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Abstract. The main aim of this paper is to obtain fixed point theorems
for Kannan and Zamfirescu operators in the presence of cyclical contractive
condition. A method for approximation of the fixed points is also provided,
for which both a priori and a posteriori error estimates are given. Our results
generalize, unify and extend several important fixed points theorems in litera-
ture. In order to illustrate the efficiency of our generalizations five significant
examples are also given.

Keywords: fixed point, cyclical operator, contractive condition, Kannan
operators, Zamfirescu operators, error estimates

2010 Mathematics Subject Classification: 47H10, 54H25

1. Introduction

One of the most important results used in nonlinear analysis is the well-
known Banach’s contraction principle which basically shows that any contrac-
tion on a complete metric space (X, d), that is any mapping T : X → X
satisfying

(1) d(Tx, Ty) ≤ ad(x, y), for all x, y ∈ X,

where 0 ≤ a < 1 is a constant, has a unique fixed point. Notice that any
contraction is continuous on X. It is natural to ask if there exist contractive
conditions which do not imply the continuity of T all over the whole space
X. This was answered in the affirmative way by R. Kannan [4] in 1968, who
proved a fixed point theorem, which extends Banach’s contraction principle to
mappings that don’t need to be continuous, by considering instead of (1) the
next condition: there exists a ∈ [0, 0.5) such that

(2) d(Tx, Ty) ≤ a
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X.

Following the Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point theorems for various classes of contractive type conditions that do
not require the continuity of T . One of them, actually a sort of dual of Kannan
fixed point theorem, due to Chatterjea [3], is based on a condition similar to
(2): there exist c ∈ [0, 0.5) such that

(3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X.

Rhoades proved in [11], that the contractive conditions (1), (2) and (3),
as well as (1) and (2), respectively, are independent. In 1972, Zamfirescu
obtained a very interesting fixed point theorem, which is a generalization of
Banach’s, Kannan’s and Chatterjea’s fixed point theorems. In [2] Berinde V.
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completed the Kannan’s and Zamfirescu’s fixed point theorem with the error
estimates and the rate of the convergence for the Picard iteration.

On the other hand, in [5] W.A. Kirk, P.S. Srinivasan and P. Veeramani
obtained an extension of Banach’s fixed point theorem by considering a cyclical
contractive condition, as given by the next theorem.

Theorem 1.1. ([5]) Let A and B be two nonempty closed subsets of a
complete metric space, and suppose T : A∪B → A∪B satisfies the following
conditions:

(4) T (A) ⊆ B and T (B) ⊆ A;

and

(5) d(Tx, Ty) ≤ ad(x, y), for all x ∈ A, y ∈ B.

where a ∈ (0, 1). Then T has a unique fixed point in A ∩B.

Further in [5], this theorem was extended to the union of p ≥ 2 nonempty
sets, A1, A2, ..., Ap, Ap+1 = A1. A mapping T :

⋃p
i=1 Ai →

⋃p
i=1 Ai satisfying

(6) T (Ai) ⊆ Ai+1 for all i ∈ {1, 2, . . . , p},
is called a cyclical operator. Also, inspired by the results in [5], other fixed
point theorems were obtained. In [6, 9, 14] it was defined the notion of cyclical
representation of the space X with respect to the operator T and fixed points
theorems were obtained for mappings defined on these cyclical representation.
Also in [7] other important results from the fundamental metric fixed point
theory were extended for cyclic assumptions, i.e., Chatterjea, Bianchini, Reich,
Hardy-Rogers, Ćirić, and in [8] the same author considered Ćirić-Reich-Rus
type operators.

Consequently, the main aim of this paper is to obtain the fixed point
theorems for Kannan and Zamfirescu operators using cyclical conditions. For
all fixed point theorems we will also provide error estimates.

It is possible in some of theorems with cyclic contractive conditions, for
part of the proofs to use [10]. For the sake of simplicity we prefer to use the
technique of the classical proof of Stefan Banach’s fixed point Theorem.

2. Fixed point theorem for cyclic Kannan operators

We extend the fixed point theorem of Kannan using cyclical assumptions.

