weight enumerator of a [n, k] code is the polynomial
n
∑

i=1
Aiy

i, where

Ai is the number of the codewords of weight i. The weight enumerator of ex-
tremal doubly-even self-dual codes of a given length is uniquely determined [4].
Two binary codes are equivalent if one can be obtained from the other by a per-
mutation of the coordinates. A permutation σ of n elements is an automorphism
of a code C if C coincides with its image σ(C). The set of all automorphisms of a
code C forms the automorphism group Aut(C) of C.

In the next section we investigate the possible types of automorphisms of
order 21 of a binary doubly-even [88,44,16] self-dual code. Further, we present
a construction of a binary [88,44,16] self-dual code having an automorphism of
order 21, and at last we list the new 35 codes.
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2. Automorphisms of order 21 of a binary doubly-even [88,
44, 16] self-dual code. Let C be a [88,44,16] self-dual code having an auto-
morphism σ of order 21. Then, σ is a permutation and, without loss of generality
we may write

(3)
σ = Ω1Ω2 . . . Ωt1 Ωt1+1Ωt1+2 . . . Ωt1+t2

Ωt1+t2+1Ωt1+t2+2 . . . Ωt1+t2+t3

Ωt1+t2+t3+1Ωt1+t2+t3+2 . . . Ωt1+t2+t3+f ,

where Ωi is a cycle of length 3 for 1 ≤ i ≤ t1, a cycle of length 7 for t1 + 1 ≤
i ≤ t1 + t2, and a cycle of length 21 for t1 + t2 + 1 ≤ i ≤ t1 + t2 + t3. For
t1 + t2 + t3 + 1 ≤ i ≤ t1 + t2 + t3 + f the symbol Ωi represents a fixed point.
For short we say that σ is of type 21-(t1, t2, t3; f). From [3, Proposition 3.1] it
follows that C has also automorphisms of type 3 − (7t3 + t1; 7t2 + f) and type
7 − (3t3 + t2; 3t1 + f). The possible automorphisms of order 3 and order 7 of an
extremal self-dual binary code of length 88 are of types 3− (28; 4), 3− (26; 10),
3− (24; 16), 3− (22; 22), 3− (16; 40), 3− (14; 46), 7− (12; 4) and 7− (11; 11)
[14, Theorem 1]. Hence, the type of the automorphism σ can be 21− (0, 0, 4; 4),
21− (1, 3, 3; 1), 21− (0, 6, 2; 4), 21− (2, 5, 2; 5), 21− (0, 5, 2; 11), 21− (1, 2, 3; 8)
and 21 − (3, 2, 3; 2).

Similar to [3] we define

(4) Fσ(C) = {v ∈ C| vσ = v}

and

(5)
Eσ(C) = {v ∈ C| wt(v|Ωi) ≡ 0 (mod 2),

i = 1, . . . , t1 + t2 + t3 + f},

where v|Ωi is the restriction of v to Ωi.

It is clear that v ∈ Fσ(C), if and only if v ∈ C and the coordinates of v
are constant on each cycle Ωj, j = 1, 2, . . . , t1 + t2 + t3 + f . The map π is defined
by

(6) π : Fσ(C) → F
t1+t2+t3+f
2 , π(v|Ωi) = vj ,

for some j ∈ Ωi, i = 1, 2, . . . , t1 + t2 + t3 + f .

Let σ be of type 21 − (0, 5, 2; 11). Then, π(Fσ(C)) is a binary self-dual
[18,9] code [3, Proposition 3.2].
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Theorem 1 [10, Theorem 11]. Let C be a self-dual code of length n =
na + nb over GF (q). Partition the generator matrix of C as follows:

na nb

ka

kb

kd





A O
O B
D E



 ,

where ka and kb are to be chosen as large as possible. Then
i) kd = rank D = rank E,
ii) kb = 1/2n − (na − ka),
iii) the code generated by the rows of A and D is the dual of the code

generated by the rows of A.

Therefore, the generator matrix of any binary [18, 9] self-dual code can
be presented in the form:

7 11
ka

kb

kd





A O
O B
D E



 ,

where kb = 2 + ka. Then, kb ≥ 2. If a binary self-dual [18, 9] code generates
π(Fσ(C)), then the matrix B generates [11, kb, db] code where kb ≥ 2, db ≥ 16.
So, the automorphism σ is not of type 21 − (0, 5, 2; 11).

In a similar way one can show that the automorphism σ is not of type
21 − (1, 2, 3; 8) either.

Therefore if an extremal binary [88, 44, 16] self-dual doubly-even code has
an automorphism of order 21, then its type is 21 − (0, 0, 4; 4), 21 − (1, 3, 3; 1),
21 − (0, 6, 2; 4), 21 − (2, 5, 2; 5) or 21 − (3, 2, 3; 2).

