
CUSTOM SURROGATE HOST FOR ACTIVEX
IN-PROCESS SERVERS

Nikolay Pavlov

Abstract: This paper describes the design, implementation and evaluation of
AX Host, a custom surrogate host for ActiveX in-process servers. AX Host aims to
give ActiveX client applications improved stability by using software fault
isolation.

Keywords: ActiveX, surrogate host, software fault isolation
2010 Mathematics Subject Classification: 68U35, 68M15, 68N01

1. Introduction

Modern operating systems with Graphical User Interface have interoperability
of applications as their primary goal. Multi-tasking and the ability to quickly
switch between applications are coupled with various means to exchange. This
interoperability is an important feature of desktop applications, which distinguishes
them from web applications even in the era of Web 2.0. Therefore, for a desktop
application to maximize the user experience, it should be able to integrate with
other software packages, which play important role in the operations of users.

The most common means to exchange data, which are not dependent on the
operating system, is to use files in known formats. These, however, require
manual operations from users. Microsoft Windows provides several ways for
applications to exchange data – clipboard, window messages, memory-mapped
files, pipes, sockets, local and remote procedure calls, and OLE compound
documents [2].

The Framework for business applications [7] provides in-built support for
document management. It integrates with the de fact standard packages Microsoft
Office and Adobe PDF Reader for that purpose. The Framework provides tight
coupling of documents with business data, including inserting data from the
application into Word documents. It enables users to create documents from
within their application, store it in their application database, and access and
manage their documents in their application, and under the relevant data entities.
The selected technology for integrating the Framework with Microsoft Office and
Adobe PDF reader is OLE compound documents [2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62659889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

288 Anniversary International Conference REMIA2010

This paper describes the software fault isolation subsystem of the Framework
for using OLE compound documents, which protects Framework applications from
errors in the compound document servers.

2. Overview of the problem

OLE compound documents enable users working within a single application
to manipulate data written in various formats and derived from multiple sources.
For example, a user might insert into a word processing document a graph created
in a second application and a sound object created in a third application. Activating
the graph causes the second application to load its user interface, or at least that
part containing tools necessary to edit the object. Activating the sound object
causes the third application to play it. In both cases, a user is able to manipulate
data from external sources from within the context of a single document.

OLE compound document technology rests on a foundation consisting of
COM, structured storage, and uniform data transfer.

OLE's compound document technology benefits both software developers and
users alike. Instead of feeling obligated to cram every conceivable feature into a
single application, software developers are now free, if they like to develop
smaller, more focused applications that rely on other applications to supply
additional features. In cases where a software developer decides to provide an
application with capabilities beyond its core features, the developer can implement
these additional services as separate DLLs, which are loaded into memory only
when their services are required. Users benefit from smaller, faster, more capable
software that they can mix and match as needed, manipulating all required
components from within a single master document [2].

Compound document applications are of two basic types: container
applications and server applications. OLE container applications provide users with
the ability to create, edit, save, and retrieve compound documents. OLE server
applications provide users with the means to create documents and other data
representations that can be contained as either links or embedded in container
applications. An OLE application can be a container application, a server
application, or both [3].

As mentioned earlier, the Framework utilized OLE compound documents to
provide users with seamless integration with Microsoft Office and Abode Reader.
The technique allows users to author and access Office and PDF documents within
the Framework application without having to switch to and from the appropriate
external application.

Real-life practice, however, demonstrated that the Framework is experiencing
undesired instability issues due to faults in compound document server

10-12 December 2010, Plovdiv, Bulgaria 289

applications. Extensive studies of error logs, stack traces and memory dumps
revealed corrupted memory pointers, outside the code of the Framework
application. The culprit was found – a faulty module in Adobe Reader. While the
system experienced problems with Microsoft Office, too, the Framework
application is always able to recover and continue its operation. On the other hand,
errors in Adobe Reader caused the Framework application to crash. The
explanation of the different behavior lies in understanding how OLE server
applications work.

OLE server applications differ in whether they are implemented as in-process
servers or local servers. An in-process server is a dynamic link library (DLL) that
runs in the container application's process space. You can run an in-process server
only from within the container application [3].

The type of server – in-process or local, has a direct impact on the stability of
container applications. Local servers run as separate isolated processes.
Unhandled or catastrophic errors in in-process servers happen within the process of
the container application, and translate as direct errors in their code. These errors
are difficult, if not impossible to trap and handle, depending on the nature of the
error. Even if trapped, they are very likely to leave the process in unstable state,
and therefore the process cannot reliably recover and continue working. As a
result, such errors normally cause container applications to crash, thus and increase
the risk of data-loss for users. On the other hand, local servers run as separate,
standalone processes. Unhandled errors remain within the scope of the local
server, and are only communicated as messages (OLE exceptions) to container
applications. A crash in a local server does not force container applications to quit,
and container applications are able to reinitialize the affected local server, and retry
the operation, thus minimizing the negative impact on users, and reduce chances of
data loss. Data loss can be zero in case a compound document local server is used
only to represent data visually.