Theorem 2.1. Let {Ai}p
i=1 be nonempty closed subsets of a complete

metric space X and suppose T :
⋃p

i=1 Ai →
⋃p

i=1 Ai, is a cyclical operator, i.e.
satisfies the condition (6), such that
(7)

d(Tx, Ty) ≤ a
[
d(x, Tx) + d(y, Ty)

]
, for all x ∈ Ai, y ∈ Ai+1, for 1 ≤ i ≤ p.

where a ∈ [
0, 1

2

)
is a constant. Then

(i) T has a unique fixed point x∗ in
⋂p

i=1 Ai.
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(ii) The Picard iteration {xn} given by

(8) xn+1 = Txn, n ≥ 0,

converges to x∗ for any starting point x0 ∈
⋃p

i=1 Ai;
(iii) The following estimates hold

(9) d(xn, x∗) ≤ λn

1−λd(x0, x1), n ≥ 0;

(10) d(xn+1, x
∗) ≤ λ

1−λd(xn, xn+1), n > 0;

where λ = a
1−a .

(iv) The rate of convergence of Picard iteration is given by

(11) d(xn, x∗) ≤ a
1−ad(xn−1, x

∗), n = 1, 2, . . .

Proof. Let x0 ∈
⋃p

i=1 Ai. So there exists i ∈ {1, 2, . . . , p} such that x0 ∈
Ai, and from (6) we have that x1 = Tx0 ∈ Ai+1. Then by (7) we get
d(x1, x2) ≤ a

1−ad(x0, x1). Therefore, denoting λ := a
1−a we have 0 ≤ λ < 1,

since a ∈ [
0, 1

2

)
, and the inequality d(x1, x2) ≤ λd(x0, x1). By induction,

we obtain d(xn, xn+1) ≤ λnd(x0, x1), n = 0, 1, 2 . . . . Thus, for any numbers
n,m ∈ N,m > 0 we have

(12) d(xn, xn+m) ≤ ∑n+m−1
k=n d(xk, xk+1) ≤ λn (1−λm)

1−λ d(x1, x0).

Since λ ∈ [0, 1) it results that λn → 0 which shows us that the sequence
{xn} is a Cauchy sequence in

⋃p
i=1 Ai, a subspace of a complete metric space.

Consequently {xn} converges to some x∗ ∈ ⋃p
i=1 Ai. However in view of

(6) the sequence {xn} has an infinite number of terms in each Ai, for all
i ∈ {1, 2, . . . , p}. Therefore x∗ ∈ ⋂p

i=1 Ai. So
⋂p

i=1 Ai 6= ∅.
Now, we will prove that x∗ is a fixed point of T . Let i ∈ {1, 2, . . . , p} such

that x∗ ∈ Ai and Tx∗ ∈ Ai+1. Then, by triangle inequality and (7), we get

d(x∗, Tx∗) ≤ d(x∗, xn+1)+d(xn+1, Tx∗) ≤ d(x∗, xn+1)+a[d(xn, xn+1)+d(x∗, Tx∗)].

Taking the limit when n →∞, we obtain d(x∗, Tx∗) = 0, i.e. x∗ is a fixed point
of T . We still have to prove that x∗ is the unique fixed point of T . Arguing
by contradiction, suppose there exists y∗ ∈ ⋂p

i=1 Ai such that x∗ 6= y∗ and
Ty∗ = y∗. From (7) we have

d(x∗, y∗) = d(Tx∗, T y∗) ≤ a[d(x∗, Tx∗) + d(y∗, T y∗)].

It results that d(x∗, y∗) = 0, a contradiction.
Letting m → ∞ in (12) we obtain the a priori estimate (9). Taking

x := xn−1 and y := xn in (7) we find: d(xn, xn+1) ≤ λd(xn−1, xn), and hence,
by induction,

d(xn+k, xn+k+1) ≤ λk+1d(xn−1, xn), k ≥ 0,

which yields
d(xn, xn+m) ≤ ∑m−1

k=0 d(xn+k, xn+k+1) ≤
≤ ∑m−1

k=0 λk+1d(xn−1, xn) ≤ λ
1−λ(1− λm)d(xn−1, xn).
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Letting m →∞ we obtain the a posteriori estimate (10).
(iv) Let i ∈ {1, 2, . . . , p} and x ∈ Ai, y ∈ Ai+1. By (7), and the triangle

rule, we obtain:

d(Tx, Ty) ≤ a
[
d(x, Tx)+d(y, Ty)

] ≤ a
{
[d(x, y)+d(y, Ty)+d(Ty, Tx)]+d(y, Ty)

}
,

which yields d(Tx, Ty) ≤ a
1−ad(x, y)+ 2a

1−ad(y, Ty), for all x ∈ Ai, y ∈ Ai+1, 1 ≤
i ≤ p. Now, taking x := xn−1 and y := x∗ (since x∗ ∈ ⋂p

i=1 Ai), we obtain the
relation (11). ¤

Notice that the assumption (i) in Theorem 2.1 was proved in [14] using
fixed point structure arguments.

