ALMOST CONFORMAL TRANSFORMATION IN A CLASS OF RIEMANNIAN MANIFOLDS ${ }^{1}$

Georgi Dzhelepov, Dimitar Razpopov, Iva Dokuzova

Abstract. We consider a 3-dimensional Riemannian manifold V with a metric g and an affinor structure q. The local coordinates of these tensors are circulant matrices. In V we define an almost conformal transformation. Using that definition we construct an infinite series of circulant metrics which are successively almost conformaly related. In this case we get some properties.

Keywords: Riemannian metric, affinor structure, almost conformal transformation

2010 Mathematics Subject Classification: 53C15, 53B20

1. Preliminaries

We consider a 3 -dimensional Riemannian manifold M with a metric tensor g and two affine tensors q and S such that: their local coordinates form circulant matrices. So these matrices are as follows:

$$
g_{i j}=\left(\begin{array}{lll}
A & B & B \tag{1}\\
B & A & B \\
B & B & A
\end{array}\right), \quad A>B>0
$$

where A and B are smooth functions of a point $p\left(x^{1}, x^{2}, x^{3}\right)$ in some $F \subset R^{3}$,

$$
q_{i}^{j}=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{2}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad S_{i}^{\cdot j}=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

We note by V the class of manifolds like M.
Let M be in V and ∇ be the connection of g. Let us give some results for M in V, obtained in [1].

$$
\begin{equation*}
q^{3}=E ; \quad g(q u, q v)=g(u, v), \quad u, v \in \chi M \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla q=0 \quad \Leftrightarrow \quad \operatorname{grad} A=\operatorname{grad} B . S \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
0<B<A \quad \Rightarrow \quad g \text { is possitively defined. } \tag{5}
\end{equation*}
$$

[^0]
2. Almost conformal transformation

Let M be in V. We note $f_{i j}=g_{i k} q_{j}^{k}+g_{j k} q_{i}^{k}$, i.e.

$$
f_{i j}=\left(\begin{array}{ccc}
2 B & A+B & A+B \tag{6}\\
A+B & 2 B & A+B \\
A+B & A+B & 2 B
\end{array}\right) .
$$

We calculate $\operatorname{detef}_{i j}=2(A-B)^{2}(A+2 B) \neq 0$, so we accept $f_{i j}$ for local coordinates of another metric f. Further, we suppose α and β are two smooth functions in $F \subset R^{3}$ and we construct the metric g_{1}, as follows:

$$
\begin{equation*}
g_{1}=\alpha . g+\beta . f . \tag{7}
\end{equation*}
$$

We say that equation (7) define an almost conformal transformation, noting that if $\beta=0$ then (7) implies the case of the classical conformal transformation in M [2].

From (1), (6) and (7) we get the local coordinates of g_{1} :

$$
g_{1, i j}=\left(\begin{array}{ccc}
\alpha A+2 \beta B & \beta A+(\alpha+\beta) B & \beta A+(\alpha+\beta) B \tag{8}\\
\beta A+(\alpha+\beta) B & \alpha A+2 \beta B & \beta A+(\alpha+\beta) B \\
\beta A+(\alpha+\beta) B & \beta A+(\alpha+\beta) B & \alpha A+2 \beta B
\end{array}\right) .
$$

We see that $f_{i j}$ and $g_{1, i j}$ are both circulant matrices.
Theorem 2.1. Let M be a manifold in V, also g and g_{1} be two metrics of M, related by (7). Let ∇ and $\dot{\nabla}$ be the corresponding connections of g and g_{1}, and $\nabla q=0$. Then $\dot{\nabla} q=0$ if and only if, when

$$
\begin{equation*}
\operatorname{grad} \alpha=\operatorname{grad} \beta . S . \tag{9}
\end{equation*}
$$

Proof. At first we suppose (9) is valid. Using (9) and (4) we can verify that the following identity is true:

$$
\begin{equation*}
\operatorname{grad}(\alpha A+2 \beta B)=\operatorname{grad}(\beta A+(\alpha+\beta) B) \cdot S \tag{10}
\end{equation*}
$$

The identity (10) is analogue to (4), and consequently we conclude $\dot{\nabla} q=0$.
Inversely, if $\dot{\nabla} q=0$ then analogously to (4) we have (10). Now (4) and (10) imply (9). So the theorem is proved.

Note. We see that (10) is a system of partial differential equations. In this case we know that this system has a solution [3].

Let $w=w(x(p), y(p), z(p))$ be an arbitrary vector in $T_{p} M, p \in M$, $M \subset V$, such that $q w \neq w$. For the metric g of M we suppose $0<B<A$, i.e. g is positively defined (see (5)).

Let φ be the angle between w and $q w$ with respect to g. Then thank's to (1), (2) and (3) we get $\cos \varphi=\frac{g(w, q w)}{g(w, w)}$, and we note that $\varphi \in\left(0, \frac{2 \pi}{3}\right)[1]$.

Lemma 2.2. Let g_{1} be the metric given by (7). If $0<\beta<\alpha$ and g is positively defined, then g_{1} is also positively defined.

Proof. For g_{1} we have that $\alpha A+2 \beta B-(\beta A+(\alpha+\beta) B=(\alpha-\beta)(A-B)>0$. Analogously to (6) we state that g_{1} is positively defined.

