COMPUTATION OF SOME DIFFERENTIAL OPERATORS IN TORIC COORDINATES ${ }^{1}$

Milka Naidenova, Georgi Kostadinov, Mariyan Milev

Abstract. Toric coordinates and toric vector field have been introduced in [2]. Let \boldsymbol{A} be an arbitrary vector field. We obtain formulae for the $\operatorname{div} \boldsymbol{A}$, $\operatorname{rot} \boldsymbol{A}$ and the Laplace operator in toric coordinates.

Keywords: crooked-line coord; divergation, rotation
2010 Mathematics Subject Classification: 47F05

1. Introduction

First we remind the formulae for the toric coordinates:

$$
\begin{align*}
& x=(a+r \cos (u+v)) \cos u \\
& y=(a+r \cos (u+v)) \sin u \tag{1}\\
& z=r \sin (u+v), \quad u, v \in[0,2 \pi] ; 0<r<a
\end{align*}
$$

The introduction of toric coordinates is motivated by the exploration of toric magnetics in electro-techniques. The vector field \vec{t} is is defined as a toric vector field, if $d r(\vec{t})=0$. Toric coordinates could also be used as a transformation of differential equations.

We will denote $a+r \cos (u+v)$ by ρ. The toric coordinate system is not orthogonal. Let the local unit basic vectors be $\mathbf{t}^{\mathbf{0}}$ (tangent to the u-lines), $\mathbf{e}_{\mathbf{v}}$ and $\mathbf{e}_{\mathbf{r}}$. The coordinates of \mathbf{t} are

$$
\left\lvert\, \begin{align*}
& x=-a \sin u-r \sin (2 u+v) \\
& y=a \cos u+r \cos (2 u+v), \quad|\mathbf{t}|=\sqrt{r^{2}+\rho^{2}} . \tag{2}\\
& z=r \cos (u+v)
\end{align*}\right.
$$

We will use the helpful vector $\mathbf{e}_{\mathbf{p}}$ which is tangent to the parallel in the point M. This vector is orthogonal to $\mathbf{e}_{\mathbf{v}}$. The coordinates in the system $\mathbf{e}_{\mathbf{p}}, \mathbf{e}_{\mathbf{v}}, \mathbf{e}_{\mathbf{r}}$ will be denoted by prime above. Our first result is that the projections of the vector \mathbf{t} onto $\mathbf{e}_{\mathbf{p}}$ and $\mathbf{e}_{\mathbf{v}}$ are respectively ρ and r. So we have

$$
\begin{equation*}
\mathbf{t}=\rho \mathbf{e}_{\mathbf{p}}+r \mathbf{e}_{\mathbf{v}}, \quad\left(\mathbf{e}_{\mathbf{p}}=\frac{1}{\rho} \mathbf{t}-\frac{r}{\rho} \mathbf{e}_{\mathbf{v}}\right) . \tag{3}
\end{equation*}
$$

We can immediately write an expression for $\operatorname{div} \mathbf{A}$ and $\operatorname{rot} \mathbf{A}$ in the system $\left(\mathbf{e}_{\mathbf{p}}, \mathbf{e}_{\mathbf{v}}, \mathbf{e}_{\mathbf{r}}\right)$ of crooked-line coordinates. Then using a suitable transformation and (2) we obtain our formulae.

[^0]
2. Computation of $d i v \mathbf{A}$

As we wrote above, let U, V, r be the usual orthogonal toric coordinates and $\mathbf{A}\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$ be a vector field.

Instead of (1) we have $\begin{aligned} & x=(a+r \cos V) \cos U \\ & y=(a+r \cos V) \sin U \\ & z=r \sin V\end{aligned}$.
We obtain $H_{1}^{\prime}=\rho, H_{2}^{\prime}=r, H_{3}^{\prime}=1$ for the coefficients of Lammè, [1]. Therefore,

$$
\begin{equation*}
\operatorname{div} \mathbf{A}=\frac{1}{r \rho}\left[\frac{\partial\left(A_{1}^{\prime} r\right)}{\partial U}+\frac{\partial\left(A_{2}^{\prime} \rho\right)}{\partial V}+\frac{\partial\left(A_{3}^{\prime} r \rho\right)}{\partial r}\right] \tag{4}
\end{equation*}
$$

We must do the substitution $U=u, V=v+u$. The derivative $\frac{\partial}{\partial U}$ must be replaced by $\frac{\partial}{\partial u}-\frac{\partial}{\partial v}$.