3. Fixed point theorem for cyclic Zamfirescu operators

Zamfirescu’s theorem is a generalization of Banach’s, Kannan’s and Chat-
terjea’s fixed point theorems. About the Zamfirescu’s fixed point theorem we
can assert the following result.

Theorem 3.1. Let A1, A2, . . . , Ap, Ap+1 = A1 be nonempty closed sub-
sets of a complete metric space X and suppose T :

⋃p
i=1 Ai →

⋃p
i=1 Ai is

a cyclical operator, and there exist real numbers a ∈ [0, 1), b ∈ [0, 1
2) and

c ∈ [0, 1
2) such that for each pair (x, y) ∈ Ai×Ai+1, for 1 ≤ i ≤ p, at least one

of the following is true:
(z1) d(Tx, Ty) ≤ ad(x, y);
(z2) d(Tx, Ty) ≤ b

[
d(x, Tx) + d(y, Ty)

]
;

(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then
(i) T has a unique fixed point x∗ in

⋂p
i=1 Ai.

(ii) The Picard iteration {xn} given by (8) converges to x∗ for any starting
point x0 ∈

⋃p
i=1 Ai;

(iii) The following error estimates hold

(13) d(xn, x∗) ≤ λn

1−λd(x0, x1), n ≥ 0;

(14) d(xn+1, x
∗) ≤ λ

1−λd(xn, xn+1), n > 0;

(iv) The rate of convergence of Picard iteration is given by

(15) d(xn, x∗) ≤ λd(xn−1, x
∗), n = 1, 2, . . .

where λ = max
{
a, b

1−b ,
c

1−c

}
.

Proof. Let i ∈ {1, 2, . . . , p} and two points x ∈ Ai, y ∈ Ai+1. Using the metric
axiom’s it is easy to prove that each one of the three relations (z1), (z2), (z3)
can be written in the following equivalent manner (see [1]):

(16) d(Tx, Ty) ≤ λd(x, y) + 2λd(x, Tx),
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and

(17) d(Tx, Ty) ≤ λd(x, y) + 2λd(x, Ty),

where λ := max
{

a, b
1−b ,

c
1−c

}
.

(i) Let x0 ∈
⋃p

i=1 Ai and let xn = Tnx0, n = 1, 2, . . ., be the Picard se-
quence. It follows that there exist i ∈ {1, 2, . . . , p} such that x0 ∈ Ai and x1 =
Tx0 ∈ Ai+1, due to (6). In addition, from (17) we get d(x1, x2) ≤ λd(x0, x1),
which can be generalized by induction to d(xn, xn+1) ≤ λnd(x0, x1), n ≥ 0.
Thus, for any numbers n, m ∈ N,m > 0 we have

(18) d(xn, xn+m) ≤ ∑n+m−1
k=n d(xk, xk+1) ≤ λn(1−λm)

1−λ d(x1, x0).

Now, in a similar manner to that in the proof of Theorem 2.1 we deduce
that {xn} is a Cauchy sequence for each x0 ∈

⋃p
i=1 Ai and hence a convergent

sequence, too. Let x∗ be it’s limit. In view of (6) an infinite number of terms of
this sequence lie in each Ai, for all i = 1, 2, . . . , p. Therefore x∗ ∈ ⋂p

i=1 Ai 6= ∅.
To prove that x∗ is a fixed point of T we will use (16):

d(x∗, Tx∗) = lim
n→∞ d(xn, Tx∗) ≤ lim

n→∞[λd(xn−1, x
∗) + 2λd(xn−1, xn)] = 0.

Therefore d(x∗, Tx∗) = 0. Now, suppose that T has another fixed point y∗ ∈⋂p
i=1 Ai, x∗ 6= y∗. Again, by using (16), we obtain

d(x∗, y∗) = d(Tx∗, T y∗) ≤ λd(x∗, y∗) + 2λd(x∗, Tx∗),

which implies d(x∗, y∗) = 0, since λ < 1, i.e., x∗ is the unique fixed point of T
in

⋂p
i=1 Ai.
(iii) Letting m →∞ in (18) we obtain the a priori estimate (13). Taking

x := xn and y := xn−1 in (17) we find:

(19) d(xn, xn+1) ≤ λd(xn−1, xn),

and hence, by induction:

d(xn+k, xn+k+1) ≤ λk+1d(xn−1, xn), k ≥ 0,

which yields

d(xn, xn+m) ≤ ∑m−1
k=0 d(xn+k, xn+k+1) ≤

≤ ∑m−1
k=0 λk+1d(xn−1, xn) ≤ λ(1−λm)

1−λ d(xn−1, xn).

