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Modeling Pulsatility in the Human

Cardiovascular System

Aurelio de los Reyes V and Franz Kappel

In this study we investigated, modified and combined two existing mathematical car-

diovascular models, a non-pulsatile global model and a simplified pulsatile left heart model.

The first goal of the study was to integrate these models. The main objective is to have a global

lumped parameter pulsatile model that predicts the pressures in the systemic and pulmonary

circulation, and specifically the pulsatile pressures in the the finger arteries where real-time

measurements can be obtained. Modifications were made in the ventricular elastance to model

the stiffness of heart muscles under stress or exercise state. The systemic aorta compartment

is added to the combined model. A finger artery compartment is included to reflect measure-

ments of pulsatile pressures. Parameters were estimated to simulate an average normal blood

pressures. Preliminary simulation results are presented.
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Introduction

Cardiovascular modeling has a longstanding desire to understand the
behavior of the blood pressures in the peripheral and systemic compartments,

cardiac outputs, ventricular elastance and contractility in the human circula-
tory system. In Kappel and Peer (1993) [4] and Timischl (1998) [12], efforts
have been done to model non-pulsatile blood flow simulating values of quanti-

ties taken over one heart beat respectively over one breath. These models are
considered to be global in the sense of considering all essential subsystems such
as systemic and pulmonary circulation, left and right ventricles, baroreceptor

loop, etc. These are used to describe the overall reaction of the cardiovascular-
respiratory system under a constant ergometric workload imposed on a test
person on a bicycle-ergometer. The basic control autoregulatory mechanisms
were constructed assuming that the regulation is optimal with respect to a cost

criterion. The model was extended and used to describe the response of the
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cardiovascular-respiratory system under orthostatic stress condition, see for ex-
ample Fink et al. (2004) [5] and Kappel et al. (2007) [3]. In the study done
by Olufsen et. al (2009) [9], a simple lumped parameter cardiovascular model

was developed to analyze cerebral blood flow velocity and finger blood pressure
measurements during orthostatic stress (sit-to-stand).

1. Cardiovascular Modeling

The cardiovascular model presented here is the combination of two ex-
isting cardiovascular models: a non-pulsatile global model adapted from the
earlier work of Kappel and Peer (1993) [4] and a simplified pulsatile left heart

model by Olufsen et al. (2009) [9]. The non-pulsatile global model is based on
Grodin’s mechanical part of the cardiovascular system. It incorporates all the
essential subsystems such as systemic and pulmonary circulation, left and right

ventricles, baroreceptor loop, etc. This model considered the mean values over
one heart cycle instead of the instantaneous values. On the other hand, the
pulsatile left heart model utilizes a minimal cardiovascular structure to close

the circulatory loop. The model consists of two arterial compartments and two
venous compartments combining vessels in the body and the brain, and a heart
compartment representing the left ventricle.

The combined cardiovascular model includes arterial and venous pul-
monary, left and right ventricles, systemic aorta, finger arteries, and arterial
and venous systemic compartments as shown in Figure 1. The pressures and

the compliances in the compartments are denoted by P and c, respectively,
while resistances are denoted by R. In the right ventricle, Q is the cardiac out-
put and S is the contractility. The subscripts mainly stand for the name of the

compartments. That is, ap, vp, lv, sa, fa, as, vs, and rv correspond to arterial
pulmonary, venous pulmonary, left ventricle, systemic aorta, finger arteries, ar-
terial systemic, venous systemic and right ventricle compartments, respectively.

In addition, subscripts mv and av denote the mitral valve, respectively aortic
valve. Also, sa1 and sa2 as subscripts for R (i.e., Rsa1 and Rsa2) correspond
to two different resistances connecting the systemic aorta to finger arteries and

systemic aorta to arterial systemic compartment, respectively.
The current model is mathematically formulated in terms of an electric

circuit analog. The blood pressure difference plays the role of voltage, the

blood flow plays the role of current, the stressed volume plays the role of an
electric charge, the compliances of the blood vessels play the role of capacitors,
and the resistors are the same in both analogies. The stressed volume in a
compartment is the difference between total and unstressed volume (i.e., the

volume in a compartment at zero transmural pressure). Thus, stressed volume is
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Figure 1. The electric analog of the global pulsatile model de-

picting the blood flow in the pulmonary and systemic circuit
including the systemic aorta and finger arteries compartment.

the additional volume added to the unstressed volume when positive transmural
pressure causes a stretching of the vascular walls.