For the coordinates of \mathbf{A} we obtain $A_{1}^{\prime}=A_{1} \rho, A_{2}^{\prime}=A_{2}+r A_{1}$. Then

$$
\begin{aligned}
\operatorname{div} \mathbf{A} & =\frac{1}{r \rho}\left[\frac{\partial\left(A_{1} r \rho\right)}{\partial U}+\frac{\partial\left(A_{2} \rho+r \rho A_{1}\right)}{\partial V}+\frac{\partial\left(A_{3} r \rho\right)}{\partial r}\right]= \\
& =\frac{1}{r \rho}\left[\frac{\partial\left(A_{1} r \rho\right)}{\partial u}+\frac{\partial\left(A_{2} \rho\right)}{\partial v}+\frac{\partial\left(A_{3} r \rho\right)}{\partial r}\right]
\end{aligned}
$$

3. Computation of $\operatorname{rot} \mathbf{A}$

We will again use the coordinates U, V, r. As a private case of crooked-line coordinates we obtain that
(5) $\quad(\operatorname{rot} \mathbf{A})_{1}^{\prime}=\frac{1}{H_{2}^{\prime} H_{3}^{\prime}}\left[\frac{\partial\left(A_{3}^{\prime} H_{3}^{\prime}\right)}{\partial q_{2}}-\frac{\partial\left(A_{2}^{\prime} H_{2}^{\prime}\right)}{\partial q_{3}}\right]=$

$$
=\frac{1}{r}\left[\frac{\partial\left(A_{3}^{\prime}\right)}{\partial v}-\frac{\partial\left(A_{2}^{\prime} r\right)}{\partial r}\right]=\frac{1}{r}\left[\frac{\partial\left(A_{3}\right)}{\partial v}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial r}\right],
$$

$$
(\operatorname{rot} \mathbf{A})_{2}^{\prime}=\frac{1}{\rho}\left[\frac{\partial\left(A_{1}^{\prime} \rho\right)}{\partial r}-\frac{\partial A_{3}}{\partial U}\right]=\frac{1}{\rho}\left[\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial r}-\frac{\partial A_{3}}{\partial u}+\frac{\partial A_{3}}{\partial v}\right]
$$

$$
(r o t \mathbf{A})_{3}^{\prime}=\frac{1}{r \rho}\left[\frac{\partial\left(A_{2}^{\prime} r\right)}{\partial U}-\frac{\partial\left(A_{1}^{\prime} \rho\right)}{\partial v}\right]=
$$

$$
=\frac{1}{r \rho}\left[\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial u}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial v}-\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial v}\right] \text {, see }[1] \text {. }
$$

To obtain the final result for $\operatorname{rot} \mathbf{A}$ we must multiply the above coordinates with $\frac{1}{\rho} \mathbf{t}-\frac{r}{\rho} \mathbf{e}_{\mathbf{v}}, \mathbf{e}_{\mathbf{v}}$ and $\mathbf{e}_{\mathbf{r}}$, respectively, and put them in order. Some summands disappear. Here are the calculations:

$$
\begin{aligned}
& \frac{1}{r}\left[\frac{\partial\left(A_{3}\right)}{\partial v}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial r}\right]\left(\frac{1}{\rho} \mathbf{t}-\frac{r}{\rho} \mathbf{e}_{\mathbf{v}}\right)+ \\
& +\frac{1}{\rho}\left[\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial r}-\frac{\partial A_{3}}{\partial u}+\frac{\partial A_{3}}{\partial v}\right] \mathbf{e}_{\mathbf{v}}+ \\
& \\
& \quad+\frac{1}{r \rho}\left[\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial u}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial v}-\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial v}\right] \mathbf{e}_{\mathbf{r}}= \\
& =\frac{1}{r}\left[\frac{\partial A_{3}}{\partial v}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial r}\right] \frac{1}{\rho} \mathbf{t}+ \\
& \quad+\frac{1}{\rho}\left[\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial r}+\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial r}-\frac{\partial A_{3}}{\partial u}\right] \mathbf{e}_{\mathbf{v}}+ \\
& \quad+\frac{1}{r \rho}\left[\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial u}-\frac{\partial\left(A_{2}+r A_{1}\right) r}{\partial v}-\frac{\partial\left(A_{1} \rho^{2}\right)}{\partial v}\right] \mathbf{e}_{\mathbf{r}}
\end{aligned}
$$

which is the final formula for $\operatorname{rot} \mathbf{A}$ in toric coordinates.
Remark 3.1. If the vector field \mathbf{A} is a toric one, then $A_{3} \equiv 0$ and (5) can be simplified. For example, we can compute the $\operatorname{rot} \mathbf{T}$ of the field of the tangent vectors \mathbf{t}, given by (2). Obviously, \mathbf{T} is the field ($1,0,0$) (in toric coordinates).

