
THE DESIGN AND ANALYSIS OF CONTEXT-AWARE,
SECURE WORKFLOW SYSTEMS

Hind Alotaibi, Hussein Zedan

Abstract. Workflows are set of activities that implement and realise business
goals. Modern business goals add extra requirements on workflow systems and their
management. Workflows may cross many organisations and utilise services on a
variety of devices and/or supported by different platforms. Current workflows are
therefore inherently context-aware. Each context is governed and constrained by its
own policies and rules to prevent unauthorised participants from executing sensitive
tasks and also to prevent tasks from accessing unauthorised services and/or data. We
present a sound and multi-layered design language for the design and analysis of
secure and context aware workflows systems.

Keywords: business processes, workflows systems, workflow execution
2010 Mathematics Subject Classification: 68P20

1. Introduction

The evolution of businesses is related primarily to the evolution of their environ-
ment. The environment could be of technological and/or social nature. This continual
evolution necessitates the re-engineering and optimisation of existing business pro-
cesses with the objective of reducing costs, delivering timely services, and enhancing
their competitive advantage in the market.

The fundamental idea of workflow technology is to separate business policies
from the underlaying business applications, hence enhancing the evolution of busi-
ness processes and improving the re-engineering at the organization level without
delving into the application details.

Workflow systems are currently being used in numerous business application
domains including office automation, finance and banking, health-care, telecommu-
nications, manufacturing and production.

We take the view that a workflow is a set of coordinated activities that achieve
a common business objective. Activities may be carried out by humans, application
programs, or processing entities according to the organisational rules relevant to the
process represented by the workflow. Activities within a workflow are usually related
and dependent upon one another, which in turn are specified by a set of execution
constraints which play a key role in supporting various workflow specifications such
as concurrency, serialization, exclusion, alternation, compensation and so on. For
example, a workflow scenario for the management of a warehouse organises and
controls the movement and storage of goods within a warehouse. This is achieved
through the definition and processing of complex transactions, including shipping,
receiving, put away, picking and issuing of goods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62659900?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

236 Anniversary International Conference REMIA2010

Workflow execution can involve a large number of different participants, ser-
vices and devices which may cross the boundaries of various organisations. This
raises important issues that are related to, for example, context-awareness and secu-
rity. It is therefore important to be able to specify exact rules to prevent unauthorised
participants from executing sensitive tasks and also to prevent tasks from accessing
unauthorised services. For example, medical scenarios will require that only autho-
rised doctors are permitted to perform certain tasks and that only specific machines
are used in those tasks. If a workflow execution cannot guarantee these requirements,
then the flow will be rejected.

Furthermore, workflows can hold and manipulate various data with different
security requirements and it is important to enforce these requirements while the data
is accessed in a workflow instance. Delegations, constraints over authorisations, audit
and integrity provide additional security features. We adopt a policy-based approach
in which rules are specified compositionally as policies which can be analyesed and
continually verified at run-time.

Currently, there is no commonly accepted model for secure workflows or even
a consensus on which features a workflow security model should support. Most pol-
icy models that are available today [3, 10] are of a static nature — it is difficult to
express security requirements that are dependent on time or the occurance of events.
Temporal aspects of access control are especially important in domains ranging from
E-business to military domain where the value of tactical information, and therefore
its protection requirements, are highly dependent on time (e.g. time to mission start)
and events (e.g. adversary action, or coalition formation).

Other work [4, 5] has recognised the need for more expressive security policies
to capture the temporal dimension of access control, however, these models lack
compositionality. By compositionality we mean that the overall security policy can
be composed out of smaller policies. This is advantageous as each policy can capture
specific requirements that can be validated and verified individually and are then
composed to form the overall system policy. The novelty of our model is that it does
not only allow for the composition along a structural axis, e.g. composing policies for
different departments/organisations, but also along a temporal dimension to account
for the dynamic change of policies over time and on the occurrence of events.