3. Construction of a Self-Dual [88, 44, 16] code with an
automorphism of type 21−(0, 0, 4; 4). Let now the permutation σ of
type 21 − (0, 0, 4; 4) be an automorphism of C. Fσ(C) and Eσ(C) are defined as
in (4) and (5).

The next proposition follows from [8, Theorems 1–3].

Proposition 2. Let C be a self-dual doubly-even code of length 88 with
an automorphism σ of type 21 − (0, 0, 4; 4). Then,
(1) C = Fσ(C) ⊕ Eσ(C).
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(2) Fσ(C) and Eσ(C) are σ-invariant, that is, invariant under the action of σ.
(3) The subcodes Fσ(C) and Eσ(C) have dimensions 4 and 44 respectively.
(4) π(Fσ(C)) is a self-dual code of length 8.

The image π(Fσ(C)) is a binary self-dual [8, 4] code. The only such codes
are C4

2 and A8. Let π(Fσ(C)) = A8. Then as a generator matrix of Fσ(C) we can
consider the following matrix:

(7) X =









1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1









,

where 1 is the all-one vector of length 21 and the blanks are zeroes.
Denote by P the set of even-weight polynomials in the factor-ring

R21 = F2[x]/(x21 − 1). The factorization of the polynomial x21 − 1 over the
binary field is given by x21 − 1 = h0(x)h1(x)h2(x)h3(x)h4(x)h5(x), where
h0(x) = 1 + x, h1(x) = 1 + x + x2, h2(x) = 1 + x + x3, h3(x) = 1 + x2 + x3,
h4(x) = 1+x+x2 +x4 +x6 and h5(x) = 1+x2 +x3 +x4 +x5 +x6 are irreducible
polynomials over F2.

Let Ij be the ideal of R21 generated by the polynomial
x21 − 1

hj(x)
. Then

Ij is a cyclic code which is isomorphic to the field F
deg hj(x)
2 for j = 1, 2, 3, 4, 5

and, moreover, P = I1 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ I5. The orthogonal idempotent of Ij ,
j = 1, . . . , 5 is ǫj(x) = e0 + e1x + e2x

2 + · · · + e20x
20, where ǫj are:

j e0e1 . . . e20

1 011011011011011011011

2 111010011101001110100

3 100101110010111001011

4 011010011001001010000

5 000001010010011001011

As a primitive element of Ij, j = 1, . . . , 5, we use µj(x) = m0 + m1x +
m2x

2 + · · · + m20x
20, where µj are:

j m0m1 . . . m20

1 110110110110110110110

2 100111010011101001110

3 101110010111001011100

4 011011110000101110101

5 010101110100001111011
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Using Gap [17], the minimum distance of the cyclic codes I1, . . ., I5 is
calculated. We obtain that I1, I2, I3, I4 and I5 are respectively [21, 2, 14], [21,
3, 12], [21, 3, 12], [21, 6, 8] and [21, 6, 8] codes.

Let Eσ(C)∗ be the subcode Eσ(C) with the last four coordinates deleted.
We define the map ϕ : Eσ(C)∗ → P4 by identifying the restricted vector v|Ωi =
(v0, v1, . . . , v20) with the polynomial ϕ(v|Ωi)(x) = v0 + v1x + · · · + v20x

20 for
i = 1, 2, 3, 4.

From [16, Lemma 6] ϕ(Eσ(C)∗) is a self-orthogonal code in P4 under

the inner product 〈u, v〉 =
4
∑

i=1
ui(x)vi(x

−1). Therefore, we can take a generator

matrix for ϕ(Eσ(C)∗) of the form

Y ′ =

































ǫ1(x) 0 α1(x) α2(x)
0 ǫ1(x) α3(x) α4(x)

ǫ2(x) 0 β1(x) β2(x)
0 ǫ2(x) β3(x) β4(x)

β1(x
−1) β3(x

−1) ǫ3(x) 0
β2(x

−1) β4(x
−1) 0 ǫ3(x)

ǫ4(x) 0 γ1(x) γ2(x)
0 ǫ4(x) γ3(x) γ4(x)

γ1(x
−1) γ3(x

−1) ǫ5(x) 0
γ2(x

−1) γ4(x
−1) 0 ǫ5(x)

































,

where αi(x) ∈ I1, for i = 1, 2, 3, 4, βi(x) ∈ I2 and βi(x
−1) ∈ I3, i = 1, 2, 3, 4, and

γi(x) ∈ I4, γi(x
−1) ∈ I5 for i = 1, 2, 3, 4, whereas ǫi(x), i = 1, 2, 3, 4, 5 are defined

above.
The corresponding generator matrix of the subcode Eσ(C)∗ is

(8) Y =







y1,1 . . . y1,4
...