Lemma 2.3. Let $w=w(x(p), y(p), z(p))$ be in $T_{p} M, p \in M, M \subset V$, $q w \neq w$. Let g and g_{1} be the metrics of M, related by (7). Then we have

$$
\begin{align*}
& g_{1}(w, w)=\alpha g(w, w)+2 \beta g(w, q w) \tag{11}\\
& g_{1}(w, q w)=\beta g(w, w)+(\alpha+\beta) g(w, q w)
\end{align*}
$$

Proof. Using (1) and (2) we find

$$
\begin{align*}
& g(w, w)=A\left(x^{2}+y^{2}+z^{2}\right)+2 B(x y+y z+z x) \tag{12}\\
& g(w, q w)=B\left(x^{2}+y^{2}+z^{2}\right)+(A+B)(x y+y z+z x)
\end{align*}
$$

Now, we use (8) and (12) after some computations we get (11).

Theorem 2.4. Let $w=w(x(p), y(p), z(p))$ be a vector in $T_{p} M, p \in M$, $M \subset V, q w \neq w$. Let g and g_{1} be two positively defined metrics of M, related by (7). If φ and φ_{1} are the angles between w and $q w$, with respect to g and g_{1} respectively, then the following equation is true

$$
\begin{equation*}
\cos \varphi_{1}=\frac{\beta+(\alpha+\beta) \cos \varphi}{\alpha+2 \beta \cos \varphi} \tag{13}
\end{equation*}
$$

Proof. Since g and g_{1} are both positively defined metrics we can calculate $\cos \varphi$ and $\cos \varphi_{1}$, respectively [2]. Then by using (11) from Lemma 2.2 and Lemma 2.3 we get (13).

We note $\varphi \in\left(0, \frac{2 \pi}{3}\right)$. Theorem 2.4 implies immediately the assertions:
Corollary 2.5. If φ_{1} is the angle between w and $q w$ with respect to g_{1} then $\varphi_{1} \in\left(0, \frac{2 \pi}{3}\right)$.

Corollary 2.6. Let φ and φ_{1} be the angles between w and $q w$ with respect to g and g_{1}. Then

1) $\varphi=\frac{\pi}{2}$ if and only if when $\varphi_{1}=\arccos \frac{\beta}{\alpha}$;
2) $\varphi_{1}=\frac{\pi}{2}$ if and only if when $\varphi=\arccos \left(-\frac{\beta}{\alpha+\beta}\right)$.

Further, we consider an infinite series of the metrics of M in V as follows:

$$
g_{0}, g_{1}, g_{2}, \ldots, g_{n}, \ldots
$$

where
(14) $g_{0}=g, \quad g_{n}=\alpha g_{n-1}+\beta f_{n-1}, \quad f_{n-1, i s}=g_{n-1, i a} q_{s}^{a}+g_{n-1, s a} q_{i}^{a}, 0<\beta<\alpha$.

By the method of the mathematical induction we can see that the matrix of every g_{n} is circulant one and every g_{n} is positively defined.

Theorem 2.7. Let $w=w(x(p), y(p), z(p))$ be in $T_{p} M, p \in M, M \subset V$, $q w \neq w$. Let φ_{n} be the angle between w and $q w$ with respect to metric g_{n} from (14). Then the infinite series:

$$
\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}, \ldots
$$

is converge and $\lim \varphi_{n}=0$.
Proof. Using the method of the mathematical induction and Theorem 2.4 we obtain

$$
\begin{equation*}
\cos \varphi_{n}=\frac{\beta+(\alpha+\beta) \cos \varphi_{n-1}}{\alpha+2 \beta \cos \varphi_{n-1}} \tag{15}
\end{equation*}
$$

as well as $\varphi_{n} \in\left(0, \frac{2 \pi}{3}\right)$. From (15) we get

$$
\begin{equation*}
\cos \varphi_{n}-\cos \varphi_{n-1}=\frac{\beta\left(1-\cos \varphi_{n-1}\right)\left(1+2 \cos \varphi_{n-1}\right)}{\alpha+2 \beta \cos \varphi_{n-1}} \tag{16}
\end{equation*}
$$

The equation (16) implies $\cos \varphi_{n}>\cos \varphi_{n-1}$, so the series $\left\{\cos \varphi_{n}\right\}$ is increasing one and since $\cos \varphi_{n}<1$ then it is converge. From (15) we have $\lim \cos \varphi_{n}=1$, so $\lim \varphi_{n}=0$.

References

[1] G. Dzhelepov, I. Dokuzova, D. Razpopov: On a three dimensional Riemannian manifold with an additional structure, arXiv:math.DG/ 0905.0801.
[2] K. Yano: Differential geometry, New York, Pergamont press, 1965.
[3] H. Hristov: Mathematical methods in physics, Sofia, Science and Art, 1967 (In Bulgarian).

Georgi Dzhelepov
Department of Mathematics and Physics Agricultural University of Plovdiv 12 Mendeleev Blvd. 4000 Plovdiv, Bulgaria

Iva Dokuzova
Faculty of Mathematics and Informatics University of Plovdiv
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: dokuzova@uni-plovdiv.bg

Dimitar Razpopov
Department of Mathematics and Physics
Agricultural University of Plovdiv
12 Mendeleev Blvd.
4003 Plovdiv, Bulgaria
e-mail: drazpopov@qustyle.bg

[^0]: ${ }^{1}$ This work is partially supported by project RS09-FMI - 003 of the Scientific Research Fund, Paisii Hilendarski University of Plovdiv, Bulgaria

