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The control problem of minimal time transition between two stationary points are

formulated in a framework of an indirect numerical method. The problem is regularized and

the monotone behavior of the regularisation procedure is investigated. Semi-smooth Newton

method applied on the regularized problems converge superlinearly and usually produce a very

accurate solution. Differently from other methods, this one does not need a-priory knowledge of

the control switching structure. A code was developed in the C++ language and the NVIDIA

CUDA technology made it even faster.
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Introduction

This paper addresses time optimal control problems for a class of linear

non-autonomous multi-input controls systems for ordinary differential equations.

Due to structural difficulties, time optimal control has been receiving a consid-

erable amount of attention for decades. Much of the literature up to the late

sixties is covered in [5]. Many recent results can be found or are referenced in

[2, 8, 10]. Time optimal control for infinite dimensional systems is considered

in [3], for example.

The optimality system associated to time optimal control problems with

pointwise constraints on the controls is complicated due to lack of smoothness

of the optimal controls. In fact, the first order optimality system for time opti-

mal control problems contains a multi-valued operation which complicates the
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use of fast numerical methods. For this reason we introduce a regularization

to the time optimal problem. In section 1 the behavior of the solutions of the

regularized problems as the regularization parameter ε tends to zero is investi-

gated. In particular monotonic structure of the solutions with respect to ε is

shown. An optimality system for the regularized problems is derived under a

normality condition. The optimal controls of the regularized problems are W 1,∞

regular and converge to a minimum norm solution of the original problem as

the regularization parameter tends to zero.

The optimality system of the regularized problems is still not C1 but

the optimal controls are now Lipschitz functions. In finite dimensions, lo-

cally Lipschitz continuous functions are almost everywhere differentiable, by

Rademacher’s theorem. This concept is not available in infinite dimensions so

second order methods with local quadratic convergence order are not directly

applicable. However, sufficient conditions will be obtained in section 2 which

imply that semi-smooth Newton methods [6] are well-posed and locally super-

linearly convergent.

Section 3 contains a brief description of numerical results. We compare

the chosen regularization to an alternative one, which has stronger regularization

properties. Since the optimal controls of the original time optimal problems are

typically not continuous, it appears that our choice of regularization which leads

to W 1,∞ regularized controls is preferable over others which provide smoother

ones.

Let us note that the approach that we propose for solving time optimal

problems deviates from traditional approaches, which are frequently grouped

into direct and indirect methods. The basic idea of direct methods is to discretize

the control problem in order to obtain nonlinear programming (NLP) problem,

which may be solved by NLP techniques such as Initial Value Solver (IVS) and

Sequential Quadratic Programming (SQP). These methods use only control and

state variables. In this sense direct methods are easier to implement but less

accurate than the indirect methods; cf., e.g. Reference [1], [8].

The second group consists of indirect optimization methods, which are

based on the solution of the first order necessary conditions of optimality, the

Pontryagin minimum principle (PMP). We shall use this approach. The two

point boundary value problem (TPBVP) arising from the PMP is solved by

the Semi-smooth Newton’s method, and quite contrary to the multiple shooting

method, does not need a priori knowledge of switching structure. In practice,

it is usually rather difficult to determinate the optimal switching structure in
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advance, especially for the multi switch problems. The Newton’s method will

converge superlinearly and usually produces a very accurate solution.

1. The Time-optimal problem and its Regularization

Consider the time-optimal control problem for the non-autonomous linear

multi-input system

(P)





min
∫ t1
t0
dt

subject to

d
dtx(t) = A(t)x(t) +B(t)u(t), |u(t)|ℓ∞ ≤ 1,

x(t0) = x0, x(t1) = x1,

where t denotes a scalar time variable on some nonempty closed interval J
.
=

[t0, t1] of the positive real line. Here A ∈ L∞(t0, t1; R
n×n) and B ∈ L∞(t0,

t1; R
n×m) are two given coefficient matrices. The columns of B(t) are denoted

by bi(t) for i = 1, 2, . . . ,m. The vector function x(·) satisfying problem (P) is

a system trajectory and a vector x is a state of the system. We assume that

the initial state x0 and terminal state x1 are two given n-dimensional column

vectors. The vector u(·) is control used to modify the system. We will assume

that the control u is a bounded measurable m-vector, and | · |ℓ∞ denotes the

infinity-norm on R
m. Also we assume that x1 can be reached in finite time by

an admissible control. Then (P) admits a solution with optimal (τ∗, x∗, u∗),

where τ∗ is the optimal time, x∗ is the optimal state and u∗ is the optimal

control. For the proof we refers to [3].

