-

View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by Bulgarian Digital Mathematics Library at IMI-BAS

TEMPURA REENGINEERING

Vladimir Valkanov, Damyan Mitev

Abstract: Interval Temporal Logic provides time-dependant formal
description of hardware and software. Such formalismis needed for description of
behaviors of the middieware of AOMLE project, depending on different scenarios
of operation. In order to use ITL, we need an interpreter. Tempura provides
executable ITL framework, written in C language. We cannot use Tempura as is,
because AOMLE is developed entirely in Java. For this reason we need Java
verson of Tempura. This paper describes our plan for reengineering of C-
Tempura and creating Java version if the ITL interpreter.

Keywords: framework, reengineering
2010 Mathematics Subject Classification: 97R40

1. Introduction

The main goal of the Distributed eLearning Cent@el(C) project [1] of
Faculty of Mathematics and Informatics (FMI) Unisigy of Plovdiv “Paisii
Hilendarski” is creation of infrastructure for dibuted eLearning [2]. The project
goal is creating of a flexible, adaptive, collabim®, context-aware service and
agent-oriented elLearning environment, that usesoShation [3] network
architecture and delivers personalized, mobile;tang and any-where assess to
educational content and services.

The InfoStation architecture consists of three stieinfoStation Center,
InfoStations and mobile devices [4]. InfoStatioresve as wireless connection
points and service providers for mobile devices ©peration of the InfoStation is
governed by agent-oriented middleware — a multraggstem, in which different
agents will perform specific activities [5]. Thisiddleware has two primary
objectives. The first one is to manage the conaratiith mobile devices and the
Personal Assistant agents that reside on theseedej]. The second is to provide
a platform for various (existing and new) servieesl to facilitate the access to
these services by the mobile devices [7].

The middleware functionality is governed by scemsi(B], depending on the
movement of mobile device while a service is betxgcuted. We foresee four
different base scenarios:

e The user does not change his mobile device andrdmesove out
of range of the current InfoStation (is constactiynected);

e The user does not change his device, but movesforgnge of
(disconnects from) the current InfoStation and nsmts to another
InfoStation;

https://core.ac.uk/display/62659883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

312 Anniversary International Conference REMIA2010

e The user stays in range of the current InfoStatian,changes his
mobile device (disconnects with one device and eotmwith another to the
Same InfoStation);

e The user changes his mobile device and the Inflo&tat

These scenarios mandate different behavior of tideleware, due to various
factors, i.e. different device profiles (capabd@#), cached information in the
InfoStations, availability of services in differdnfoStations and others.

We need formal description of the scenarios in oride create flexible
mechanisms for scenario detection and control,aantechanism to interpret that
description. Existence of such formalism and acamgmg interpreter would
allow us to create new (sub) scenarios and defiee torresponding middleware
behavior without the need of major rewrite of tigstem.

In this paper we discuss why we have chosen Intdrgeporal Logic for
formal description of the scenarios, why we havesen to perform reengineering
of ITL's interpreter Tempura, show the main cycfettee interpreter, analyze the
source code structure of Tempura, present our folameengineering, enlist the
tools we plan to use and finally summarize the pam®ntents.

2. Interval temporal logic and tempura

The most important characteristic of the scenarfoghat they are time
dependant; therefore it is difficult to describerthformally with first order logic.
We found Interval Temporal Logic to be a perfeduson to that problem [9].
Interval Temporal Logic (ITL) is a temporal logicorf representing both
propositional and first-order logical reasoning @thyeriods of time that is capable
of handling both sequential and parallel compositithnstead of dealing with
infinite sequences of state, interval temporal dodéals with finite sequences -
intervals. It offers powerful and extensible spieaifion and proof techniques for
reasoning about properties involving safety, livenand projected time. Timing
constraints are expressible and furthermore mogpeiative programming
constructs can be viewed as formulas in a slighttglified version of ITL [10].

Interval Temporal Logics find application in comeutscience, artificial
intelligence and linguistics. Interval Temporal io@ a specific form of temporal
logic, originally developed by Ben Moszkowski forishthesis at Stanford
University. It is useful in the formal descripti@f hardware and software for
computer-based systems. Tempura provides an exéelifd framework.

In order to use ITL formulae in Agent-Oriented mi@ag Environment
project, we need ITL interpreter. Tempura is areripiteter for executable ITL
formulae, developed originally by Roger Hale and/moaintained by Antonio Cau
and Ben Moszkowski. Tempura was originally prograsdnin Prolog, but later
rewritten in C. The AOmLE middleware, however, evdloped in Java, so current
Tempura sources can not be used directly. For thason a Java version of
tempura needs to be developed.

