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Multiplicative Systems on Ultra-Metric Spaces

Nacima Memić

We perform analysis of certain aspects of approximation in multiplicative systems

that appear as duals of ultrametric structures, e.g. in cases of local fields, totally disconnected

Abelian groups satisfying the second axiom of countability or more general ultrametric spaces

that do not necessarily possess a group structure. Using the fact that the unit sphere of a

local field is a Vilenkin group, we introduce a new concept of differentiation in the field of

p-adic numbers. Some well known convergence tests are generalized to unbounded Vilenkin

groups, i.e. to the setting where the standard boundedness assumption related to the sequence

of subgroups generating the underlying topology is absent. A new Fourier multiplier theorem

for Hardy spaces on such locally compact groups is obtained. The strong Lq , q > 1, and weak

L1 boundedness of Fourier partial sums operators in the system constructed on more general

ultrametric spaces is proved.
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1. Introduction

The field of reals R, obtained as a completion of rationals Q with respect

to the metric generated by the ordinary absolute value as the Archimedean norm

on Q, is just one among infinitely many completions of the rationals. According

to the Ostrowski theorem, any nontrivial norm on Q is either the ordinary

absolute value or a p-adic norm for some prime number p. The completion of the

field Q with respect to the p-adic norm leads to the field Qp of p-adic numbers.

Any p-adic norm is non-Archimedean. Twenty years ago, when Volovich [16]

explicitely stated the hypothesis of non-Archimedean structure of space-time at

ultra-small distances, the already rich areas of applications of p-adic analysis to

number theory or algebraic geometry were extended also into direction of the

mathematical physics (see. e.g. [15]) .
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Ultrametric analysis we are concerned with concentrates on complex val-

ued functions of an argument belonging to an ultrametric space. (Tate’s thesis

[14] is the most remarkable representative in this interpretation of p-adic anal-

ysis.)

p-Adic differential calculus differs from the real case since piece-wise con-

stant functions depending on a finite number of digits have vanishing derivative.

All approaches to a p-adic derivative of complex valued functions have been

based on the idea that additive characters should be eigenfunctions of the dif-

ferentiation operator ([4], [11]). Our attempt is to use the multiplicative system

of multiplicative characters on the unit sphere and then extend the p-adic de-

rivative to the field Qp. The first of three parts of the dissertation is devoted to

this goal.

The additive group of the ring of integers of a local field as well as the

multiplicative group of units in such a field are particular examples of so-called

Vilenkin groups ([1]). In the second part, we are concerned with certain aspects

of harmonic analysis on Vilenkin groups that are present in the general setting,

i.e. without the boundedness assumption related to the sequence of subgroups

that determines the topology of a group under consideration.

Further generalizations to multiplicative systems constructed on compact

ultra-metric spaces that need not have a group structure form the content of

the concluding part of the dissertation.

2. Differentiation on local fields

Differentiation on totally disconnected local fields is based on the classical

relation that the differentiation operator should be diagonalized by some given

orthogonal system. We use this relation to define a derivative on the p-adic field

and the dyadic field.

2.1. Differentiation on the p-adic field. Let Qp be the field of p-adic num-

bers endowed with the p-adic norm ‖.‖p. For every γ ∈ Z, the sphere of radius

pγ is given by

Sγ = {x ∈ Qp : ‖x‖p = pγ}.
Denote by (θn)n the system of multiplicative characters on S0.

We extend the characters θn to Q
∗
p by the relation θn(x) = 1

‖x‖
1
2
θn(‖x‖x).

We introduce a new definition of derivative on the field of p-adic numbers.
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Definition 2.1. Let ϕ be a locally constant function. If the series
∞∑

n=0
nαϕ̂γ(n)θn(x) converges at a point x ∈ Sγ for some α > 0, then the function

ϕ is said to be α-differentiable at x and ϕ(α)(x) =
∞∑

n=0
nαϕ̂γ(n)θn(x) is called its

α-derivative at x.

The following properties of the α-derivative are proved.

Lemma 2.2. Locally constant functions are infinitely differentiable.

Lemma 2.3. The α-derivative of any radial function is equal to 0. Every locally

constant function whose derivatives of integer orders vanish is radial.