This paper present a novel model for the design and analysis of secure workflow
in which security requirement are expressed formally in the form of sound policies
and are enforced through a dedicated agent-based sub-system. The paper is organised
as follows. Section 2 gives a detailed account of our computational model together
with the design language S-Flow. A closed-layer superstructure is given Section 3
facilitating both design and analysis of workflows. The paper ends with a short review
of related work (Section 4) and some reflections and future work (Section 5).

10-12 December 2010, Plovdiv, Bulgaria 237

2. Computational model

This section outlines the computational model of workflow system.

2.1. Activity. Our unit of computation in a workflow system is an activity which
describes a piece of work that contributes toward the accomplishment of a given
(functional and business) goal. An activity starts, executes and then terminates. As-
sociated with an activity is one or more context. Contexts can be an organisation,
a device, a service (e.g. web-based service) or a computational environment. An
activity starts in one context and may terminates in a different context.

Each context is governed by a set of security policies which are continually
changing due to either the occurrence of an event and/or the passage of time. We have
chosen not to make context as a first class citizen. Our rational is that externalising
policies of an activity and allowing such policies to adapt to its context, we are able
to model the changes in context by adequately changing policies, and also gives us
the added value that policies can still be changed within a single context.

In our model, activities may be composed concurrently to produce a new activity
which terminates if and only if all of its components terminate, i.e. we adopt the
distributed termination convention. Further, without loss of generality, we assume a
single clock for an instant of a workflow.

2.2. Policies. Research on policies has mainly concentrated on the development of
more expressive languages and models for the specification of security and man-
agement requirements. With the increased expressiveness tool-support has been de-
veloped to assist in the specification process and also to support the analysis w.r.t.
properties such as conflicts, completeness or information-flow. However, increased
expressiveness affects not only the specification of policies, but also the design and
implementation of concrete enforcement mechanisms. The gap between policy spec-
ification and the implementation of enforcement mechanisms can lead to insecure
systems, as the overall security of the system relies heavily on the correctness of the
enforcement mechanism. Typically support for the enforcement is provided together
with the policy languages. These mechanisms are however mostly developed with-
out an underlying formal model and rely solely on the developer to have matched
the semantics of the policy language. To bridge the gap between policy specification
and the development of concrete enforcement mechanisms we show in this paper
how enforcement code that guarantees the correct enforcement of the policy can be
derived.

Further, our policies may also be annimated in the first instant to give the de-
signer some initial confidence before the derivation of the enforcement.

Within workflow systems, access control policies play a fundamental role. A tra-
ditional access control policy is expressed in terms of subjects, objects and actions.
Subjects represent active entities, such as users and processes, that can be authenti-
cated within the system. The system state is represented by objects. Objects can only
be modified by the execution of actions on request of authenticated subjects. The
access control policy determines whether a subject is allowed to perform an action

238 Anniversary International Conference REMIA2010

on an object, or not. For example in the context of web-services a service is seen as a
resource that is provided within a workflow system, to which access is controlled. A
service can also request other services and is actively involved in computation. In our
policy model, a web-service can therefore be seen as both object and subject. The
type of request made to the web-service is modelled as an action.

The security policies are enforced by an agent. Security policies describe prop-
erties that an activity must implement. Compliance with the policy is ensured by
the security mechanisms that enforce the policy on the system. Security policies
themselves are an invaluable asset to any organisation as they concisely express the
underlying protection requirements. Access control policies are defined in terms of
rules that capture access control requirements [2]. The general form of a rule is:

premise−→ consequence

The premise of a rule determines when the rule fires and the consequence of the rule
determines the outcome of the rule, i.e. an access control decision. We follow this ap-
proach, but allow the premise of a rule to express a behaviour rather than a predicate.
The intuition is that an authorisation can be dependent on the history of execution
rather than only the currently observable state. This allows the expression of history
dependent authorisations such as the Chinese Wall Policy [6]. The following example
shows such a rule which is expressed purely in ITL.