3. Solution design

This is a well-known issue with compound document infrastructure, called
surrogates [4, 5, 6, 8]. It allows an in-process server to be executed in a special
process, outside the client process which requested it.

The roles in surrogate case are: 1) requesting application; 2) surrogate host; 3)
in-process server.

When the in-process server crashes, the surrogate host will quit, but the client
process will have a chance to recover and continue its operation. However,
existing solution in COM system infrastructure is global for the operating system.

290 Anniversary International Conference REMIA2010

Therefore, it should be used only with components, which are developed and tested
with it, or it can cause instability in other compound document containers. Risk of
incompatibility with other applications discarded this solution as a feasible option.

Windows Vista introduces a new technique for read-only presentation of
external content, named Preview Handlers [5]. The problem is this technique is
not supported on Windows XP, which makes it inappropriate for the Framework.

The suggested solution involves design and development of a custom
surrogate host. It is not system-global, i.e. it is applied only by the Framework for
consuming services from Adobe PDF, and therefore does not break other software
applications. The structure of the solution is the same as the COM Surrogate. The
Framework application is a requesting application, and AX Host performs the role
of a surrogate host.

The key implementations are three:
1) AX Host runs the Adobe PDF ActiveX control
2) It receives a valid handle to a visible windowed control from the

Framework application, and assigns it as a parent to the Adobe PDF compound
document (ActiveX) control.

3) A vector structured exception handler is used to mask the error from the
operating system, and perform a gracious exit of the application.

This has the effect of the compound document to be visualized within the
Framework application, as it if is hosting the in-process server. In reality, the in-
process server runs completely in the context of AX Host.

In case of faulty behavior of the in-process server, AX Host will crash. The
Framework application will only lose the visual presentation, but its state will not
be corrupted, and it will be able to continue. Actually, when the Framework
application detects that AX Host has ended prematurely, it will try to re-initialize
it.

The workflow involves these steps:
1. The Framework application executes AX Host and passes via the

command line its Windows process handle and a reading handle to a pre-created
anonymous pipe.

2. AX Host performs internal initializations and starts listening to commands
from the Framework applications coming from the anonymous pipe.

3. On request, AX Host loads Adobe Reader ActiveX control, initializes it
and asks it to load the requested document. Then, it assigns its parent window to a
window handle, provided by the Framework application.

4. AX Host pumps messages and waits for commands by the Framework
application via the pipe. AX Host also checks regularly if the Framework
application is still running.

10-12 December 2010, Plovdiv, Bulgaria 291

5. On request from the Framework application, or on detecting a failure, AX
Host cleans up and quits.

4. Implementation

AX Host is developed as a standard Win32 application with an invisible
window. The window is used to pump messages for COM and for the visual
control of the in-process server. All windows messages to the Adobe PDF
ActiveX control are send to the message queue of AX Host, and processed by it.
Therefore, the thread on AX Host which creates the Adobe PDF ActiveX control
must not block until the ActiveX control is loaded.

Reading anonymous pipes is blocking until there is data to be read. At the
same time AX host must constantly pump and process messages for COM and the
visual control. Therefore pipe communications are executed on a separate thread.
When a new command is received through the pipe, the reading thread sends a
message to the main window of AX Host. It does not make direct calls, as the
ActiveX control is created in the thread of the main window for the reason of
pumping messages. Consequently, all calls to the ActiveX control must be made
on this thread.

4.1. Communications

The Framework application and AX Host use several means of exchanging
data and messages. The Framework application runs AX Host with two command
line parameters: the reading handle of the anonymous pipe, and its handle identifier
(Id). The read pipe handle enables AX Host to receive commands from the
Framework application. The process id is required, because Windows NT does not
provide a documented way for a child process to identify its parent process. This
id is used for lifecycle management, as described later on.
 AX Host listens to incoming commands through the pipe in a separate thread
(pipe thread), because IO operations with anonymous pipes are blocking. The
following commands are being sent over the pipe:

• Set control’s parent window.
• Load document.
• Unload document.
• Quit.
All actions on commands are carried out by the thread, which pumps

messages and controls the Adobe PDF ActiveX control. The pipe thread
dispatches the commands by sending messages to its message queue.

while (1)
{
 ZeroMemory(&Msg, sizeof(Msg));

292 Anniversary International Conference REMIA2010

 ReadFile (ReadPipeHandle, Msg, sizeof (Msg), &Byt esRead,
null);

 switch (Msg.Command)
 {
 case cmdPDFSetParentHandle:
 ParentControlContainer = PipeMessage.wParam;
 PostMessage (WindowHandle, WM_SETPARENT_AX_P DF, 0, 0);
 break;