By (5) we obtain that

$$
\operatorname{rot} \mathbf{T}=-\frac{2}{\rho} \mathbf{t}+\frac{1}{\rho}(2 r+2 \rho \cos (u+v)) \mathbf{e}_{\mathbf{v}}-\frac{2}{r} \cos (u+v) \mathbf{e}_{\mathbf{r}}
$$

4. Computation of the Laplace's operator

We must do the substitution (1) in the expression $w_{x x}^{\prime \prime}+w_{y y}^{\prime \prime}+w_{z z}^{\prime \prime}$ where $w=w(x, y, z)$.

First step. We will substitute x and y by ρ and u using the first two formulae in (1). As this is done in polar coordinates we can immediately write

$$
\begin{equation*}
w_{x x}^{\prime \prime}+w_{y y}^{\prime \prime}=\frac{1}{\rho^{2}} w_{u u}^{\prime \prime}+\frac{1}{\rho} w_{\rho}^{\prime}+w_{\rho \rho}^{\prime \prime} \tag{6}
\end{equation*}
$$

Second step. We must replace ρ and z by r and $u+v$ using the formulae

$$
\begin{aligned}
& \rho=a+r \cos (u+v) \\
& z=r \sin (u+v)
\end{aligned}
$$

We obtain

$$
\begin{equation*}
w_{\rho \rho}^{\prime \prime}+w_{z z}^{\prime \prime}=w_{r r}^{\prime \prime}+\frac{1}{r} w_{r}^{\prime}+\frac{1}{r^{2}} w_{v v}^{\prime \prime}=\frac{1}{r}\left(r w_{r}^{\prime}\right)_{r}^{\prime}+\frac{1}{r^{2}} w_{v v}^{\prime \prime} \tag{7}
\end{equation*}
$$

Then we sum (6) and (7):

$$
\begin{equation*}
w_{x x}^{\prime \prime}+w_{y y}^{\prime \prime}+w_{z z}^{\prime \prime}=\frac{1}{\rho^{2}} w_{u u}^{\prime \prime}+\frac{1}{\rho} w_{\rho}^{\prime}+\frac{1}{r}\left(r w_{r}^{\prime}\right)_{r}^{\prime}+\frac{1}{r^{2}} w_{v v}^{\prime \prime} \tag{8}
\end{equation*}
$$

Third step. Computation of the term $\frac{1}{\rho} w_{\rho}^{\prime}$:
We differentiate $w(u, v, r)$ by $\rho,(u=$ const $)$

$$
\begin{equation*}
w_{\rho}^{\prime}=w_{r}^{\prime} r_{\rho}^{\prime}+w_{v}^{\prime}(u+v)_{\rho}^{\prime} \tag{9}
\end{equation*}
$$

where $r_{\rho}^{\prime}=\cos (u+v)$ and $(u+v)_{\rho}^{\prime}=-\frac{\sin (u+v)}{r}$.
So,

$$
\Delta w=\frac{1}{\rho^{2}} w_{u u}^{\prime \prime}+\frac{1}{r}\left(r w_{r}^{\prime}\right)_{r}^{\prime}+w_{r}^{\prime} \frac{\cos (u+v)}{\rho}-w_{v}^{\prime} \frac{\sin (u+v)}{r \rho}+\frac{1}{r^{2}} w_{v v}^{\prime \prime}
$$

The last equality can be finally written in the following way

$$
\Delta w=\frac{1}{\rho^{2}} w_{u u}^{\prime \prime}+\frac{1}{r}\left(r w_{r}^{\prime}\right)_{r}^{\prime}+w_{r}^{\prime} \frac{\cos (u+v)}{\rho}+\frac{1}{r^{2} \rho}\left(\rho w_{v}^{\prime}\right)_{v}^{\prime}
$$

References

[1] B. Budag, S. Fomin: Multiple Integrals and Series, Moscow, Nauka, 1967 (In Russian).
[2] M. Naidenova, G. Kostadinov, N. Milev A. Hristov: Toric Vector Fields and Applications, Sc. Res. of the Union of Scientists in Bulgaria Plovdiv, series B, v. 12, (2010), 408-412.

Milka Naidenova, George Kostadinov
Faculty of Mathematics and Informatics
Plovdiv University "Paisiy Hilendarski"
236, Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: milkanaid@uni-plovdiv.bg, geokost@uni-plovdiv.bg
Mariyan Milev
Department of Informatics and Statistics
University of Food Technologies
bul. Maritza 26,
4002 Plovdiv, Bulgaria,
e-mail: marian_milev@hotmail.com

[^0]: ${ }^{1}$ This paper is partially supported by the Department for Scientific Research in the Plovdiv University "Paisiy Hilendarski", contract FMI-47, 2009.