(1)

(
3do(s,o,a) ∧ clientin f o(c,o) ∧

sepconcern(c,c′) ∧ clientin f o(c′,o′)

)
7→ autho−(s,o′,a)

Where the predicate do(s,o,a) denotes that subject s performs action a on object
o. The predicate clientin f o(c,o) means that object o belongs to client c and where
sepconcern(c,c′) denotes that client c and client c′ are in separation of concern. The
rule given in Eq. 1 then states that when a subject has at some point in time accessed
information regarding a client, the same subject cannot (negative authorisation de-
noted by autho−) access information about a client that is in a separation of con-
cern relationship. The right-hand side of a rule in the security model contains either
the variable autho, autho+ or autho−. This allows to express hybrid access control
policies, in which both positive authorisation (autho+) and negative authorisation
(autho−) can be expressed. In case of conflicts, i.e. a subject has both positive and
negative authorisation, a conflict resolution rule (autho) determines the actual access
decision. Eq. 2 shows a conflict resolution rule, stating that a negative authorisation
takes precedence over a positive authorisation.

(2) autho+(S,O,A) ∧ ¬autho−(S,O,A) 7→ autho(S,O,A)

The presented policy language is a powerful tool to express assertions on the
agents’ behaviours. Thanks to its compositionality it allows the policy designer to de-
compose otherwise complex policies into small, comprehensible components. Rules
in the model are complex, due to the ability to express consequences based on past

10-12 December 2010, Plovdiv, Bulgaria 239

behaviour. On the other hand this expressiveness keeps rules for complex require-
ments small, especially when a behavioural description of a rule’s premise is natural.

A simple policy is a set of rules that describe a condition under which a specific
action may be taken. This condition can be a temporal formula describing the past
behaviour of the agent.

2.3. The design language S-Flow. Our computational model is supported by a de-
sign language, known as Secure-Flow (S-Flow), with which we are able to design
and analyse workflows.

• Activities
A ::= < P >: (PA C̄A)

• Policies
P ::= p ¯P ; Q ¯〈w〉P ¯ [w]P t̄ : P ¯P∗ ¯P¤t

w Q : R ¯P‖Q
• Primitive Activities

PA ::= x := v ¯skip ¯∆(t) ¯ [t1 . . . tn]A C̄ ! v C̄ ? x
• Compound Activities

CA ::= A1 ; A2 ¯A1 ‖ A2 ¯A1 .e
t A2 ¯A∗ ¯g1 → A1 2 g2 → A2

The informal semantics of these constructs are as follows.

• < P >: A is an activity A which is governed by a set of policies p. Here we
have not made the context, within which the activity is to be executed, a first
class citizen. Instead we have assumed that any context information will be
encoded within the policies. There is a number of rich operators that can be
used to compose policies. Let p denotes a simple policy, w denotes a state
formula, t a natural number, P,Q and R range over policies. The informal
description of the operators follows. Policy composition can be used for the
incremental development of security policies. The advantage of this approach
is that small policies are easier to comprehend and verify. The compositional
operators can then be used for the integration of the overall system policy.

– P ; Q: Sequential composition of two policies. The system is first gov-
erned by policy P and then by policy Q.

– 〈w〉P: The system is governed by policy P unless w holds. The state
formula w can here indicate the happening of an event.

– [w]P: The system is governed by policy P as long as w holds.
– t : P ; defines that policy P is enforced for t time-units.
– P∗ : defines an iteration of policy P.
– P¤t

w Q : R : Behaves like policy P until a condition w becomes true or t
time-units elapse. It then changes to behave like R if w is true or like Q
otherwise.

– P‖Q : Both, policy P and policy Q apply at the same time.
• Activities vary from primitives to compound:

240 Anniversary International Conference REMIA2010

– x := v describes an activity that assigns the value v to a variable x.
– ∆(t) is an activity that delays a workflow by a duration of t time.
– skip is a null activity.
– [t1 . . . tn]A describes an activity A that will take either t1, or t2, or tn time

units.If n = 1, the activity will take exactly a t time. This is a powerful
construct as it provides a greater flexibility at execution time of a work-
flow. At run time, the scheduler will have the choice between the various
deadlines which will depend on the available resources.

– C ! v and C ? x describes how activities are communicating with each
others: C !v is an activity that send the value v over the channel C;
whilst C ? x describes an activity that receives a value over a channel C
and stores it in x.