The following are the basic assumptions of the modeling process:

• The vessels in the arterial and venous parts of the systemic or pulmonary
circuits are lumped together as a single compartment for each of these

parts. Each compartment is considered as a vessel with compliant walls
in which its volume is characterized by the pressure in the vessel. Thus,
these vessels are called compliance vessels.

• The systemic peripheral or pulmonary peripheral region is composed
of capillaries, arterioles, and venules which are lumped together into a
single vessel. These vessels are considered to be pure resistances to blood

flow and characterized only by flow through the vessel. Therefore these
vessels are called resistance vessels.

• The atria are not represented in the model. It is assumed that the right
atrium is part of the venous systemic compartment and the left atrium

is part of the venous pulmonary compartment.
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1.1. Blood Volume in the Compartment. For each compartment, we as-
sociate the pressure P (t) and the volume V (t) of the blood. Assuming linear
relationship between the transmural pressure and the total volume, we have

(1) V (t) = cP (t),

where c represents the compliance of the compartment which is assumed to be

constant. In this case, the unstressed volume is zero and the stressed volume
equals the total volume in the compartment. Generally, the total volume in the
compartment can be expressed as

(2) V (t) = cP (t) + Vu,

where Vu denotes the unstressed volume. A more physiologically realistic ap-
proach is to consider that the relation between pressure and total volume is

V = f(P ), which is nonlinear. In this case, the unstressed volume is given by
Vu = f(0) and the compliance, c(P ) at pressure P is f ′(P ) assuming smoothness
on f .

For simplicity, we used (2) assuming Vu = 0 in most of the compartments
except in the left ventricle. This is mainly to avoid introduction of additional
parameters which cannot be observed directly. This however introduces a mod-

eling error that needs to be considered for further investigations.

1.2. Blood Flow and Mass Balance Equations. The blood flow is described

in terms of the mass balance equations, that is, the rate of change for the blood
volume V (t) in a compartment is the difference between the flow into and out
of the compartment. For a generic compartment, we have

(3)
d

dt
(cP (t)) = Fin − Fout,

where c denotes the compliance, P (t) the blood pressure in the compartment and
Fin and Fout are the blood flows into and out of the compartment, respectively.

The loss term in the compartment is the gain term in the adjacent compartment.
Also, the flow F between two compartments can be described by Ohm’s law.
That is, it depends on the pressure difference between adjacent compartments

and on the resistances R against blood flow. Thus we have the relation

(4) F =
1

R
(P1 − P2) ,

where P1 and P2 are pressures from adjacent generic compartments 1 and 2,
respectively.

The blood flow out of the venous systemic compartment is the cardiac

output Qrv(t) which is the blood flow into the arterial pulmonary. The cardiac
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output generated by the right ventricle is

(5) Qrv(t) = HVstr(t),

where H is the heart rate and Vstr(t) is the stroke volume, that is the blood

volume ejected by one beat of the ventricle. Following the discussions given in
Batzel et. al (2007) [1], the cardiac output of the right ventricle can be expressed
as

(6) Qrv(t) = H
crvPvp(t)arv(H)f(Srv(t), Pap(t))

arv(H)Pap(t) + krv(H)f(Srv(t), Pap(t))
,

where we have chosen that the function f(Srv(t), Pap(t)), according to Timischl

(1998) [12] is given by

(7) f(Srv(t), Pap(t)) = 0.5 (Sr(t) + Pap(t))− 0.5 ((Pap(t) − Sr(t)) + 0.01)1/2 .