 …
 case cmdPDFClose:
 ExitCode = EC_CLOSED_GRACEFULLY;
 PostMessage(WindowHandle, WM_UNLOAD_AX_PDF, 0, 0);
 PostMessage(WindowHandle, WM_QUIT, 0, 0);
 break;

 }
}

4.2. Message Queue

Once all initialization is complete, and the pipe thread is running, the Host
enters the message processing loop:

while ((getMsgRetValuye = GetMessage(&Msg, 0, 0, 0)) != 0))
{
 if (WaitForSingleObject (ParentProcessHandle, 0) ==

WAIT_OBJECT_0) break;
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

The loop performs two tasks. First it processes all messages, received by its
window and by the window of the Abode PDF ActiveX control. Second, it checks
the state of the Framework application.

4.3. Lifecycle

Normally, AX Host will quit when it receives a command from the
Framework application that its services are no longer required. Alternatively, it
will close in case it intercepts an error from the in-process server. In this case it
will notify the Framework application.

It is also possible that the Framework application crashes due to other error
before it has notified AX Host to close. The risk to have abandoned instances of
the host application running and consuming resources is avoided by an extra check.
AX Host uses the process handle of the Framework application which created it to
create a synchronization object for that handle. On every new message AX Host
performs a non-blocking wait on the synchronization object. If the object becomes

10-12 December 2010, Plovdiv, Bulgaria 293

signaled then AX Host knows the Framework application has been closed
prematurely. In such case it will cleanup and exit.

An implementation detail is that AX Host creates a timer, which sends a
message to the window message queue every five seconds. AX Host does nothing
on processing this message. The timer acts as insurance that the check for the state
of the Framework application will be executed regularly, because it is possible that
no messages are sent to AX Host window if the Framework application crashes. If
there are no messages available, GetMessage will not return, and AX Host will not
have a chance to check the Framework application.

4.4. Error Handling

Errors, unhandled by applications, are trapped by OS Windows and reported
to users. Even though these error messages do not refer to the Framework
application, they are confusing to users and reduce user experience. Apparently
the Adobe PDF ActiveX control is using internally several threads, and errors,
occurring in them, cannot be trapped using frame-based structured exception
handling, i.e. using standard try … except blocks.

Vector structured exception handling enables developers to set a global
exception handler for their application. A vector structured exception handler is
used to trap the errors in the Adobe PDF ActiveX control. The handler is used to
mask the error from the OS and thus suppress the system error message, and to
initiate closing of AX Host. The error in the ActiveX control leaves AX Host
process in a unknown state, and therefore recovery is impossible.

5. Results

The described solution is currently deployed in Dutch and German companies
from ship insurance brokerage. These clients have an average size of 30
concurrently operating workstations. The results after six months demonstrate that
the Framework application no longer exhibits faults, caused by the Adobe PDF
ActiveX control. Errors are successfully masked by AX Host application. The
Framework application is able to recover, and restart the host. The experience for
users is only slight delays in viewing PDF documents.

6. Conclusion

The suggested solution achieves its goal to improve the user experience. It
can easily be adapted for use with other in-process compound document servers.

294 Anniversary International Conference REMIA2010

References

[1] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Orm, Shiki Okasaka, Neha Narula, Nicholas Fullagar, Google Inc,
Native Client: A Sandbox for Portable, Untrusted x86 Native Code (2009), In
Proceedings of the 2007 IEEE Symposium on Security and Privacy

[2] Microsoft. Compound Documents (COM). MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms693383(v=VS.85).aspx.

[3] Microsoft. Containers and Servers (COM). MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms682269(v=VS.85).aspx.

[4] Microsoft. DLL Surrogates (COM). MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms695225(VS.85).aspx.

[5] Microsoft. Preview Handlers and Shell Preview Host. MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/cc144143(VS.85).aspx.

[6] M.H. Knahl, A Componentware based Management Framework Utilising
Adaptation, 2003, Proceeding (394) Computer Science and Technology –
2003, May 19 – 21, 2003, Cancun, Mexico

[7] Pavlov N., А. Rahnev, Architecture and Design of Customer Support System
using Microsoft .NET technologies, .NET Technologies 4th International
Conference, May 29 – June 1 2006, Plzen, Czech Republic, ISBN 80-86943-
11-9, pp 21-26.

[8] Taeho Kwon Zhendong Su, Automatic Detection of Vulnerable Dynamic
Component Loadings, CSE-2010, UC Davis Department of Computer Science

Nikolay Pavlov,
9N Kuklensko Shose Str,
4004 Plovdiv, Bulgaria
e-mail: nik.pavlov@kodar.net