– A1 ; A2. It is an activity which starts with a sub-activity A1 and upon
its proper termination, the sub-activity A2 begins. Here we assume that
the sequential composition is instantaneous. However, to model time
consumption, we may utilise the delay activity ∆(t).

– A1 ‖ A2. This the parallel composition activity. The activities A1 and
A2 execute concurrently and the whole activity terminates if and only if
both sub-activities terminate.

– A∗. This describe an activity in which A repeats itself.
– A1 .e

t A2. This is an activity that starts with the activity A1. Then A2 starts
if either a t time units has elapsed or an event e has occurred whichever
happens first. The t and e are optional :

∗ A1 . A2. This is an activity which is equivalent to A1.
∗ A1 .e A2. This is an activity which starts with A1 and only if an

event e occurs then A2 takes over, i.e it acts as an interrupt.
∗ A1 .t A2. Here the activity starts with A1 and after a t time units

elapsed activity A2 starts. Notice here that t is not related to the
execution time of A1. For example, if t = 0 then .t A2 is equiv-
alent to A2. However, if t is greater than the execution time of
A1, then its termination has to be delayed until t elapsed, then A2
starts.

– g1 → A1 2 g2 → A2. This activity is to model non-deterministic choice.
The guards g1 and g2 are boolean expression which are evaluated at the
start of the activity. If both guards are false, the activity is failed.If both
are evaluated to true, then one of the associated subactivities is chosen
at random and executed.

Let us consider the following simple but illustrative example.

Example 1. A travel reimbursement processing workflow (Reimb) can typically
has four activities: A1 - Preparation of the claim; A2 - Approving claim; A3 - Issuing
a check; and A4 - Notification of declination.

There is obvious dependencies between these activities. For example A2 can not
start before A1 properly terminates and that either of A3 or A4 can only starts after

10-12 December 2010, Plovdiv, Bulgaria 241

the proper termination of A2. There are also security policies governing each of these
activities. Only a customer can complete the claim, A supervisor is the only person
who can approve the claim and A clerk can notify customer and/or issuing check are
just few security requirements constraining the workflow.. Using S-Flow, we can
design Reimb as follows.

Let Status be a state variable denoting the status of the claim and let C1,C2 and
C3 be communication channels between the activities. The whole workflow system
can be expressed as:

Reimb =̂ A1 ; [20]A2 ; (Status → A3 2 ¬Status → [5]A4)

Note here that the Supervisor in A2 must make a decision within 20 time units and
that the Clerk should notify the customer by the decision within 5 time units. Here
we only give a full specification of A1:

A1 =̂ < (S = Customer ∧ O = ClaimForm ∧ a = f ill)

7→ autho(S,O,a) > : Complete ; C1!C f orm
I.e. only a customer can fill the claim and, once completed, it is sent via channel C1.

2.4. Formal Semantics. In security critical workflows it is paramount that the lan-
guage to express design and policies has a sound and formal basis that can be used for
the analysis and proof of properties such as conflicts, completeness or information-
flow. The formal semantics of S-Flow is given in a specification-oriented style ex-
pressed in ITL. An important reason of choosing ITL is the availability of an exe-
cutable subset of the logic, known as Tempura [7]. The Tempura interpreter takes
a Tempura formula and constructs the corresponding sequence of states. The use
of ITL, together with its subset of Tempura, offers the benefits of traditional proof
methods balanced with the speed and convenience of computer-based testing through
execution and simulation. The entire process can remain in one powerful logical and
compositional framework. We recall that our semantics domain is interval-based. An
interval is defined to be a (in)finite nonempty sequence of states σ =̂ σ0σ1 . . ., where
each state σi is a value assignment which associates an integer number with each
variable:

σi ∈ Σ =̂ Var → N.

We also denote by Σ+ and Σω the sets of finite intervals and the set of infinite intervals
respectively. The semantics of an activity A is a function

M [[A]] ∈ (Σ+∪Σω)→{tt, ff},
defined inductively on the structure of activities as follows.

