-

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by Bulgarian Digital Mathematics Library at IMI-BAS

CUSTOM SURROGATE HOST FOR ACTIVEX
IN-PROCESS SERVERS

Nikolay Pavlov

Abstract: This paper describes the design, implementation and evaluation of
AX Host, a custom surrogate host for ActiveX in-process servers. AX Host aimsto
give ActiveX client applications improved stability by using software fault
isolation.

Keywords: ActiveX, surrogate host, software fault isolation
2010 Mathematics Subject Classification: 68U35, 68M15, 68N01

1. Introduction

Modern operating systems with Graphical User laigfhave interoperability
of applications as their primary goal. Multi-tassfiand the ability to quickly
switch between applications are coupled with varioweans to exchange. This
interoperability is an important feature of deskémplications, which distinguishes
them from web applications even in the era of We&b Zrherefore, for a desktop
application to maximize the user experience, itudhdoe able to integrate with
other software packages, which play important iroléhe operations of users.

The most common means to exchange data, whichcardependent on the
operating system, is to use files in known format§hese, however, require
manual operations from users. Microsoft Windowsvjates several ways for
applications to exchange data — clipboard, windoessages, memory-mapped
files, pipes, sockets, local and remote procedwalts,cand OLE compound
documents [2].

The Framework for business applications [7] proside-built support for
document management. It integrates with the destacdard packages Microsoft
Office and Adobe PDF Reader for that purpose. HFtamework provides tight
coupling of documents with business data, includingerting data from the
application into Word documents. It enables udersreate documents from
within their application, store it in their applitan database, and access and
manage their documents in their application, andeurthe relevant data entities.
The selected technology for integrating the Framiewath Microsoft Office and
Adobe PDF reader is OLE compound documents [2].

https://core.ac.uk/display/62659889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

288 Anniversary International Conference REMIA2010

This paper describes the software fault isolatidmsgstem of the Framework
for using OLE compound documents, which protecgsrt@work applications from
errors in the compound document servers.

2. Overview of the problem

OLE compound documents enable users working wihgingle application
to manipulate data written in various formats aedwtd from multiple sources.
For example, a user might insert into a word prsiogsdocument a graph created
in a second application and a sound object creatadhird application. Activating
the graph causes the second application to loadgsés interface, or at least that
part containing tools necessary to edit the objéctivating the sound object
causes the third application to play it. In botlses a user is able to manipulate
data from external sources from within the conté single document.

OLE compound document technology rests on a foumdatonsisting of
COM, structured storage, and uniform data transfer.

OLE's compound document technology benefits bottwaoe developers and
users alike. Instead of feeling obligated to cramrg conceivable feature into a
single application, software developers are nove,frié they like to develop
smaller, more focused applications that rely onewthpplications to supply
additional features. In cases where a software ldpee decides to provide an
application with capabilities beyond its core feafy the developer can implement
these additional services as separate DLLs, whiehlaaded into memory only
when their services are required. Users benefih femaller, faster, more capable
software that they can mix and match as needed,puolating all required
components from within a single master document [2]

Compound document applications are of two basicedypcontainer
applications and server applications. OLE conta&pglications provide users with
the ability to create, edit, save, and retrieve poumd documents. OLE server
applications provide users with the means to crelamieuments and other data
representations that can be contained as eithks lim embedded in container
applications. An OLE application can be a contaimgplication, a server
application, or both [3].

As mentioned earlier, the Framework utilized OLEnpound documents to
provide users with seamless integration with Miofo©ffice and Abode Reader.
The technique allows users to author and accesseGihd PDF documents within
the Framework application without having to switchand from the appropriate
external application.

Real-life practice, however, demonstrated thatFtamework is experiencing
undesired instability issues due to faults in coummb document server

10-12 December 2010, Plovdiv, Bulgaria 289

applications. Extensive studies of error logsgclstdaces and memory dumps
revealed corrupted memory pointers, outside theecod the Framework

application. The culprit was found — a faulty maslin Adobe Reader. While the
system experienced problems with Microsoft Offig®o, the Framework

application is always able to recover and contiteieperation. On the other hand,
errors in Adobe Reader caused the Framework applicao crash. The

explanation of the different behavior lies in uredending how OLE server
applications work.

OLE server applications differ in whether they anplemented as in-process
servers or local servers. An in-process serverdgramic link library (DLL) that
runs in the container application's process spége.can run an in-process server
only from within the container application [3].

The type of server — in-process or local, has ectlimpact on the stability of
container applications. Local servers run as sapalisolated processes.
Unhandled or catastrophic errors in in-processessrirappen within the process of
the container application, and translate as dieears in their code. These errors
are difficult, if not impossible to trap and handéeepending on the nature of the
error. Even if trapped, they are very likely tave the process in unstable state,
and therefore the process cannot reliably recower @ntinue working. As a
result, such errors normally cause container agiptios to crash, thus and increase
the risk of data-loss for users. On the other h#ozhl servers run as separate,
standalone processes. Unhandled errors remairinwitie scope of the local
server, and are only communicated as messages @Qt&ptions) to container
applications. A crash in a local server does aatd container applications to quit,
and container applications are able to reinitialie affected local server, and retry
the operation, thus minimizing the negative impgatusers, and reduce chances of
data loss. Data loss can be zero in case a cordmingument local server is used
only to represent data visually.