10-12 December 2010, Plovdiv, Bulgaria 313

We were considering three different approachessinguTempura from the
Java middleware — wrapping existing Tempura exd&teitawith Java 10
redirection; development of entirely new proje@séd on execution rules of ITL;
and reengineering of Tempura and rewriting it imala

3. Why reengineering

We decided that reengineering of Tempura and rigrit in Java is the best
approach. There are several reasons for this. &irsil the middleware of our
system is developed in Java and the most naturgl imao write Tempura
interpreter in Java. In this way we can fully use advantages of object-oriented
architecture and Java Platform. Also a Java versiorempura interpreter will be
much more flexible and easy to reuse, which cabdreeficial to future projects.
On other side we have the advantage not to face sdrthe typical problems of
reengineering like missing parts of source coddagye systems which are not
fully documented and etc. Also we have a permisdiamm original developers of
the interpreter, to use C-Tempura source code.

We choose to reengineer the existing C-Tempurappesed to write new
Java-Tempura interpreter from scratch, because referpto use mature system,
which has proven its performance and stability ulgio the years. The first C-
Tempura interpreter was written in 1985 by RogeleHda Cambridge University.
In next years the interpreter evolves, by adding rienctions and operators,
thanks to Roger Hale, Ben Moszkowski and Anonio.Cde last version of the
Tempura interpreter on which we focus our attenisohempura version 2.16.

4. Main interpreter cycle

As a first step of reengineering process we needadquire basic
understanding of Interval Temporal Logic as Temgarmade to interpret it. We
focused our attention on Ben Moszkowski's book “Gixéng Temporal Logic
Programs”. There he describes the basics of Intdremporal logic as well as
operators of Tempura and execution algorithm ofsgstem.

The main program cycle of Tempura is based onThaheory model, where
formulae are executed over intervals. The way irciwffempura execute formulas
is a loop, where in each step the interpreter toams the formulas to logically
equivalent conjunction of two formulagpresent_state andwhat_reamains.

The formulapresent_state consists of assignment to the program variables
and also indicates whether or not the present sfatke last one. The formula
what_reamains is a reduced form of original formula and it is exed in
subsequent states if the interval does indeed raomtbn. In the next step of the
loop, if the interval has length more than 1, therfula which interpreter execute
is formulawhat_reamains from the first step.

There are four variables which are used by intéeprehen execute program:

314 Anniversary International Conference REMIA2010

e Program: This variable contains the Tempura program itgifer
execution of each state, the variable is transfdrm@ form which
describes what should be done in the next state.

e Memory: This variable is in fact an indexed list of celghere
each cell can be empty or contain values as agenter a list descriptor.
Every cell form this list is assigned the emptyl etlthe beginning of each
state.

e Current Env: This variable is also a list which describes the
environment. It has separate entry for each variablTempura program.
Every entry is a pair; first part is the name ofagiable and second is an
index to the memory cell where his value is placed.

e Current_Done Cell: The variable is equal to an index of a memory
cell called thedone flag. During the execution Tempura program places
eithertrue or false in the done flag during at every state. This intdisa
whether or not the current state is last one.

In terms of these four variables the executing ritlgm can be presented in
the following pseudo code:
begin
local Program, Memory, Current_Env, Current_Done _Cdll;
prepare_execution_of _program;
loop
execute_single state
exit when Memory[Current_Done_Cell] =<true>
otherwise
advance to_next_state
end.

In prepare_execution_of program the interpreter's variableProgram is
assigned the program’s syntax tree andGherent_Env is initialized to indicate
references to the memory. The memory itself iscalied to have cell for each
variable plus one where to be placed the value hef tone flag from
Current_Done Cell variable.

The transformation of the variablReogram and check to ensure that the done
flag has been set tbrue or false are made inexecute single state. Also the
assignments in the current state are reflecteldeivalues of the memory’s cells.

In advance _to_next_dgtate if the current state is not the last, preparation a
made for going to the next one. This is done barclee content of the memory’s
cells and prepares the reduced fornPadgram variable.

The transformations of the variabReogram, which are made in procedure
execute single state, are done in a loop, which executes procedure
transform_stmt(Program). It repeatedly transforms the program, applyingcsgd
rules based on ITL theory, until the specific ®sbws that the program is reduced
to appropriate form. Each iteration of this loopresponds to one pass over the
program.

10-12 December 2010, Plovdiv, Bulgaria 315

The procedurdransform stmt has the formtransofrm_stmt(Satement). An
interesting point is that the syntax of Tempra ptymmne statement to be perceived
in different ways. For example the formulle=4)N(J=1+1) can be viewed as a
statement or as a boolean test and the variatde be considered as an expression
or as a location. For this reason the Tempurapreger needs different functions
for reducing of statements.