M [[< P >: (PA C̄A)]](σ) =̂ P ∧ (M [[PA]](σ) ∨ M [[CA]](σ))

M [[x := v]](σ =̂ ©(x) = v
M [[skip]](σ) =̂ σ̄=̄1

M [[∆(t)]](σ) =̂ σ̄=̄t

242 Anniversary International Conference REMIA2010

M [[[t1 . . . tn]A]](σ) =̂ ∃ i ∈ {1 . . .n}˙σ̄¯ = ti ∧ M [[A]](σ)

M [[C ! v]](σ) =̂ fin c = v
M [[C ? x]](σ) =̂ fin x = c

M [[A1 ; A2]](σ) =̂ M [[A1]](σ) ; M [[A2]](σ)
M [[A1 ‖ A2]](σ) =̂ M [[A1]](σ) ∧ M [[A2]](σ)

M [[A1 .e
t A2]](σ) =̂ (e∧M [[A2]] ∨ (M [[A1]](σ)∧(2¬e)∧ len < t) ∨((M [[A1]](σ)∧

(2¬e)∧ len < t);skip;(M [[A2]](σ)∧ e)) ∨ ((M [[A1]](σ)∧ (2¬e) ,provided 0 < t <
∞.

M [[(A∗)]](σ) =̂ (M [[(A)]])(σ)∗

M [[g1 → A1 2 g2 → A2]](σ) =̂ (g1 ∧ M [[A1]](σ)) ∨ (g2 ∧ M [[A2]](σ)) ∨ false

3. Layers: a design principle

Two classes of properties are of particular interest when we consider any com-
puter systems. These are safety and liveness properties. For large concurrent systems
(such as workflows), current techniques are complex when applied to highly concur-
rent systems where context can also vary during its execution.

We present the notion of Information-closed layer as (a) design principle of
secure workflow applications. (b) a programming construct which can offer a lin-
guistic support for information flow security and (c) an efficient approach for both
static and dynamic analyses for information security with an application such as
that found in workflows. The concept is sound in the sense that it has a solid founda-
tion in mathematics and verification.

3.1. Layer Construction. Without lose of generality, a worflow system, Sys, with n
sequential activities, takes the general form

Sys =̂ A1 ‖ A2‖ . . . ‖ An 2cm (1)
where

∀i,∃ j . Ai=̂S1
i ; S2

i ; . . . ; S j
i

and that each Sk
i is a primitive activity.

3.2. Communication Layers. Analysing a concurrent workflow is hard. To facili-
tate this process we present a transformation theory that transform a given concurrent
workflow into what we call quasi-parallel workflow. This provides a super structure
over the usual activity-based structure.

let us consider the system given in (1) and let each Ai be
Ai =̂ S1

i ; S2
i ; . . . ; S j

i .
Let us also assume without lose of generality that all processes have the same

number of primitive processes. The rationale is that the shorter process can be padded

10-12 December 2010, Plovdiv, Bulgaria 243

by as many as required with Skip activity without altering its original semantics. For
example, the activities A1, A2 and A3 are all semantically equivalent:

A1 =̂ S1
1

A2 =̂ Skip ; S1
1

A3 =̂ S1
1 ; Skip

Let us consider a simple concurrent system, S1:
S1 =̂ A1 ‖ A2
where

A1 =̂ x := a ; C?y ; z := x+ y
A2 =̂ C!w

We can have a number of superstructures generated from S1. For example, here
are just two of such superstructures.

S2 =̂ L1 ; L2 ; L3
where

L1 =̂ x := a ‖ Skip
L2 =̂ C?y ‖C!w
L3 =̂ z := x+ y ‖ Skip

The other is
S3 =̂ L1 ; L2 ; L3
where

L1 =̂ x := a ; C!w
L2 =̂ C?y ‖ Skip
L3 =̂ z := x+ y ‖ Skip

We may observe here that in L2 of S2, the communication over channel C starts
(via C!w) and completed (via C?y) within the same layer. In this case we call the
layer communication-closed. This case was not the same in L2 of S3, in which the
communication started in L2 and was completed in L3.

