
TEMPURA REENGINEERING

Vladimir Valkanov, Damyan Mitev

Abstract: Interval Temporal Logic provides time-dependant formal
description of hardware and software. Such formalism is needed for description of
behaviors of the middleware of AOmLE project, depending on different scenarios
of operation. In order to use ITL, we need an interpreter. Tempura provides
executable ITL framework, written in C language. We cannot use Tempura as is,
because AOmLE is developed entirely in Java. For this reason we need Java
version of Tempura. This paper describes our plan for reengineering of C-
Tempura and creating Java version if the ITL interpreter.

Keywords: framework, reengineering
2010 Mathematics Subject Classification: 97R40

1. Introduction

The main goal of the Distributed eLearning Center (DeLC) project [1] of

Faculty of Mathematics and Informatics (FMI) University of Plovdiv “Paisii
Hilendarski” is creation of infrastructure for distributed eLearning [2]. The project
goal is creating of a flexible, adaptive, collaborative, context-aware service and
agent-oriented eLearning environment, that uses InfoStation [3] network
architecture and delivers personalized, mobile, any-time and any-where assess to
educational content and services.

The InfoStation architecture consists of three tiers: InfoStation Center,
InfoStations and mobile devices [4]. InfoStations serve as wireless connection
points and service providers for mobile devices. The operation of the InfoStation is
governed by agent-oriented middleware – a multi-agent system, in which different
agents will perform specific activities [5]. This middleware has two primary
objectives. The first one is to manage the connection with mobile devices and the
Personal Assistant agents that reside on these devices [6]. The second is to provide
a platform for various (existing and new) services and to facilitate the access to
these services by the mobile devices [7].

The middleware functionality is governed by scenarios [8], depending on the
movement of mobile device while a service is being executed. We foresee four
different base scenarios:

• The user does not change his mobile device and does not move out
of range of the current InfoStation (is constantly connected);

• The user does not change his device, but moves out of range of
(disconnects from) the current InfoStation and connects to another
InfoStation;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62659883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

312 Anniversary International Conference REMIA2010

• The user stays in range of the current InfoStation, but changes his
mobile device (disconnects with one device and connects with another to the
Same InfoStation);

• The user changes his mobile device and the InfoStation.
These scenarios mandate different behavior of the middleware, due to various

factors, i.e. different device profiles (capabilities), cached information in the
InfoStations, availability of services in different InfoStations and others.

We need formal description of the scenarios in order to create flexible
mechanisms for scenario detection and control, and a mechanism to interpret that
description. Existence of such formalism and accompanying interpreter would
allow us to create new (sub) scenarios and define their corresponding middleware
behavior without the need of major rewrite of the system.

In this paper we discuss why we have chosen Interval Temporal Logic for
formal description of the scenarios, why we have chosen to perform reengineering
of ITL’s interpreter Tempura, show the main cycle of the interpreter, analyze the
source code structure of Tempura, present our plan for reengineering, enlist the
tools we plan to use and finally summarize the paper’s contents.

2. Interval temporal logic and tempura

The most important characteristic of the scenarios is that they are time
dependant; therefore it is difficult to describe them formally with first order logic.
We found Interval Temporal Logic to be a perfect solution to that problem [9].
Interval Temporal Logic (ITL) is a temporal logic for representing both
propositional and first-order logical reasoning about periods of time that is capable
of handling both sequential and parallel composition. Instead of dealing with
infinite sequences of state, interval temporal logic deals with finite sequences -
intervals. It offers powerful and extensible specification and proof techniques for
reasoning about properties involving safety, liveness and projected time. Timing
constraints are expressible and furthermore most imperative programming
constructs can be viewed as formulas in a slightly modified version of ITL [10].

Interval Temporal Logics find application in computer science, artificial
intelligence and linguistics. Interval Temporal Logic is a specific form of temporal
logic, originally developed by Ben Moszkowski for his thesis at Stanford
University. It is useful in the formal description of hardware and software for
computer-based systems. Tempura provides an executable ITL framework.

In order to use ITL formulae in Agent-Oriented mLearning Environment
project, we need ITL interpreter. Tempura is an interpreter for executable ITL
formulae, developed originally by Roger Hale and now maintained by Antonio Cau
and Ben Moszkowski. Tempura was originally programmed in Prolog, but later
rewritten in C. The AOmLE middleware, however, is developed in Java, so current
Tempura sources can not be used directly. For that reason a Java version of
tempura needs to be developed.