3. Solution design

This is a well-known issue with compound documaritaistructure, called
surrogates [4, 5, 6, 8]. It allows an in-process/er to be executed in a special
process, outside the client process which requésted

The roles in surrogate case are: 1) requestingcapiph; 2) surrogate host; 3)
in-process server.

When the in-process server crashes, the surrogatenil quit, but the client
process will have a chance to recover and contitai@peration. However,
existing solution in COM system infrastructure Isk@l for the operating system.

290 Anniversary International Conference REMIA2010

Therefore, it should be used only with componentdch are developed and tested
with it, or it can cause instability in other conyool document containers. Risk of
incompatibility with other applications discarddiistsolution as a feasible option.

Windows Vista introduces a new technique for realy-gresentation of
external content, named Preview Handlers [5]. ptablem is this technique is
not supported on Windows XP, which makes it inappete for the Framework.

The suggested solution involves design and devedopnof a custom
surrogate host. It is not system-global, i.es iapplied only by the Framework for
consuming services from Adobe PDF, and therefoess amt break other software
applications. The structure of the solution isshene as the COM Surrogate. The
Framework application is a requesting applicateomg AX Host performs the role
of a surrogate host.

The key implementations are three:

1) AX Host runs the Adobe PDF ActiveX control

2) It receives a valid handle to a visible windowedntcol from the
Framework application, and assigns it as a pareithé Adobe PDF compound
document (ActiveX) control.

3) A vector structured exception handler is used tsknthe error from the
operating system, and perform a gracious exit @f&bplication.

This has the effect of the compound document tosibealized within the
Framework application, as it if is hosting the ioqess server. In reality, the in-
process server runs completely in the context offost.

In case of faulty behavior of the in-process ser®et Host will crash. The
Framework application will only lose the visual geatation, but its state will not
be corrupted, and it will be able to continue. wsdly, when the Framework
application detects that AX Host has ended prerabtuit will try to re-initialize
it.

The workflow involves these steps:

1. The Framework application executes AX Host and gmssgia the
command line its Windows process handle and amgagandle to a pre-created
anonymous pipe.

2. AX Host performs internal initializations and stalistening to commands
from the Framework applications coming from thergmoous pipe.

3. On request, AX Host loads Adobe Reader ActiveX mninitializes it
and asks it to load the requested document. Thassigns its parent window to a
window handle, provided by the Framework applicatio

4. AX Host pumps messages and waits for commands &éyFthmework
application via the pipe. AX Host also checks ftagy if the Framework
application is still running.

10-12 December 2010, Plovdiv, Bulgaria 291

5. On request from the Framework application, or oeang a failure, AX
Host cleans up and quits.

4. Implementation

AX Host is developed as a standard Win32 applicatidth an invisible
window. The window is used to pump messages foMCand for the visual
control of the in-process server. All windows nmgs to the Adobe PDF
ActiveX control are send to the message queue oftuXt, and processed by it.
Therefore, the thread on AX Host which createsAblebe PDF ActiveX control
must not block until the ActiveX control is loaded.

Reading anonymous pipes is blocking until therddta to be read. At the
same time AX host must constantly pump and progessages for COM and the
visual control. Therefore pipe communications executed on a separate thread.
When a new command is received through the pipe rehding thread sends a
message to the main window of AX Host. It does make direct calls, as the
ActiveX control is created in the thread of the maindow for the reason of
pumping messages. Consequently, all calls to ttevéX control must be made
on this thread.

4.1. Communications

The Framework application and AX Host use severaams of exchanging
data and messages. The Framework applicationAX¥ndost with two command
line parameters: the reading handle of the anongrpqe, and its handle identifier
(Id). The read pipe handle enables AX Host to ikeceommands from the
Framework application. The process id is requibetause Windows NT does not
provide a documented way for a child process tatifleits parent process. This
id is used for lifecycle management, as describtst bn.

AX Host listens to incoming commands throtlyh pipe in a separate thread
(pipe thread), because 10 operations with anonynmpss are blocking. The
following commands are being sent over the pipe:

e Set control’s parent window.

e Load document.

e Unload document.

e Quit.