Definition 3.1. A layer is called communication-closed if a communication is
initiated and resolved in the same layer.

Communication-closed layers can be seen as atomic transaction providing a nat-
ural mechanism for designing fault-tolerant workflow system.

An important observation of note is that which of these superstructures (which
we will call layer structure) is semantically equivalent to the original process struc-
ture?

Theorem 3.2. A distributed workflow system Sys =̂ A1 ‖ A2‖ . . . ‖ An, such as
Ai =̂ S1

i ; S2
i ; . . . ; S j

i can be decomposed to a semantically-equivalent layer super-
structure, Sys1 =̂ L1 ; L2 ; ...Ln, where Li=̂S1

i ‖ S2
i ‖ . . . ‖ S j

i, if and only if, each Li
is communication-closed.

244 Anniversary International Conference REMIA2010

This result lead us to make the following observations:
• Layer structure will facilitate and simplify the process of verification of safety

and liveness properties. This is because the new structure transforms a highly
concurrent workflow into a set of quasi-sequential sub-workflows which each
can be analysed using currently available techniques used in sequential sys-
tems.

• At a design stage, the superstructure allows us to decompose security require-
ments across the activities. This ensures information flows securely and that
the boundary of the layer acts as a point in which information does leak from
a layer with security level to one with a lower level.

4. Related work

There are various approaches to deal with adaptability of workflows which can
be classified as run-time, automated and instance-based. However, none of them deal
with adaptation at a secure context level.

In [11], BPEL workflows are extended to support policies to look up, select and
bind partner services compliant with a port type defined within an activity in a work-
flow definition. Such a find-and-bind approach is not, unlike ours, context-based
neither compositional. In [8], a specific extension of the BPEL to allow adaptation
of interfaces to human operators. The approach and its accompanied architecture
(known as PerCollab) is still design-time, manual and evolutionary; it differs from
approaches such as [1, 9] due to its purely vertical, refinement-based nature. Simi-
larly, the work in [16] supports adaptation in declarative terms, focusing on the notion
of inheritance In [13], a minimal set of rules is used in order to enforce changes in
workflow instances. Such rules are essentially (though not exclusively) based on the
idea of refining the running code with specific instances. Such rules are designed in
a way that it is possible to formally guarantee that the adapted workflows are per-
sistently consistent and correct. The approach is not tailored to a specific work-flow
language, but it is defined on a generic formal model of workflow. In [14], the focus
is shifted to a suitable subset of the BPEL language. In both cases, the approach
is run-time and instance-based. However, the approach lacks the ability to change
policies according to change in contexts. Furthermore, a methodology to define dis-
tributed self-healing applications was devised. In such a setting, a first question they
address is that of diagnosability and reparability testing of workflows. A second one,
more relevant in our context, regards the enactment of self-healing mechanisms. In
this sense, an architecture is proposed that enriches the run-time support for the sake
of diagnosing and fault repairing, in order to enact self-healing of process instances,
and also to guarantee that certain QoS criteria are obeyed. The work is rather at
an infrastructural level, and concerns adapting single run-time workflow instances.
There are approaches that, while still related to (built-in) adaptation, take different
views and focus on different, and sometimes specific, issues. In the [12] approach,
the focus is rather on guaranteeing the soundness, based on well-founded semantics,
of adaptive workflows inside some given workflow management system. To achieve

10-12 December 2010, Plovdiv, Bulgaria 245

this, the authors inject workflows with semantic constraints of specific forms, paving
the way to their formal verification, both considering run-time instances and adapted
schemata of workflows. In [15], the focus is to guarantee the alignment between
adaptable process schemata and their run-time instances. In particular, changes to a
schema must reflect to the process instances, and because of misalignments, conflicts
of various kinds may arise. The work identifies methods to identify such conflicts,
based on execution equivalence and structural comparison.

5. Conclusion

Current workflows cross boundaries of organisations and may require services
which reside on different devices and/or operating on variety of platforms, security
issues have become crucial in their design and analysis. This is in addition to the
fact that workflows have become context-aware. Workflow systems must therefore
enforce the variety of security requirements as described by the current context in
which the workflow is executed. This paper described an approach for designing,
analysing workflows particular attention to security requirement and their distributed
enforcement.