10-12 December 2010, Plovdiv, Bulgaria 313

We were considering three different approaches in using Tempura from the
Java middleware – wrapping existing Tempura executable with Java IO
redirection; development of entirely new project, based on execution rules of ITL;
and reengineering of Tempura and rewriting it in Java.

3. Why reengineering

We decided that reengineering of Tempura and rewriting it in Java is the best
approach. There are several reasons for this. First of all the middleware of our
system is developed in Java and the most natural way is to write Tempura
interpreter in Java. In this way we can fully use the advantages of object-oriented
architecture and Java Platform. Also a Java version of Tempura interpreter will be
much more flexible and easy to reuse, which can be beneficial to future projects.
On other side we have the advantage not to face some of the typical problems of
reengineering like missing parts of source code or large systems which are not
fully documented and etc. Also we have a permission, from original developers of
the interpreter, to use C-Tempura source code.

We choose to reengineer the existing C-Tempura, as opposed to write new
Java-Tempura interpreter from scratch, because we prefer to use mature system,
which has proven its performance and stability through the years. The first C-
Tempura interpreter was written in 1985 by Roger Hale at Cambridge University.
In next years the interpreter evolves, by adding new functions and operators,
thanks to Roger Hale, Ben Moszkowski and Anonio Cau. The last version of the
Tempura interpreter on which we focus our attention is Tempura version 2.16.

4. Main interpreter cycle

As a first step of reengineering process we need to acquire basic
understanding of Interval Temporal Logic as Tempura is made to interpret it. We
focused our attention on Ben Moszkowski’s book “Executing Temporal Logic
Programs”. There he describes the basics of Interval Temporal logic as well as
operators of Tempura and execution algorithm of the system.

The main program cycle of Tempura is based on the ITL theory model, where
formulae are executed over intervals. The way in which Tempura execute formulas
is a loop, where in each step the interpreter transforms the formulas to logically
equivalent conjunction of two formulas - present_state and what_reamains.

The formula present_state consists of assignment to the program variables
and also indicates whether or not the present state is the last one. The formula
what_reamains is a reduced form of original formula and it is executed in
subsequent states if the interval does indeed continue on. In the next step of the
loop, if the interval has length more than 1, the formula which interpreter execute
is formula what_reamains from the first step.

There are four variables which are used by interpreter when execute program:

314 Anniversary International Conference REMIA2010

• Program: This variable contains the Tempura program itself. After
execution of each state, the variable is transformed to form which
describes what should be done in the next state.

• Memory: This variable is in fact an indexed list of cells, where
each cell can be empty or contain values as an integer or a list descriptor.
Every cell form this list is assigned the empty cell at the beginning of each
state.

• Current_Env: This variable is also a list which describes the
environment. It has separate entry for each variable in Tempura program.
Every entry is a pair; first part is the name of a variable and second is an
index to the memory cell where his value is placed.

• Current_Done_Cell: The variable is equal to an index of a memory
cell called the done_flag. During the execution Tempura program places
either true or false in the done flag during at every state. This indicates
whether or not the current state is last one.

In terms of these four variables the executing algorithm can be presented in
the following pseudo code:

begin
 local Program, Memory, Current_Env, Current_Done_Cell;
 prepare_execution_of_program;
 loop
 execute_single_state
 exit when Memory[Current_Done_Cell]=<true>
 otherwise
 advance_to_next_state
end.

In prepare_execution_of_program the interpreter’s variable Program is

assigned the program’s syntax tree and the Current_Env is initialized to indicate
references to the memory. The memory itself is allocated to have cell for each
variable plus one where to be placed the value of the done flag from
Current_Done_Cell variable.

The transformation of the variable Program and check to ensure that the done
flag has been set to true or false are made in execute_single_state. Also the
assignments in the current state are reflected in the values of the memory’s cells.

In advance_to_next_state if the current state is not the last, preparation are
made for going to the next one. This is done by clear the content of the memory’s
cells and prepares the reduced form of Program variable.

The transformations of the variable Program, which are made in procedure
execute_single_state, are done in a loop, which executes procedure
transform_stmt(Program). It repeatedly transforms the program, applying special
rules based on ITL theory, until the specific test shows that the program is reduced
to appropriate form. Each iteration of this loop corresponds to one pass over the
program.

10-12 December 2010, Plovdiv, Bulgaria 315

The procedure transform_stmt has the form transofrm_stmt(Statement). An
interesting point is that the syntax of Tempra permits one statement to be perceived
in different ways. For example the formula (I=4)∩(J=1+I) can be viewed as a
statement or as a boolean test and the variable I can be considered as an expression
or as a location. For this reason the Tempura interpreter needs different functions
for reducing of statements.