Theorem 2.4. Let ϕ be a locally constant function. For α > 0, the α-derivative

of ϕ has the form ϕ(α)(x) = kαϕ(x) if and only if ϕ(x) = M(x)θk(x) for some

radial function M(x) .

Proposition 2.5. If a function ϕ is α-differentiable at some x0 6= 0, then

the function ϕz(x) = ϕ(x
z ) is α-differentiable at x0z for every z 6= 0, and

ϕ
(m)
z (x0z) = (ϕ(m))z(x0z).

Definition 2.6. f is a regular distribution if it is defined by

〈f, ϕ〉 =

∫
ψ(x)ϕ(x)dx ,

for any test function ϕ, where ψ is a fixed locally constant function.

Proposition 2.7. The α-derivative of a regular distribution f defined by a

locally constant function ψ is given by 〈f (α), ϕ〉 = 〈ψ,ϕ(α)〉 = 〈ψ(α), ϕ〉.

Theorem 2.8. Let f be a distribution on Q
∗
p whose α-derivative is equal to

kαf . Then 〈f, ϕ〉 =
∫
θk(x)N(x)ϕ(x)dx for every test function ϕ, where N(x)

is a fixed radial function .

Definition 2.9. The multiplicative convolution of functions ϕ and ψ is given

by the formula (ϕ ∗ ψ)(x) =
∫
S0
ϕ(x

t )ψ(t)dt, x ∈ Q
∗
p, if the integral converges.

Notice that ϕ ∗ ψ 6= ψ ∗ ϕ.

The next proposition illustrates some properties of the multiplicative

convolution.
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Proposition 2.10.

(1) On S0, the relation (ϕ ∗ ψ)γ = ϕγ ∗ ψ holds.

(2) There is no identity element of the multiplicative convolution in the space

of locally integrable functions.

2.2. Differentiation on the dyadic field. On R+ endowed with the dyadic

norm, the pseudo-differential operator with symbol xα is defined as follows.

Definition 2.11. Let α ∈ R \ {−1}. We define a distribution Λ{α} on R+ by

〈Λ{α}, ϕ〉 := 〈tα, Fϕ〉

where 〈xα, ϕ〉 :=

∫ +∞

0
xαϕ(x)dx, if α > −1, and 〈xα, ϕ〉 :=

∫ +∞

0
xα(ϕ(x) −

ϕ(0))dx, when α < −1.

For f ∈ D′(R+), we put Dαf := f ∗ Λ{α} if the convolution exists.

For all x ∈ R+, n ∈ N, let xn = [2nx](mod2) ,and x−n = [21−nx](mod2).

As x−n = 0 for n sufficiently large, the functions

t(x, y) =
∞∑

n=1

(xny−n + x−nyn) and ψ(x, y) = (−1)t(x,y)

are well defined on R+ × R+.

Proposition 2.12. Let α ∈ R\{−1}, then we have Dαψ(x, y)(y)=xαψ(x, y)(y).

3. Vilenkin groups

In this chapter we generalize Salem,s and Lebesgue,s tests for convergence

of Fourier Vilenkin series to unbounded Vilenkin groups.

3.1. A local Salem test on unbounded Vilenkin groups. Theorem 1 ob-

tained in [2] can be generalized to unbounded Vilenkin groups as follows.

Theorem 3.1. Let G be a Vilenkin group, and f a continuous function at some

point x satisfying:

(1) pk+1 sup
t∈Uk

|f(x+ t) − f(x)| = o(1), k → ∞,

(2) lim
l→∞

lim
k→∞

sup
t∈Uk+1

(Ck + 1)

mk
ml

−1∑

α=1

1

α

∣∣∣∣∣∣

pk+1−1∑

j=0

f(x− z(k)
α − jxk − t)ζjak

k

∣∣∣∣∣∣
= 0,
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uniformly in 1 ≤ ak < pk+1, where Ck = sup
i≤k

pi

pk+1
.

Then, lim
n→∞

Sn(x, f) = f(x).

3.2. Lebesgue test on unbounded Vilenkin groups. We generalize the

results of [7] to unbounded Vilenkin groups.