There are many outstanding issues that need to be considered. Fundamental is
the management of security polices in the presence of context changes. this may
require appropriate changes in the computational model to cater for mobility and
dynamic change management. we shall consider this in another forthcoming paper.

6. Acknowledgement

The authors would like to thank colleagues in the Software Technology Re-
search Laboratory (STRL) for all the fruitful discussion and constructive comments,
specially, Drs. A. Cau, F. Siewe and B. Moskowzki.

H. Alotaibi particularly would like to acknowledge the financial support from
the Government of the Kingdom of Saudi Arabia.

The authors wish to acknowledge the support of the National Science Fund (Re-
search Project Ref. No. DO02-149/2008) as well.

References

[1] Worklets: A service-oriented implementation of dynamic flexibility in work-
flows. In OTM Conferences, volume 1, pages 291–308, 2006.

[2] Martín Abadi. Logic in Access Control. In Proceedings of the 18th Annual Sym-
posium on Logic in Computer Science (LICS’03), volume 15, pages 228–233,
Ottawa, Canada, June 2003. IEEE Computer Society Press.

[3] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A Calcu-
lus for Access Control in Distributed Systems. ACM Transactions on Program-
ming Languages and Systems, 15(4):706–734, September 1993.

246 Anniversary International Conference REMIA2010

[4] Steve Barker and Peter J. Stuckey. Flexible Access Control Specification with
Constraint Logic Programming. ACM Transactions on Information and System
Security, 6(4):501–546, November 2003.

[5] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A temporal
role-based access control model. ACM Transactions on Information and System
Security, 4(3):191–233, 2001.

[6] David Brewer and Michael Nash. The Chinese Wall Policy. In IEEE Symposium
on Research in Security and Privacy, pages 206–214, Oakland, California, USA,
May 1989. IEEE.

[7] Antonio Cau. A not so short introduction to ITL, September 2004.
[8] Dipanjan Chakraborty and Hui Lei. Pervasive enablement of business processes.

In Proceedings of the Second IEEE International Conference on Pervasive Com-
puting and Communications (PerCom’04).

[9] Michael George and Jon Pyke. Dynamic process orchestration. In White paper,
Stallware PLC, 2003.

[10] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahma-
nian. Flexible support for multiple access control policies. ACM Trans. Database
Syst., 26(2):214–260, 2001.

[11] Buchmann A. Karastoyanova, D. Refflow: A model and generic approach to
flexibility of web service compositions. In Proceedings of International Confer-
ence on Information Integration and Web-based Applications and Service (iiWAS
2004), pages 27–29, 2004.

[12] S. Rinderle L. T. Ly and P. Dadam. Integration and verification of semantic
constraints in adaptive process management systems. volume 64, pages 3–23,
2008.

[13] Peter Dadam Manfred Reichert. Adeptflex - supporting dynamic changes of
workflows without loosing control. 10(2):93–129, 1998.

[14] Manfred Reichert and Stefanie Rinderle. On design principles for realizing
adaptive service flows with bpel. In Proc. EMISA 2006, pages 133–146, 2006.

[15] Manfred Reichert Stefanie Rinderle and Peter Dadam. On dealing with struc-
tural conflicts between process type and instance changes. In Proc. 2nd. Int’l
Conf. Business Process Management (BPM’04), volume 3080 of LNCS, pages
274–289, 2004.

[16] H.M.W. Verbeek P.A.C. Verkoulen W.M.P. van der Aalst, T. Basten and M.
Voorhoeve. Adaptive workflow: An approach based on inheritance. In Proceed-
ings of the IJCAI’99 Workshop on Intelligent Workflow and Process Manage-
ment, pages 36–45, 1999

Hind Alotaibi, Hussein Zedan
Software Technology Research Laboratory
De Montfort University, Leicester, U.K.
e-mail: hind.alotaibi2@myemail.dmu.ac.uk, hzedan@dmu.ac.uk