Letting m →∞ in the last inequality we obtain the a posteriori estimate (14).
(iv) Let x ∈ ⋃p

i=1 Ai. Then for any n > 0 there exists in ∈ {1, 2, . . . , p}
such that xn ∈ Ain . Since x∗ ∈ ⋂p

i=1 Ai we can consider x∗ ∈ Ain+1. Then by
(16), with x := x∗ and y := xn, we get the desired inequality. ¤
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4. Remarks and Examples

In a similar manner, it is easy to prove the following fixed point result
which extends Banach’s fixed point theorem, when the map T is defined on
the union of p > 1 nonempty sets. This result completes Theorem 1.1 with
error estimates and the rate of the convergence.

Corollary 4.1. Let {Ai}p
i=1 be nonempty closed subsets of a complete

metric space, and suppose T :
⋃p

i=1 Ai →
⋃p

i=1 Ai is a cyclical mapping, i.e.

T (Ai) ⊆ Ai+1 for all i ∈ {1, 2, . . . , p},
where Ap+1 = A1, and

d(Tx, Ty) ≤ ad(x, y)
for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p, where a ∈ [0, 1) is a constant. Then

(i) T has a unique fixed point x∗ in
⋂p

i=1 Ai;
(ii) The Picard iteration {xn} defined by (8) converges to x∗, for any x0 ∈⋃p

i=1 Ai;
(iii) The following a priori and a posteriori error estimates

(20) d(xn, x∗) ≤ an

1−ad(x0, x1), n ≥ 0;

(21) d(xn, x∗) ≤ a
1−ad(xn−1, xn), n > 0;

hold;
(iv) The rate of convergence of Picard iteration is given by

(22) d(xn, x∗) ≤ ad(xn−1, x
∗), n = 1, 2, . . .

We will illustrate the obtained results by some examples.
Example 4.1: Consider the space C[0,1] endowed with the metric

d(f, g) = max
x∈[0,1]

|f(x)− g(x)|.
Define the subsets A =

{∑n
k=0 αkx2k, αk ≥ 0,

∑n
k=1 αk ≤ 1, n ∈ N}

and B ={∑n
k=1 βkx2k−1, βk ≥ 0,

∑n
k=1 βk ≤ 1, n ∈ N}

of C[0,1]: By definition the sets A and
B are closed and bounded subsets in C[0,1]. Define the map T : C[0,1] → C[0,1] by
Tf = 1/2

∫ x

0
f(t)dt. We will show that the map T satisfies the conditions of Theorem

1.1. Let f ∈ A. We need the show that Tf is in B.
Case I) Let f(x) =

∑n
k=1 αkx2k, αk ≥ 0,

∑n
k=1 αk ≤ 1. Then

Tf = 1/2
∫ x

0

f(t)dt = 1/2
∫ x

0

∑n
k=1 αkt2k =

∑n
k=1

αk

2(2k+1)x
2k+1 ∈ B,

because
∑n

k=1
αk

2(2k+1) ≤ 1.

Case II) There exists a sequence fn(x) =
∑pn

k=1 α
(n)
k x2k, α

(n)
k ≥ 0,

∑n
k=1 α

(n)
k ≤ 1,

which is uniformly convergent to f . By the uniform convergence of {fn}∞n=1 we have
that limn→∞ 1

2

∫ x

0
fn(t)dt = 1

2

∫ x

0
f(t)dt.

By Case I) we have 1
2

∫ x

0
fn(t)dt =

∑pn

k=1 β
(n)
k x2k+1 = gn ∈ B, where β

(n)
k =

α
(n)
k

2(2k+1) . By the uniform convergence of the sequence {fn}∞n=1 we have that for every
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ε > 0 there exists N ∈ N, such that for every n,m ≥ N holds

max
x∈[0,1]

|fn(x)− fm(x)| < ε.

Then it is easy to see that
maxx∈[0,1] |gn(x)− gm(x)| ≤ 1

2 maxx∈[0,1]

∣∣∣∑pn

k=1 α
(n)
k x2k −∑pm

k=1 α
(m)
k x2k

∣∣∣
= 1

2 maxx∈[0,1] |fn(x)− fm(x)| < ε, which ensures that {gn}∞n=1 is a Cauchy sequence
in B. Therefore there exists g ∈ B, such that limn→∞ gn = g and thus 1

2

∫ x

0
f(t)dt =

g ∈ B.
The proof that T (B) ⊆ A is similar. It is well known that T is a contraction.