5. Tempura reengineering plan

The reengineering of Tempura will be conducted in several iterations. Each
iteration will consist of three main phases: research, implementation and testing.
The research phase will include series of experiments of reverse engineering
methodologies over a subset of the code. These experiments will show us whether
the selected methodology is usable and should be applied over the entire source.
The research phase will also include usage of various reengineering tools. The
result of the implementation phase will be fully functional interpreter. With each
iteration we will achieve source code with higher degree of compliance with the
object-oriented paradigm. In the testing phase we will conduct series of tests by
running the same tempura scripts on the original C-Tempura and the reengineered
Java version. Needless to say, we aim at identical behavior of both systems. These
tests will ensure the correctness of the reengineered code. It is important to note
that our main focus is at creating correctly functioning ITL interpreter, paying less
attention at optimization, memory and performance issues.

Our goal in the first iteration is to merely rewrite the original C source into
Java, avoiding object-oriented features (such as inheritance and polymorphism) as
much as possible and using Java OOP principles at their minimum. Unfortunately,
this task will not be trivial, because in Tempura sources are used constructs of C,
which are not available in Java. These constructs include macro definitions,
memory pointers, function pointers, structure and union types. On the other hand,
our reengineering effort will be made easier due to the fact, that the C-Tempura
authors used uniform set of conventions through the source.

5.1. First Iteration

Our reengineering plan for the first iteration can be outlined with the
following:

I. Research
1. Acquire understanding of Interval Temporal Logic;
2. Learn code structure, main program flow, structures and

variables of Tempura interpreter.
II. Implementation
1. Create a Java class for every C source file and its associate

Header file;

316 Anniversary International Conference REMIA2010

2. Create a static method in the Java class for every function
in the C file;

3. Create static variable in the Java class for every global
variable in the Header file;

4. Create a static method in the Java class for every macro
function in the Header file (where appropriate);

5. Expand the contents of every macro, not covered by the
previous step;

6. Replace function pointers with instances of specially
created Interface, which will call the desired Java method (delegates).

After examining the foundations of temporal logic, source code of the C
version of tempura and basic life-cycle of the interpreter we began the actual
translation of source code from C to Java.

Following the implementation plan of the first iteration phase we completed
the translation of the source files, replacing typical C structures by their respective
equivalents in Java. The most common differences and difficulties in interpretation
were related to the replacement of pointers used by the original developers, with
structures in Java. The nature of problems in translation is caused by relatively
different types of languages that we are using. C programming language has a
lower level of abstraction; it is intended for programming systems with high speed
and precise control of memory. It has mechanisms, such as pointers to interact and
directly manipulate the memory cells. Java, which is our primary means of
developing the system, is more modern and fully object-oriented programming
language. This gives a lot of advantages such as components and capabilities for
handling containers, which in turn enable us to create and manage our Middleware
agents. Languages with high level of abstraction, such as Java, have no means of
directly handling memory. Because of this a relatively small portion of code
consumed a lot of time to convert C memory handling to semantically equivalent
Java constructs.

Most of the code was translated easily; in order to ease this translation in the
first version, we neglected some of the conventions for writing Java code. This was
done in order to minimize differences in source code, which in turn enables us to
easily test the Java version.

III. Testing
1. Run the examples, which come with the original sources,

on the Java interpreter and compare results;
2. Contact Antonio Cau for further test cases;
3. Strategy – embed the same trace information in original

tempura sources and in JTempura, then compare outcomes of
execution of the same tempura expression in both interpreters.

10-12 December 2010, Plovdiv, Bulgaria 317

After finishing the initial translation, we began testing Java-tempura. To be
sure of the results of the test cases we used tests and scripts that we have been
provided with the source code of the original developers. Tests themselves are
carried by parallel execution of test scripts by the two versions of the interpreter
and comparison of outcome. About 90% of test cases completed with a result
identical to that of the original interpreter. It should be noted that at this stage of
development we are not concerned with the speed of the Java version. Perhaps in
the future we will have optimize Java-tempura, because the nature of DeLC, part of
which will be the interpreter, is to provide real-time electronic services and
performance is of great importance for the system and the users themselves.

After the initial tests we contacted one of the original developers of C-
Tempura, Antonio Cau. He was kind enough to provide us with additional test
cases, which were divided in three topics – I/O, Lists and sub lists and
Miscellaneous. Using his directions we were able to pinpoint and eradicate some
implementation problems.