The first order optimality system for (P) can be expressed in terms of

the adjoint p and the Hamiltonian

H(x, u, p0, p) = p0 + pT (Ax+Bu),

as

(1.1)





ẋ = Ax+Bu, x(t0) = x0, x(t1) = x1,

−ṗ = AT p,

u = argmin|u|ℓ∞≤1H(x, u, p0, p),

p0 + p(t1)
T (A(t1)x(t1) +B(t1)u(t1)) = 0, p0 ≥ 0,
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where the superscript T denotes transposition. For details, see page 27 of [4].

Due to the special structure of H the optimal control can be expressed as

(1.2) ui = −σ(si),

where si = pT bi denotes the switching function for the ith control variable and

σ denotes the coordinate-wise operation

σ(si) =





−1 if si < 0

[−1, 1] if si = 0

1 if si > 0.

(1.3)

Introducing the transformation t̂ = t
τ and setting t0 = 0, t1 = τ ,

x̂(t̂)
.
= x(τ t̂) = x(t), p̂(t̂)

.
= p(τ t̂) = p(t), û(t̂)

.
= u(τ t̂) = u(t),

Â(t̂)
.
= A(τ t̂) = A(t), B̂(t̂)

.
= B(τ t̂) = B(t),

we obtain the following equivalent system to (1.1):

(1.4)





˙̂x = τÂx̂+ τB̂û, x̂(0) = x0, x̂(1) = x1

− ˙̂p = τÂT p̂

û = argmin|û|ℓ∞≤1H(x̂, û, p̂)

1 + p̂(1)T (Â(1)x̂(1) + B̂(1)û(1)) = 0

where t̂ ∈ [0, 1]. The non-differentiable operation involved in characterizing the

optimal control,

u = −σ(BT p),

compare (1.2), prohibits the use of Newton-type methods for solving (1.4) nu-

merically.

Therefore a family of regularized problems

(Pε)





minτ≥0

∫ τ
0 (1 + ε

2 |u(s)|2) ds

subject to

d
dtx(t) = A(t)x(t) +B(t)u(t), |u(t)|ℓ∞ ≤ 1,

x(0) = x0, x(τ) = x1,

with ε > 0 is considered. The norm | · | used in the cost-functional denotes

the Euclidean norm. It is straightforward to argue the existence of a solution

(uε, xε, τε).
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The convergence of the solutions (xε, pε, uε, τε) of (Pε) to a solution

(x∗, p∗, u∗, τ∗) of (P) is considered next. Note that (x∗, p∗, u∗, τ∗) is unique if

the normality condition is assumed.

Theorem 1.1. For ε→ 0+ we have τε → τ∗ and every convergent subsequence

of solutions {(uε, xε)}ε>0 to (Pε) converges in L2(0, τǫ; R
m) ×W 1,2(0, τǫ; R

n)

to a solution (u∗, x∗) of (P), where u∗ is a minimum norm solution.

Corollary 1.2. If normality holds, then the solution u∗ to (P) is unique, it is

bang-bang, and uε → u∗ in L2 as ε→ 0+.

We turn to the optimality condition for (Pε). Let

σε(s) =





−1 if s ≤ −ε
s
ε if |s| < ε

1 if s ≥ ε.

(1.5)

If σε is applied to a vector, then it acts coordinate-wise.

Theorem 1.3. Assume that normality of (Â, B̂) holds on [α, 1] for every α ≥ 0,

that Â ∈ W 1,∞(0, 1; R
n×n), B̂ ∈ W 1,∞(0, 1; R

n×m) and let (xε, uε, τε) be a

solution of (Pε). If there exist an interval J1
.
= (α, α + δ), δ > 0, η > 0 such

that

(1.6) | ûε(t)|ℓ∞ ≤ 1 − η for a.e. t ∈ J1,

then there exists an adjoint state pε such that

(1.7)





ẋε = Axε +B uε, xε(0) = x0, xε(τε) = x1

−ṗε = AT pε

uε = −σε(B
T pε)

1 + ǫ
2 |uε(τε)|2Rm + pε(τε)

T
(
A(τε)xε(τε) +B(τε)uε(τε)

)
= 0.

The third claim in (1.7) reveals the extra regularity of uε:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have

uε ∈W 1,∞(0, τε; R
m) .
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2. Semi-smooth Newton methods

In this section the semi-smooth Newton method for solving the regular-

ized optimality system (1.7) is described and analyzed. It will allow that (1.7)

can be solved efficiently in spite of the fact that σε is not Fréchet differentiable.