. . .
...

y10,1 . . . y10,4






,

where yi,j, i = 1, 2, j = 1, . . . , 4 are right-circulant 2 × 21 matrices, yi,j for
i = 3, . . . , 6, j = 1, . . . , 4 are right-circulant 3× 21 matrices, yi,j for i = 7, . . . , 10,
j = 1, . . . , 4, are right-circulant 6 × 21 matrices. The first rows of the circulants
correspond to the polynomials of the matrix Y ′. Thus, we constructed a possible
generator matrix of C.

Proposition 3. Let a binary self-dual doubly-even code C of length 88
have an automorphism σ of type 21−(0, 0, 4; 4). Then a possible generator matrix
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of C can be written as

(9) G =











X

0000

Y
...
...
...
...

0000











,

where X and Y are defined in (7) and (8).

A computer check shows that many self-dual doubly-even codes with a
generator matrix of the type (9) are extremal. Here we present 35 examples C1,
C2, . . . , C35 of extremal codes. To define completely their generator matrices G1,
. . . , G35, it is sufficient to give the submatrix Y of G in (9). The matrix Y is
determined by the circulant matrices yi,j, i = 1, . . . , 12, j = 1, . . . , 6 whose first
rows are vectors corresponding to polynomials of the matrix Y ′. The values of the
polynomials in Y ′ for the codes C1, C2, . . . , C35 are as follows: α1(x) = α4(x) = 0,
α2(x) = α3(x) = µ1(x); β1(x) = 0, βi(x) is 0 or µti

2 (x) for i = 2, 3, 4 and
ti = 1, . . . , 7; γ1(x) = ǫ4(x), γi(x) is 0 or µsi

4 (x) for i = 2, 3, 4 and si = 1, . . . , 63.
The values of the degrees ti and si for i = 2, 3, 4 are listed in Table 1. We note
that if the value of γi(x) or βi(x) is 0, then the corresponding entry for ti or si is
empty.

The weight enumerator of an extremal doubly-even self-dual [88,44,16]
code is uniquely determined [4]:

WC =1 + 32164y16 + 6992832y20 + 535731625y24 + 16623384448y28+

225426781470y32 + · · ·

To prove the inequivalence of the codes we use the same invariants as in
[6] and [5]. Let M be the set of all 32164 codewords of weight 16 and Ai,j be
the number of the codewords of M that have one at the coordinate positions i
and j. It is clear that the set of numbers {Ai,j | 1 ≤ i < j ≤ 88} is an invariant
for equivalent codes. So, the smallest and the largest element m(2) and M(2),
respectively, in the set are invariants as well.

The values of m(2) and M(2) for the codes C1, C2, . . . , C35 are listed in
Table 1.

Table 1 implies that the presented new 35 extremal self-dual codes of
length 88 are inequivalent and, moreover, together with the data in [7] and [5]
it follows that these codes and the codes given in [6] and [5] are inequivalent as
well.
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Table 1. Matrices Y ′ and invariants

Code t2 t3 t4 s2 s3 s4 M(2) m(2)

C1 1 1 1 63 1 21 1071 672

C2 1 1 1 3 2 30 1080 819

C3 1 1 1 3 1 27 1089 777

C4 5 3 1 1 28 1092 756

C5 7 1 1 2 42 1095 714

C6 1 1 1 1 54 1098 714

C7 1 1 1 3 2 39 1101 777

C8 1 1 1 2 26 1104 777

C9 1 1 1 3 1 3 1107 801

C10 7 1 1 2 19 1110 864

C11 7 1 1 2 11 1113 738

C12 7 7 1 1 26 1113 777

C13 1 1 1 1 6 1116 672

C14 7 7 1 1 25 1131 861

C15 1 1 1 3 1 20 1134 819

C16 1 1 1 3 1 45 1137 777

C17 1 1 1 1 1 5 1152 882

C18 1 1 1 1 8 1155 630

C19 1 1 1 1 21 1158 780

C20 7 1 1 2 62 1176 630

C21 1 1 1 1 52 1179 735

C22 1 1 1 2 23 1197 693

C23 7 1 1 2 61 1218 717

C24 7 7 1 1 12 1221 903

C25 1 1 1 2 30 1239 693

C26 7 1 1 3 1 1242 840

C27 7 1 1 2 59 1263 885

C28 7 1 1 2 21 1281 735

C29 5 3 1 1 12 1302 756

C30 1 1 1 1 55 1323 612

C31 7 1 1 2 57 1344 843

C32 1 1 1 63 1 37 1347 798

C33 1 1 1 3 1 21 1365 840

C34 7 1 1 3 8 1368 840

C35 1 1 1 3 1 6 1389 861
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Theorem 4. Up to equivalence there are at least 105 binary extremal
self-dual doubly-even codes of length 88, where 35 are new.
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