Definition 3.2. We introduce the function

f⋄(x) = limk→∞
1

m(Gk)

∫

Gk

f(x− t)

ak∑

r=0

χr
mk

(t)dt ,

if the limit exists uniformly with respect to ak ∈ {0, 1, 2, . . . , pk+1 − 1}, at the

point x ∈ G.

Definition 3.3. An element x ∈ G is said to be a Lebesgue point of an inte-

grable function f if

1

m(Gk)

∫

Gk

|f(x+ t) − f(x)|dt = o(1)(k → ∞).

Theorem 3.4. If G is bounded and x is a Lebesgue point of f , then f⋄(x) exists

and is equal to f(x). However, the existence of f⋄(x) does not imply that x is a

Lebesgue point. Moreover, if G is unbounded then f⋄(x) need not exist even at

Lebesgue points.

Theorem 3.5. Let G be any Vilenkin group, and f ∈ L1(G). Let n = akmk +r,

where 1 ≤ ak < pk and r < mk. Suppose that

f⋄(x) = limk→∞
1

m(Gk)

∫

Gk

f(x− t)

ak∑

r=0

χr
mk

(t)dt

exists uniformly in ak ∈ {0, 1, 2, . . . , pk+1 − 1} at a point x ∈ G. Then

Sn(f ;x) − f⋄(x) = o(1) +

mk−1∑

α=1

χak
mk

(z(k)
α )Dr(z

(k)
α )

∫

Gk

f(x− z(k)
α − t)χak

mk
(t)dt

as n → ∞. Thus the necessary and sufficient condition that the Fourier series

of f converges at x is that

(*)

mk−1∑

α=1

χak
mk

(z(k)
α )Dr(z

(k)
α )

∫

Gk

f(x− z(k)
α − t)χak

mk
(t)dt = o(1)

uniformly in ak and r as k → ∞.
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3.3. Fourier multipliers on Hardy spaces.

Definition 3.6. A complex function a is called an atom on G if

(1) supp(a) ⊂ y +Gn,

(2) ‖a‖∞ ≤ 1
µ(Gn) ,

(3)
∫
G a(x)dx = 0.

If the group G is compact, then the function a ≡ 1 is also considered as

an atom.

The atomic Hardy space H1 consists of integrable functions f which can

be represented as f =

∞∑

i=1

λiai, where each ai is an atom and

∞∑

i=1

|λi| < +∞.

The norm in H1 is given by ‖f‖H1 = inf

∞∑

i=1

|λi|, where the infimum is

taken over all such decompositions of f .

Definition 3.7. For any distribution f , let Mf(x) = sup
n

|f ∗(µ(Gn))−11Gn(x)|.

The space H consists of all distributions f such that Mf ∈ L1. The

norm is given by ‖f‖H = ‖Mf‖1.

Onneweer and Quek [12] proved that H = H1 on bounded locally com-

pact Vilenkin groups.

G. Gat [8] established the strict inclusion H1
( H on some compact

unbounded Vilenkin groups.

There exists a maximal function that defines the space H1 on compact

unbounded Vilenkin groups constructed by P.Simon [13].

Our results obtained in [3] show that the situation remains the same on

locally compact unbounded Vilenkin groups. Namely, the maximal function

M̃f(x) = supn,In|f ∗ (µ(In))−11In(x)|, generates the space H1 on both

bounded and unbounded locally compact Vilenkin groups, where In is an interval

of the form In =
⊎β

i=α ixn +Gn+1 0 ≤ α ≤ β < pn+1.

Definition 3.8. Let φ ∈ L∞(Γ). φ is a multiplier in H1 if the operator Tf =

(φf∧)∨ is bounded on H1.

φ is a multiplier if and only if Tf = (φf∧)∨ is bounded on the set of

atoms.
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Theorem 3.9.

In the next theorem, we generalize previous results of Kitada [10], Daly-

Phillips [6] and Theorem 2(i) of [5] to the case of unbounded locally compact

Vilenkin groups.

Theorem 3.10. ([3]) Let G be any Vilenkin group, φ ∈ L∞(Γ) and

supN

∫
Gc

N
|(φ− φN+1)

∨(y)|dy = O(1),

where φN+1 = φ1ΓN+1
and ∧,∨ denote respectively the Fourier transform and

the inverse Fourier transform. Then φ is a multiplier on H1.