Throughout we fix ε > 0 and denote by (xε, uε, τε) ∈ W 1,2(0, 1) ×
L2(0, 1) × R a solution to (Pε) with associated adjoint pε ∈ W 1,2(0, 1). It

is assumed that normality of (A, B) holds on [α, 1] for every α ≥ 0, A ∈
W 1,∞(0, 1; R

n×n) and B ∈W 1,∞(0, 1; R
n×m), that

(H1) there exists s̄ ∈ (0, 1) such that |1
ε
B(s̄)T pε(s̄)|ℓ∞ = |uε(s̄)|ℓ∞ < 1

and

(H2) |bi(1)T pε(1)| 6= ε, for all columns i = 1, . . . ,m of B.

We now use the fact that uε is continuous and assumption (H1) implies (1.6) in

some neighborhood (α, α + δ) containing s̄. The existence of pε ∈ W 1,2(0, 1)

follows, by Theorem 1.3, such that (1.7) holds. With (H1) and (H2) holding

there exists a neighborhood Upε of pε in W 1,2(0, 1; Rn), t̄ ∈ (0, 1) such that for

the interval (α, α+ δ) ⊂ (0, 1) we have for every p ∈ Upε

(2.1) |B(t)T p(t)|ℓ∞ < ε for t ∈ (α, α+ δ)

and

|bi(t)T p(t)| 6= ε for all t ∈ [t̄, 1], and i = 1, . . . ,m.

We set U = {u ∈ L2(0, 1; Rm) : u|[t̄, 1] ∈W 1,2(t̄, 1; Rm)} endowed with the norm

|u|U = (|u|2L2(0,1) + |u̇|2L2(t̄,1))
1
2 ,

and introduce

F : DF ⊂ X → L2(0, 1; Rn) × L2(0, 1; Rn) × U × R
n × R,

where

DF = W 1,2(0, 1) × Upε × U × R,

X = W 1,2(0, 1; Rn) ×W 1,2(0, 1; Rn) × U × R,
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and

(2.2) F (x, p, u, τ) =




ẋ− τAx− τBu

−ṗ− τAT p

u+ σε(B
T p)

x(1) − x1

1 + ε
2 |u(1)|2 + p(1)T (A(1)x(1) +B(1)u(1))




.

Note that F = (F1, . . . , F5) is well-defined. This is obvious for F1, F2 and

F3. For F4, F5 it follows from the fact that W 1,2(0, 1) embeds continuously into

C(0, 1). Moreover F (xε, pε, uε, τε) = 0. We shall keep x(0) = x0 as an explicit

constraint.

Applying Newton’s method to F = 0 is impeded by the non-differentia-

bility of σε. We use

Gσε(s) :=

{
1
ε if |s| < ε

0 if |s| ≥ ε
(2.3)

as a generalized derivative. The Newton iteration step is given by

(2.4) DF (x, p, u, τ)(δx, δp, δu, δτ) = −F (x, p, u, τ)

where δx(0) = 0 and DF denotes the Fréchet derivative in all terms of F except

for p → σε(B
T p), for which the generalized derivative is taken according to

(2.3). For further reference we give the detailed form of (2.4):

(2.5)





d
dtδx− τA δx − τB δu− δτ (Ax+B u) = −F1 δx(0) = 0

− d
dtδp − τAT δp − δτ AT p = −F2

δu+Gσε(B
T p)BT δp = −F3

δx(1) = −F4

p(1)T
(
−A(1)F4 +B(1) δu(1)

)
+ εu(1)T δu(1)

+δp(1)T
(
A(1)x(1) +B(1)u(1)

)
= −F5,

where the coordinates of Gσε(B
T p)BT δp are given by Gσε((B

T p)i))(B
T δp)i.

A possible initialization may consist of choosing ((u)0, τ0), setting (x)0
as the linear interpolation between x0 and x1, and determining (p)0 such that

the transversality condition and the adjoint equation are satisfied.
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We now briefly summarize those facts from semi-smooth Newton methods

which are relevant for this paper. Proofs can be found in [6, 11, 9, 7]. Let X

and Z be Banach spaces and let F : DF ⊂ X → Z be a nonlinear mapping with

an open domain DF .

Definition 2.1. The mapping F :DF ⊂ X→ Z is called Newton-differentiable

at x, if there exists an open neighborhood N(x) ∈ DF and mappings DF :

N(x) → L(X, Z) such that

(2.6) lim
h→0

1

|h|X
|F (x + h) − F (x) −DF (x + h)h|Z = 0.

The family {DF (s) : s ∈ N(x)} is called a Newton-derivative of F at x.