This function chooses the minimum value between Srv and Pap at a specific time
point t. Also,

(8) krv(H) = e−(crvRrv)−1td(H) and arv(H) = 1 − krv(H) ,

and

(9) td(H) =
1

H1/2

(
1

H1/2
− κ

)
,

where κ is in the range of 0.3−0.4 when time is measured in seconds and in the

range of 0.0387 − 0.0516 when time is measured in minutes.
Moreover, the change in the volume in the left ventricle dVℓv(t)/dt as

modeled in [9] is

(10)
dVℓv(t)

dt
=

Pvp(t) − Pℓv(t)

Rmv(t)
− Pℓv(t) − Psa(t)

Rav(t)

where Pvp(t), Pℓv(t) and Psa(t) are respectively, the blood pressures in the venous

pulmonary, left ventricle and systemic aorta compartments and the time-varying
elastances Rmv(t) and Rav(t) in the mitral valve and aortic valve, respectively.

1.3. Opening and Closing of the Heart Valves. In order to model the left

ventricle as a pump, the opening and closing of the mitral and aortic valves must
be included. During the diastole, the mitral valve opens allowing the blood to
flow to the ventricle while the aortic valve is closed. Then the heart muscles start

to contract, increasing the pressure in the ventricle. When the left ventricular
pressure exceeds the aortic pressure, the aortic valve opens, propelling the pulse
wave through the vascular system [6].

Rideout (1991) [10] originally proposed a model of the succession of open-

ing and closing of these heart valves. A piecewise continuous function was later
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developed by Olufsen et al., see for example [6] and [9]. This function repre-
sents the vessel resistance which characterized the open valve state using a small
baseline resistance and the closed state using a value of larger magnitudes. The

time-varying resistance is given as

Rmv(t) = min
(
Rmv,open + e(−2(Pvp(t)−Plv(t))), 10

)
,

Rav(t) = min
(
Rav,open + e(−2(Plv(t)−Psa(t))), 10

)
,

(11)

where Rmv(t) and Rav(t) are the time varying mitral valve and aortic valve
resistances, respectively. The first equation suggests that when Plv(t) < Pvp(t),
the mitral valve opens and the blood enters the left ventricle. As Plv(t) increases

and becomes greater than Pvp(t), the resistance exponentially grows to a large
value. A similar remark can be deduced from the second equation. The value
10 is chosen to ensure that there is no flow when the valve is closed and remains

there for the duration of the closed valve phase. The open and closed transition
is not discrete. An exponential function is used for the partially opened valve,
with the amount of openness [9].

1.4. Time-Varying Elastance Function. The slope of a pressure-volume
curve which has pressure on the y-axis and volume on the x-axis is called the

ventricular elastance or simply the elastance. It is a measure of stiffness of the
ventricles. Elastance and compliance are inverse of each other.

According to Ottesen et al. (2004) [7], the relationship between the

left ventricular pressure Pℓv and the stressed left ventricular volume Vℓv(t) is
described by

(12) Pℓv(t) = Eℓv(t) (Vℓv(t) − Vd) ,

where Eℓv(t) is the time-varying ventricular elastance and Vd (constant) is the
ventricular volume at zero diastolic pressure.

In [9], the time-varying elastance function Eℓv(t) is given by

(13) Eℓv(t) =





Em + EM−Em

2

[
1 − cos

(
πt
TM

)]
, 0 ≤ t ≤ TM

Em + EM−Em

2

[
cos
(

π
Tr

(t− TM )
)

+ 1
]
, TM ≤ t ≤ TM + Tr

Em, TM + Tr ≤ t < T .

This is a modification of a model developed by Heldt et al. (2002) [2]. Here, TM

denotes the time of peak elastance, and Tr is the time for the start of diastolic
relaxation. These are both functions of the length of the cardiac cycle T . These

parameters are set up as fractions where TM,frac = TM/T and Tr,frac = Tr/T .
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Moreover, Em and EM are the minimum and maximum elastance values, respec-
tively. The above elastance function (13) is sufficiently smooth. Its derivative
can be easily computed as follows

(14)
dEℓv(t)

dt
=





EM−Em

2

[
π

TM
sin
(

πt
TM

)]
, 0 ≤ t ≤ TM

EM−Em

2

[
− π

Tr
sin
(

π
Tr

(t− TM )
)]
, TM ≤ t ≤ TM + Tr

0, TM + Tr ≤ t < T .