The constant zero is a fixed point of the map T and 0 ∈ A ∩B.
Let us mention that the sets A and B consists not only of polynomial functions.

For example 1
4ex2 ∈ A. Indeed 1

4ex2
= limn→∞

(
1
4 +

∑n
k=1

x2k

4.k!

)
. Thus the function

1
8

∫ x

0
ex2

dx is in B.
Example 4.2: Consider the function f(x) = − sign(x)

3 |x sin(1/x)| if x 6= 0 and
f(0) = 0. Obviously f : [0, π] → [−π, 0] and f : [−π, 0] → [0, π]. It is easy to see
that for x ∈ [0, π] and y ∈ [−π, 0] holds |f(x)− f(y)| ≤ 1

3 (|f(x)− x|+ |f(y)− y|) and
for y ∈ [0, π] and x ∈ [−π, 0] holds |f(x) − f(y)| ≤ 1

3 (|f(x) − x| + |f(y) − y|). So f
satisfies all the conditions of Theorem 2.1 and thus it has a fixed point which is the
intersection of the sets [0, π] and [−π, 0].

It is interesting in this example that there is no a constant a > 0 such that
|f(x)− f(y)| ≤ a|x − y|. Indeed if we take xn = 1

2nπ+ 1
n

and yn = 1
2nπ then we have

limn→∞
|f(xn)−f(yn)|
|xn−yn| = limn→∞

2nπ sin(1/n)
3/n = +∞ and therefore there is no a > 0 so

that |f(xn)− f(yn)| ≤ a|xn − yn|.
Example 4.3: Consider the map T ({xk}) = {f(xk)}∞k=1, where f is the function

defined in Example 4.2, T : `2 → `2.
Consider the sets A1 = {{xk}k=1 :

∑∞
k=1 x2

k ≤ 1, xk ≥ 0} and A2 = {{xk}k=1 :∑∞
k=1 x2

k ≤ 1, xk ≤ 0}. Obviously T : A1 → A2 and T : A2 → A1. It is easy to show,

that for x = {xk}∞k=1 and y = {yk}∞k=1 ∈ A2 holds ‖Tx−Ty‖ ≤ 1
3
(‖Tx−x‖+‖Ty−y‖).

So T satisfies all the conditions of Theorem 2.1 and thus it has a fixed point which is
the intersection of the sets A1 and A2.

Example 4.4: Consider the sets: A1 = {0} ∪ {
1
n

}∞
n=1

∪ {−1
2n

}∞
n=1

and A2 =

{0} ∪ {−1
n

}∞
n=1

∪
{

1
2n−1

}∞
n=1

. Define the map

Tx =





− x

x + 4
, x ∈ A1

−x

4
, x ∈ A2

It is easily to be checked that T (A1) ⊆ A2 and T (A2) ⊆ A1.
For any x ∈ A1 and any y ∈ A2 we have the chain of inequalities |Tx − Ty| =∣∣∣ x

x+4 − y
4

∣∣∣ ≤ 1
3 (|x| + |y|) ≤ 1

3

(∣∣∣ −x
x+4 − x

∣∣∣ +
∣∣−y

4 − y
∣∣
)

= 1
3 (|Tx − x| + |Ty − y|). So

T satisfies all the conditions of Theorem 2.1 and thus it has a fixed point x∗ = 0 ∈
A1 ∩ A2. It is interesting in this example that the intersection of A1 and A2 is with
empty interior.
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Example 4.5: Consider the sets: A = [0, 1]
⋃ (⋃∞

n=1

[ −1
22n−1 , −1

22n

])
,

B = [−1, 0]
⋃ (⋃∞

n=1

[
1

22n , 1
22n−1

])
. Define the map Tx = −x

4 . Then T satisfies the
conditions of Theorem 1.1.

It is easy to see that T
(⋃∞

n=1

[ −1
22n−1 , −1

22n

]) ⊆ (⋃∞
n=1

[
1

22n , 1
22n−1

])
and

T
(⋃∞

n=1

[
1

22n , 1
22n−1

]) ⊆ (⋃∞
n=1

[ −1
22n−1 , −1

22n

])
and 0 is the fixed point of T . The inte-

rior of the intersection A ∩ B is not an empty set, but the fixed point of T is not in
the interior of A ∩B.

For any x0 ∈ A∩B, xn = Txn−1 ∈ A∩B and for any x0 6∈ A∩B, xn = Txn−1 6∈
A ∩B.
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