Note that F does not need to be Fréchet-differentiable in order to have

the property (2.6). In general, there exists a set of Newton-derivatives at x

which becomes a singleton whenever F is Fréchet-differentiable. If the mapping

F is Newton-differentiable for each x in an open subset U ⊂ DF , then we say

that F is Newton-differentiable on U .

Lemma 2.2. [Chain rule] Suppose that H : DH ⊂ X → Y is Newton-differen-

tiable at x ∈ DH and F : Y → Z is Newton-differentiable at H(x). Then the

mapping g = F (H) is Newton-differentiable at x.

Theorem 2.3. Suppose that x∗ ∈ U is a solution to F (x) = 0 and that F is

Newton-differentiable in an open set U containing x∗ with Newton-derivative

DF . If further {‖DF (x)−1‖ : x ∈ U} is bounded, then the Newton-iteration

xk+1 = xk −DF (xk)
−1 F (xk)

converges q-superlinearly to x∗, provided that |x0 − x∗|X is sufficiently small.

For the statement and the proof of the superlinear convergence of the

time-optimal control problem, some further notation is required. For (x, p, u, τ)

∈ DF we define A ∈ R
(n+1)×(n+1) by

A =

(
A11 A12

A21 0

)
,

where

(2.7) A11 = ε−1τ

∫ 1

0
Φ(1, t)B(t)χI B(t)T Φ(1, t)T dt ∈ R

n×n
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(2.8)
A12 = ε−1τ

∫ 1
0 Φ(1, t)B(t)χI B(t)T

∫ 1
t Φ(t, s)−T A(s)T p(s) ds dt

−
∫ 1
0 Φ(1, t)

(
A(t)x(t) +B(t)u(t)

)
dt ∈ R

n

(2.9)
A21 =

(
A(1)x(1) +B(1)u(1)

)T

−
(
p(1)T B(1) + ε u(1)T

)
Gσε

(
B(1)T p(1)

)
B(1)T ∈ (Rn)T ,

where χI = diag(χI1 , . . . , χIm) and χIi is the characteristic function of the set

Ii = Ii(p) = {t : |bTi p| < ε}, i = 1, . . . ,m

which is nonempty for every p ∈ Upε , i and t ∈ (α, α + δ). The normality

assumption together with (H1) implies that the symmetric matrix A11 is invert-

ible with uniformly bounded inverse with respect to p ∈ Upε and τ in compact

subsets of (0,∞). In fact, since Ii(p) ⊃ (α, α+ δ) holds for every i and p ∈ Upε,

the matrix χI is an identity matrix on (α, α+ δ) for every p ∈ Upε and hence

(2.10)
A11 ≥ ε−1 τ

∫ α+δ
α Φ(1, t)B(t)B(t)T Φ(1, t)T dt

= ε−1 τΦ(1)
∫ α+δ
α Φ(t)−1B(t)B(t)T Φ(t)−T dt Φ(1)T

where τ belongs to the family of closed bounded neighborhoods of τε in R
+.

We assume that

(H3)





there exists a bounded neighborhood

U ⊂ DF ⊂ X of (xε, pε, uε, τε) and c > 0 such that

|A21A
−1
11 A12| ≥ c for all (x, p, u, τ) ∈ U .

Theorem 2.4. If normality, (H1)–(H3) hold and (xε, uε, τε) denotes a solu-

tion to (Pε) with associated adjoint pε, then the semi-smooth Newton algorithm

converges superlinearly, provided that the initialization is sufficiently close to

(xε, uε, τε).
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3. A numerical example

We consider

(3.1)





minτ≥0

∫ τ
0 dt

subject to

d
dtx(t) = A(t)x(t) +B(t)u(t)

|u(t)| ≤ 1, x(0) = x0, x(τ) = x1,

where

A =

(
0 0

0 0

)
, x0 =

(
1/2

1/6

)
, x1 =

(
0

0

)
,

B =

(
25t 0

0 2t

)

χ[
0, 13

)
+

(
−t 0

0 2t

)

χ[
1
3 , 12

)
+

(
−t 0

0 −t

)

χ[
1
2 , 23

]
+

(
t 0

0 −t

)

χ(
2
3 ,1

]
.

To solve (3.1) numerically a time discretization based on the Crank-Nicolson

method on the equidistant mesh with the mesh size h = 1/(N + 1) is applied to

(2.5). The initialization for the state was chosen as a semicircle connecting x0

and x1. Then u(1) and u(1− h) were chosen to be active, τ such that the state

equation held and p was chosen so that the transversality condition and the

adjoint equation were satisfied. The Newton system (2.5) was solved iteratively

and the iteration was stopped when the equation residual was smaller than 10−6

in the L2-norm. The optimal time of steering the state form x0 to the origin

is τ∗ = 0.272752. This reference measure was obtained by discretization for

N = 8192 and c = 500, since the exact solution is not available.