All actions on commands are carried out by the atirewhich pumps
messages and controls the Adobe PDF ActiveX cantrdihe pipe thread

dispatches the commands by sending messagesestage queue.
while (1)
{
ZeroMemory(&Msg, sizeof(Msg));

292 Anniversary International Conference REMIA2010

ReadFile (ReadPipeHandle, Msg, sizeof (Msg), &Byt esRead,
null);
switch (Msg.Command)

{

case cmdPDFSetParentHandle:
ParentControlContainer = PipeMessage.wParam;
PostMessage (WindowHandle, WM_SETPARENT_AX_P DF, 0, 0);
break;

case cmdPDFClose:
ExitCode = EC_CLOSED_GRACEFULLY;
PostMessage(WindowHandle, WM_UNLOAD_AX_PDF, 0, 0);
PostMessage(WindowHandle, WM_QUIT, 0, 0);
break;

4.2. Message Queue

Once all initialization is complete, and the pipeetd is running, the Host

enters the message processing loop:
while ((getMsgRetValuye = GetMessage(&Msg, 0, 0, 0) I=0))
{
if (WaitForSingleObject (ParentProcessHandle, 0) ==
WAIT_OBJECT_0) break;
TranslateMessage(&Msg);
DispatchMessage(&Msg);
}

The loop performs two tasks. First it processesmabsages, received by its
window and by the window of the Abode PDF Activedhtrol. Second, it checks
the state of the Framework application.

4.3. Lifecycle

Normally, AX Host will quit when it receives a comamd from the
Framework application that its services are no éongquired. Alternatively, it
will close in case it intercepts an error from therocess server. In this case it
will notify the Framework application.

It is also possible that the Framework applicatioashes due to other error
before it has notified AX Host to close. The riskhave abandoned instances of
the host application running and consuming resauicavoided by an extra check.
AX Host uses the process handle of the Framewqpkcgtion which created it to
create a synchronization object for that handlen e@ery new message AX Host
performs a non-blocking wait on the synchronizatbject. If the object becomes

10-12 December 2010, Plovdiv, Bulgaria 293

signaled then AX Host knows the Framework applarathas been closed
prematurely. In such case it will cleanup and exit.

An implementation detail is that AX Host creatediraer, which sends a
message to the window message queue every fivadecoAX Host does nothing
on processing this message. The timer acts asamzeithat the check for the state
of the Framework application will be executed regiyl because it is possible that
no messages are sent to AX Host window if the Freanle application crashes. If
there are no messages available, GetMessage wilktuwn, and AX Host will not
have a chance to check the Framework application.

4.4, Error Handling

Errors, unhandled by applications, are trapped By\indows and reported
to users. Even though these error messages daef@t to the Framework
application, they are confusing to users and rediseg experience. Apparently
the Adobe PDF ActiveX control is using internallgveral threads, and errors,
occurring in them, cannot be trapped using framsedastructured exception
handling, i.e. using standard try ... except blocks.

Vector structured exception handling enables deesk to set a global
exception handler for their application. A vecttrustured exception handler is
used to trap the errors in the Adobe PDF ActiveXtaw. The handler is used to
mask the error from the OS and thus suppress thierayerror message, and to
initiate closing of AX Host. The error in the AatiX control leaves AX Host
process in a unknown state, and therefore recasémypossible.

5. Results

The described solution is currently deployed indbuand German companies
from ship insurance brokerage. These clients haweaverage size of 30
concurrently operating workstations. The resufisraix months demonstrate that
the Framework application no longer exhibits fauttaused by the Adobe PDF
ActiveX control. Errors are successfully maskedA¥ Host application. The
Framework application is able to recover, and redte host. The experience for
users is only slight delays in viewing PDF docuraent

6. Conclusion

The suggested solution achieves its goal to imptbeeuser experience. It
can easily be adapted for use with other in-procesgpound document servers.

294 Anniversary International Conference REMIA2010

References

[1] Bennet Yee, David Sehr, Gregory Dardyk,Bdadley Chen, Robert Muth,
Tavis Orm, Shiki Okasaka, Neha Narula, Nichdtallagar, Google Inc,
Native Client: A Sandbox for Portable, Untrusted »8ative Code (2009), In
Proceedings of the 2007 IEEE Symposium on SecanityPrivacy

[2] Microsoft. Compound Documents (COM)MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms693383($-85).aspx.

[3] Microsoft. Containers and Servers (COMMSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms6822693(%-85).aspx.

[4] Microsoft. DLL Surrogates (COM). MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/ms695225@885.aspx.

[5] Microsoft. Preview Handlers and Shell PrevieMst. MSDN. [Online] 2010.
http://msdn.microsoft.com/en-us/library/cc14414385.aspx.

[6] M.H. Knahl, A Componentware based Managemeranfework Utilising
Adaptation, 2003, Proceeding (394) Computer Sciesntg Technology —
2003, May 19 — 21, 2003, Cancun, Mexico

[7] Pavlov N.,A. Rahnev, Architecture and Design of Customer Stfpgstem
using Microsoft .NET technologies, .NET Technolagidth International
Conference, May 29 — June 1 2006, Plzen, CzechbReplSBN 80-86943-
11-9, pp 21-26.

[8] Taeho Kwon Zhendong Su, Automatic Detection\aflnerable Dynamic
Component Loadings, CSE-2010, UC Davis Departme@bmputer Science

Nikolay Pavlov,

9N Kuklensko Shose Str,
4004 Plovdiv, Bulgaria
e-mail: nik.pavlov@kodar.net