5. Tempurareengineering plan

The reengineering of Tempura will be conductedewesal iterations. Each
iteration will consist of three main phases: reskeaimplementation and testing.
The research phase will include series of experisna@f reverse engineering
methodologies over a subset of the code. Theseimgrs will show us whether
the selected methodology is usable and should pkedpover the entire source.
The research phase will also include usage of wvari@engineering tools. The
result of the implementation phase will be fullynétional interpreter. With each
iteration we will achieve source code with highegke of compliance with the
object-oriented paradigm. In the testing phase wkocanduct series of tests by
running the same tempura scripts on the origin@e@ypura and the reengineered
Java version. Needless to say, we aim at iderttigladvior of both systems. These
tests will ensure the correctness of the reengiteeode. It is important to note
that our main focus is at creating correctly fumeing ITL interpreter, paying less
attention at optimization, memory and performassgiés.

Our goal in the first iteration is to merely rewrithe original C source into
Java, avoiding object-oriented features (such lsritance and polymorphism) as
much as possible and using Java OOP principldgeatminimum. Unfortunately,
this task will not be trivial, because in Tempuaairges are used constructs of C,
which are not available in Java. These constructdude macro definitions,
memory pointers, function pointers, structure antbmi types. On the other hand,
our reengineering effort will be made easier dught fact, that the C-Tempura
authors used uniform set of conventions througlrsthece.

5.1. First Iteration

Our reengineering plan for the first iteration cha outlined with the
following:

l. Research
1. Acquire understanding of Interval Temporal Logic;
2. Learn code structure, main program flow, structuaed

variables of Tempura interpreter.

Il. Implementation

1. Create a Java class for every C source file arasgsciate
Header file;

316 Anniversary International Conference REMIA2010

2. Create a static method in the Java class for duergtion
in the C file;

3. Create static variable in the Java class for egopal
variable in the Header file;

4, Create a static method in the Java class for enexgro
function in the Header file (where appropriate);

5. Expand the contents of every macro, not coveredhby
previous step;

6. Replace function pointers with instances of spgcial

created Interface, which will call the desired Jm&thod (delegates).

After examining the foundations of temporal logggurce code of the C
version of tempura and basic life-cycle of the ripteter we began the actual
translation of source code from C to Java.

Following the implementation plan of the first &adpon phase we completed
the translation of the source files, replacing ¢gpiC structures by their respective
equivalents in Java. The most common differencdsdéfficulties in interpretation
were related to the replacement of pointers usethéyoriginal developers, with
structures in Java. The nature of problems in latiog is caused by relatively
different types of languages that we are using.r@qamming language has a
lower level of abstraction; it is intended for pragnming systems with high speed
and precise control of memory. It has mechanisonsh &s pointers to interact and
directly manipulate the memory cells. Java, whishour primary means of
developing the system, is more modern and fullyedhpriented programming
language. This gives a lot of advantages such agpaoents and capabilities for
handling containers, which in turn enable us t@@and manage our Middleware
agents. Languages with high level of abstractioshsas Java, have no means of
directly handling memory. Because of this a rekdtivsmall portion of code
consumed a lot of time to convert C memory handlimgemantically equivalent
Java constructs.

Most of the code was translated easily; in ordegase this translation in the
first version, we neglected some of the conventfonsvriting Java code. This was
done in order to minimize differences in sourceegoshich in turn enables us to
easily test the Java version.

lll. Testing

1. Run the examples, which come with the original sesy
on the Java interpreter and compare results;

2. Contact Antonio Cau for further test cases;

3. Strategy — embed the same trace information iniraig

tempura sources and in JTempura, then compare roegcoof
execution of the same tempura expression in boghgreters.

10-12 December 2010, Plovdiv, Bulgaria 317

After finishing the initial translation, we begaesting Java-tempura. To be
sure of the results of the test cases we used destsscripts that we have been
provided with the source code of the original depels. Tests themselves are
carried by parallel execution of test scripts bg tvo versions of the interpreter
and comparison of outcome. About 90% of test casmspleted with a result
identical to that of the original interpreter. liaaild be noted that at this stage of
development we are not concerned with the spedkeofava version. Perhaps in
the future we will have optimize Java-tempura, liseahe nature of DeLC, part of
which will be the interpreter, is to provide remh¢ electronic services and
performance is of great importance for the systeththe users themselves.

After the initial tests we contacted one of thegioxdl developers of C-
Tempura, Antonio Cau. He was kind enough to prowdewith additional test
cases, which were divided in three topics — I/Ostdiand sub lists and
Miscellaneous. Using his directions we were abl@itgoint and eradicate some
implementation problems.