An example has been constructed to show that our estimate is sharper

in comparison with Daly and Phillips, results.

The following result is an extension of the Marcinkiewicz multiplier the-

orem for Hardy spaces in the bounded case.

Corollary 3.11. ([3]) If φ ∈ L∞(Γ) on a bounded compact Vilenkin group G

fulfills the requirement

mp−1
N

mN+2−1∑

k=mN+1

|△φ(k)|p = O(1) for some p ∈ (1, 2] ,

where △φ(k) = φ(k) − φ(k + 1), then φ ∈ m(H1).

4. Multiplicative systems on ultra-metric spaces

Our setting in this chapter are ultrametric spaces that need not possess

a group structure. We construct a multiplicative system (χn)n on a given space

X and deduce some of its basic properties.

Definition 4.1. Let G be a compact, 0-dimensional metric space. Suppose that

(Cn)n is a sequence of covers of G with the following properties:

(1) Elements of a given Cn are disjoint and clopen.

(2) Each element of Cn is properly contained in some element of Cn−1.

(3) C0 = G.

(4)
⋃

n Cn is a base for the topology of G.

Proposition 4.2. If for every n, all elements of Cn are given the same measure,

then X is homeomorphic to some additive Vilenkin group G determined by the

sequence (pn)n, where pn is the number of elements from Cn+1 contained in one

element from Cn.
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In the general case, when elements from Cn need not have the same mea-

sure, except for those contained in the same element of Cn−1, a multiplicative

system is constructed with the following properties.

Proposition 4.3.

(1)
∫
χn = 0 for every n 6= 0.

(2) The family (χn)n is orthonormal.

If Un(x) is the unique element from Cn that contains the point x, then

mn(x) will denote the measure of Un(x). The analogue of the propertyDmn(t) =

mn1Gn(t) of the Dirichlet kernel is given in the following proposition.

Proposition 4.4. Let x, t ∈ X, and n ≥ 0. Then we have

mn(x)−1∑

k=0

χk(x)χk(t) = mn(x)1Un(x)(t) .

An analogue of the Calderon-Zygmund decomposition is also proved.

Lemma 4.5. Let f ∈ L1(X), y > 0 and (αn)n be a sequence of integers.

Suppose ‖f‖1 ≤ y. Then, there exist functions g, b and a sequence B = {ωj} of

disjoint intervals of X such that:

(1) f = g + b.

(2) |g| ≤ Cy, a.e.

(3) ‖g‖1 ≤ ‖f‖1

(4) B =
∞⋃

n=0

Bn, where every ωj ∈ Bn is strictly contained in some element

from Cn, and forms a union of elements of Cn+1.

(5) b is supported in
⋃

j ωj.

(6)

∫

ωj

b = 0 for every ωj ∈ B and

∫

ωj

bθαn
n = 0, if ωj ∈ Bn.

(7)

∫

ωj

|b| ≤ C

∫

ωj

|f | for every ωj ∈ B.

(8)
∑

j

µ(ωj) ≤ y−1‖f‖1.

If Sn is the n-th partial sum with respect to the system (χk)k, then

using the previous lemma we obtain the following result on boundedness of the

respective operators.
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Theorem 4.6. There exist constants Cp, p ≥ 1, such that

(1) ‖Snf‖p ≤ Cp‖f‖p, and

(2) µ({|Snf | > y}) ≤ C1y
−1‖f‖1.

Finally, on a class of locally compact ultra-metric spaces, we construct a

wavelet system of a Khrennikov-Kozyrev type ([9]) and prove that it is a basis

of eigenfunctions of an ultra-metric diffusion operator.

The operator has the following form:

Tf(x) =

∫
T (x, y)(f(x) − f(y))dy ,

where the kernel T (x, y) is symmetric, positive, locally constant and only de-

pends on the distance ‖x− y‖p.

For the system of functions ψn,k,j(x) =
1Uk

n
(x)e

2πilj

pk
n

√
µ(Uk

n)
, where Uk

n is a basis

for the topology of the space, and the numbers pk
n, l depend on Uk

n and x

respectively, we prove the following:

Theorem 4.7. The system ψn,k,j is an orthonormal total basis for the

operator T .
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