5.2. Plans for Second Iteration

Upon completion of first Java version of the interpreter, next step is to make
two versions of Java Tempura – object-oriented and agent-oriented. The initial
translation is direct and it will keep almost entirely the structure and philosophy of
the original project. The creation of object-oriented version will enable us to take
advantage of the full benefits of object-oriented languages such as Java. Moreover,
this version of the interpreter will be much more understandable, adaptable and
easier to use in future projects. Agent-oriented version will be specially designed to
serve the needs of the project DeLC and his agent-oriented middleware.
Optimizing the performance of Java-tempura will also be important in the practical
realization of the system as it currently is ignored in order to quickly achieve a
working prototype.

6. Conclusion

In this paper we presented our motivation for creating Java version of the C-
Tempura interpreter. We discussed why we need ITL interpreter and why we
choose reengineering existing C code over creating a new project from scratch. We
also described the main flow of interpreting Tempura formulae and main functions,
structures and variables used in the interpreter. We proposed step-by-step plan for
reengineering the ITL interpreter and rewriting it in Java. We plan several
iterations of reengineering; each iteration consists of phases of research,
implementation and testing. The first iteration is one-to-one translation from C to
Java (preserving the procedure-oriented paradigm of the program), while the
second iteration will produce object-oriented and agent-oriented version.

318 Anniversary International Conference REMIA2010

Acknowledgment

This publication is partly financed by project ДО02-149/08 of the Fund
“Science researches” of the Ministry of Education.

References

[1] S. Stojanov, I. Ganchev, I. Popchev, M. O’Droma, R. Venkov. 2003. “DeLC –
Distributed eLearning Center”. In Proc. of the 1st Balkan Conference in Informatics
BCI’2003, Pp. 327-336, 21-23 November. Thessaloniki, Greece. ISBN 960-287-
045-1

[2] S.Stoyanov, I.Ganchev, I.Popchev, M.O’Droma, From CBT to e-Learning, Journal
“Information Technologies and Control”, No. 4/2005, Year III, Pp. 2-10, ISSN
1312-2622

[3] Ganchev I., S. Stojanov, M. O’Droma, D. Meere, “An InfoStation-Based University
Campus System Supporting Intelligent Mobile Services”. Journal of Computers
(JCP, ISSN1796-203X), Vol. 2, No. 3, Academy Publisher, May, Pp. 21-33.

[4] Iacono A. L. and C. Rose. “InfoStations: A new perspective on wireless data
networks. In Next Generation Wireless Networks, Defining Applications and
Services for the Next Generation.” Kluwer Academic Publishers, 2000

[5] Stoyanov, S., I. Ganchev, M. O’Droma, D. Mitev, I. Minov, Multi-Agent
Architecture for Context-Aware mLearning Provision via InfoStations, In: Proc. of
the 5th International Conference on Soft Computing as Transdisciplinary Science
and Technology, October 28-31, 2008, Paris, pp.549-552, 2008, ACM 978-1-60558-
046-3/08/0003.

[6] Ganchev I., D. Meere, S. Stojanov, M. Ó hAodha, M. O’Droma. 2008. “On
InfoStation-Based Mobile Services Support for Library Information Systems”. Proc.
of the 8th IEEE International Conference on Advanced Learning Technologies (IEEE
ICALT’08), Pp. 679-681, 1-5 July, Santander, Spain. ISBN 978-0-7695-3167-0.

[7] Ganchev, I., M. O’Droma, S. Stojanov, I. Popchev, “Provision of mobile services in
a distributed eLearning center”. Proc. of the International Conference on Automatics
and Informatics, Pp. 79-82, Sofia, 6-7 Octomber, 2003

[8] Ganchev I., S. Stojanov, M. O’Droma, D. Meere. “Communications Scenarios for
InfoStation-based Adaptable Provision of mLearning Services”. In Proc. of the 2nd
International Conference on Modern (e-)Learning (MeL 2007), Pp. 98-104, Varna,
Bulgaria. ISSN 1313-0095 (paperback), ISSN 1313-1168 (CD), ISSN 1313-1214
(online). 1-7 July 2007.

[9] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,
Cambridge, England, 1986.

[10] A. Cau , Interval Temporal Logic A not so short introduction,
http://www.tech.dmu.ac.uk/STRL/ITL/itl-course/index.html (to date)

Vladimir Valkanov,
Faculty of mathematics and Informatics
236, Bulgaria Blvd.
2003 Plovdiv, Bulgaria
e-mail: assarel@abv.bg

Damyan Mitev,
“Trakia” bl. 201A, aprt. 9
Plovdiv, Bulgaria
e-mail: damyan_mitev@mail.bg