5.2. Plansfor Second lteration

Upon completion of first Java version of the intetpr, next step is to make
two versions of Java Tempura — object-oriented agent-oriented. The initial
translation is direct and it will keep almost eelyrthe structure and philosophy of
the original project. The creation of object-orehtversion will enable us to take
advantage of the full benefits of object-orientadguages such as Java. Moreover,
this version of the interpreter will be much monederstandable, adaptable and
easier to use in future projects. Agent-orientedioa will be specially designed to
serve the needs of the project DeLC and his agesmted middleware.
Optimizing the performance of Java-tempura wilbabe important in the practical
realization of the system as it currently is igrbie order to quickly achieve a
working prototype.

6. Conclusion

In this paper we presented our motivation for éngafava version of the C-
Tempura interpreter. We discussed why we need Hiterpreter and why we
choose reengineering existing C code over creatingw project from scratch. We
also described the main flow of interpreting Tenapfarmulae and main functions,
structures and variables used in the interpreter. Wéposed step-by-step plan for
reengineering the ITL interpreter and rewritingimt Java. We plan several
iterations of reengineering; each iteration cossisff phases of research,
implementation and testing. The first iteratioroise-to-one translation from C to
Java (preserving the procedure-oriented paradignthef program), while the
second iteration will produce object-oriented agdra-oriented version.

318

Anniversary International Conference REMIA2010

Acknowledgment

This publication is partly financed by projef002-149/08 of the Fund

“Science researches” of the Ministry of Education

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

References

S. Stojanov, I. Ganchev, |. Popchev, M. O'Droma, \lRenkov. 2003. “DelLC —
Distributed eLearning Center”. In Proc. of tiéBalkan Conference in Informatics
BCI'2003, Pp. 327-336, 21-23 November. Thessalorikieece. ISBN 960-287-
045-1

S.Stoyanov, I.Ganchev, I.Popchev, M.O’Droma, FroBiTGo e-Learning, Journal
“Information Technologies and Control”, No. 4/2008ear Ill, Pp. 2-10, ISSN
1312-2622

Ganchev |., S. Stojanov, M. O'Droma, D. Meere, “ifoStation-Based University
Campus System Supporting Intelligent Mobile Serwicelournal of Computers
(JCP, ISSN1796-203X), Vol. 2, No. 3, Academy Putdis May, Pp. 21-33.

lacono A. L. and C. Rose. “InfoStations: A new pedive on wireless data
networks. In Next Generation Wireless Networks, ibiafjy Applications and
Services for the Next Generation.” Kluwer Acadeidlishers, 2000

Stoyanov, S., |I. Ganchev, M. O'Droma, D. Mitev, Minov, Multi-Agent
Architecture for Context-Aware mLearning Provisivia InfoStations, In: Proc. of
the 5th International Conference on Soft ComputisgTransdisciplinary Science
and Technology, October 28-31, 2008, Paris, pp3s!-2008, ACM 978-1-60558-
046-3/08/0003.

Ganchev |., D. Meere, S. Stojanov, M. O hAodha, ®Droma. 2008. “On
InfoStation-Based Mobile Services Support for Lilgrinformation Systems”. Proc.
of the 8" IEEE International Conference on Advanced Learfirghnologies (IEEE
ICALT'08), Pp. 679-681, 1-5 July, Santander, Sp#&BN 978-0-7695-3167-0.
Ganchev, I., M. O’'Droma, S. Stojanov, |. Popcheé®dvision of mobile services in
a distributed eLearning center”. Proc. of the Iné&gional Conference on Automatics
and Informatics, Pp. 79-82, Sofia, 6-7 Octombef)30

Ganchev I., S. Stojanov, M. O’Droma, D. Meere. “CGoumications Scenarios for
InfoStation-based Adaptable Provision of mLearnBegvices”. In Proc. of the 2nd
International Conference on Modern (e-)Learning (M¥07), Pp. 98-104, Varna,
Bulgaria. ISSN 1313-0095 (paperback), ISSN 13131(®D), ISSN 1313-1214
(online). 1-7 July 2007.

B. Moszkowski. Executing Temporal Logic Programant®ridge University Press,
Cambridge, England, 1986.

[10]A. Cau , Interval Temporal Logic A not so short raduction,

http://www.tech.dmu.ac.uk/STRL/ITL/itl-course/indéiml (to date)

Vladimir Valkanov, Damyan Mitev,

Faculty of mathematics and Informatics “Trakia” bl. 201A, aprt. 9

236, Bulgaria Blvd. Plovdiv, Bulgaria

2003 Plovdiv, Bulgaria e-mail: damyan_mitev@mail.bg

e-mail: assarel@abv.bg