In this paper we choose to regularize σ by the ramp functions

σε(si) =





−1 if si ≤ −ε
si
ε if |si| < ε

1 if si ≥ ε.

(3.2)

In Table 1 we show the number of iterates of the Newton iteration (outer loop)

that was required for this procedure with respect to the different c = 1
ε . Also in

Table 1 we depict the optimal minimal times τ∗(c). These results are obtained

for N = 512.

Certainly other alternatives are possible for approximation of the function σ, as
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for instance

(3.3) σatan(si) =
2

π
atan

(
ε−1 si

)
.

This family of C∞− functions also has the property that it converges to σ as

ε→ 0+, but it appears to be less appropriate for the purpose of approximating

the discontinuous switching structure of the optimal controls. We refer to Ta-

ble 2, which corresponds to the results in Table 1, only with the approximation

procedure (3.2) changed to (3.3).

c 1 10 20

# It 34 37 29

τ∗(c) 0.3115 0.2731 0.2731

Table 1. Approximation σε.

c 1 10 50 100 500

# It 19 140 50 84 168

τ∗(c) 0.4765 0.3012 0.277 0.2746 0.2733

Table 2. Approximation σatan.

For the purpose of comparison, the same values for c in the first two

computational processes were taken. Clearly c has to be taken significantly

larger in the case of (3.3) than for (3.2) to obtain comparable results. The final

time for the σε approximation with c = 10 is quite accurate when compared

to the optimal τ∗ and further computations do not considerably improve the

accuracy. This is not the case for the σatan approximation where the result

improves as c is increased. With c = 500 we obtain the same four-digit accuracy

as for c = 10 in the σε approximation.

The small discrepancy between this converged value and τ∗ is considered

to be the discretization error. In some cases, typically at the beginning of

the iterations and for the lowest values of c the full Newton step was too large.

Therefore we used a one-dimensional line search based on a quadratic polynomial

interpolation for the L2− norm of the residual combined with an Armijo rule.

The graphs for the corresponding controls for σε approximation and N =

512 are given in Figure 1. The plots were obtain for c = 10. Since the example
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(3.1) has two coordinate for the control value, m = 2, the upper plots present

the first coordinate of the control and the lower ones the second coordinate of

u. The first coordinate jumps two times while the second one only one time.

It. no 25 26 27 28 29 30 31 32

ck 0.94 0.8069 0.5947 0.3814 0.3772 0.3023 0.0307 0.0009

Table 3. Approximation σε for c = 10 and N = 512.

Table 3 shows the quotients ck =
|uk+1 − u∗(c)|L2

|uk − u∗(c)|L2

, where u∗(c) is the

solution to the discretize version of (3.1) using the ramp function (3.2) for c = 10

and N = 512. It shows that the algorithm is in fact superlinearly convergent.

Figure 1. Approximation σε for N = 512 and c = 10.
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Precision Hardware It.no Time

Single Intel Pentium4 2.8GHz 3871 50614.2 ms

Single Nvidia 8800 GT 3825 996.941 ms

Single AMD Phemon 9950 2.6GHz 3401 20162.9 ms

Single Nvidia GTX 280 3859 1073.21 ms

Double AMD Phemon 9950 2.6GHz 1342 9347.58 ms

Double Nvidia GTX 280 1342 405.809 ms

Table 4. Difference between a CPU and GPU real-time com-

puting at each iteration of Newton’s method.

3.1. CUDA Architecture. The algorithm for solving the time optimal control

problem (3.1) has the outer loop which present the Newton iteration of the semi-

smooth Newton method. Each Newton loop has the inner loop which solves the

sparse linear system using a CGNR method.

In the Table 1 for c = 10 we needed 37 Newton’s loop but each Newton

loop needs a huge number (3871) of iterations in inner loop to find an appropriate

Newton step, see Table 4. Firstly a code was written in the C/C++ language and

additionally a GPU enabled version of the code was developed using Nvidia’s

CUDA technology. The key component for the GPU implementation was an

efficient sparse matrix-vector multiplication kernel for the CGNR iteration. Two

workstations with two different graphics boards were used for the numerical

tests. Overall the single precision benchmark gives a speedup of 51x and 19x.

While the double precision benchmark gives a speedup of 23x.
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