In our model, further modifications of the elastance function in (13) has
been done. The maximum elastance EM can be interpreted as a measure of the
contractile state of the ventricle, see [8] and [11]. For normal resting heart, EM

can be a parameter constant. However, during exercise state, the contractility
of the heart muscles may vary and could depend on the heart rate. That is, an
increase in heart rate may result to an increase ventricular elastance. Thus we

considered EM as a function dependent on the heart rate H. Such function must
be positive-valued, bounded and continuous. We chose the Gompertz function
for EM (H), a sigmoidal function given by

(15) EM (H) = a exp(−b exp(−cH)) ,

where a, b, c are positive constants. The constant a determines the upper bound
of the function, b shifts the graph horizontally and c is the measure of the
steepness of the curve.

In Ottesen (2004) [7] and Olufsen et al. (2009) [9], EM =2.49 [mmHg/mL].
Figure 2(a) depicts the maximum elastance curve where constants a, b and c were
estimated obtaining EM = 2.4906 [mmHg/mL] at H = 70/60 beats per second.

Since, EM is now H-dependent, TM which is the time of peak elastance
should be H-dependent as well. We considered TM as the time for systolic
duration which is defined by the Bazett’s formula given by

(16) TM =
κ

H1/2
.

Figure 2(b) depicts the elastance function with varying heart rates. As the heart
rate increases, the maximum elastance value increases as well. Notice also the

decrease in the time for peak elastance and the smaller support of the elastance
curve.

1.5. Filling Process in the Right Heart. The filling process in the right
ventricle depends on the pressure difference between the filling pressure and the
pressure in the right ventricle when the inflow valve (tricuspid valve) is open.

Following Batzel et al. (2007) [1], the blood inflow into the right ventricle is
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(a)

(b)

Figure 2. (a) The maximum elastance EM expressed as a sig-
moidal function dependent on the heart rate H. (b) The elas-
tance function with varying heart rates.
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given by

(17)
dVrv(t)

dt
=

1

Rrv
(Pv(t) − Prv(t)) ,

where Vrv(t) is the volume in the right ventricle at time t after the filling process

has started, Pv(t) is the venous filling pressure, Prv(t) is the pressure in the right
ventricle, and Rrv is the total resistance to the inflow into the right ventricle.

As in [1], it is assumed that Pv(t) is constant during the diastole, Pv(t) ≡
Pv, the end-systolic volume at the end of a heart beat equals the end-systolic
volume of the previous heart beat and the compliance crv of the relaxed ventricle
remains constant during the diastole.

1.6. The Contractility of the Right Ventricle. There is a heart mechanism

called the Bowditch effect. It roughly states that changing the heart rate causes
a concordant change in the ventricular contractilities. In this study, we adapted
the model presented in Batzel et al. (2007) [1] (see also [4]), where sympa-

thetic and parasympathetic activities were not considered directly. Thus, the
variations of the contractilities can be described by the following second order
differential equation

(18) S̈r + γrṠr + αrSr = βrH,

where αr, βr and γr are constants. This set-up guarantees that the contractility

Sr varies in the same direction as the heart rate H. Introducing the state
variable σr = Ṡr and transforming (18) into systems of first order differential
equations, we have

Ṡr = σr,

σ̇r = −αrSr − γrσr + βrH.
(19)

1.7. The Combined Model Equations. The model can be described as a sys-
tem of coupled first order of ordinary differential equations with state variables
x(t) = (Psa, Pfa, Pas, Pvs, Pap, Pvp, Pℓv , Sr, σr)

T ∈ R9, representing pressures in
the systemic aorta, finger arteries, arterial systemic, venous systemic, arterial

pulmonary and left ventricle compartments, right ventricular contractility and
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its derivative, respectively. These are given by

dPsa

dt
=

1

csa

(
Plv − Psa

Rav(t)
− Psa − Pfa

Rsa1

− Psa − Pas

Rsa2

)
,

dPfa

dt
=

1

cfa

(
Psa − Pfa

Rsa1

− Pfa − Pvs

Rfa

)
,

dPas

dt
=

1

cas

(
Psa − Pas

Rsa2

− Pas − Pvs

Ras

)
,

dPvs

dt
=

1

cvs

(
Pas − Pvs

Ras
+
Pfa − Pvs

Rfa
−Qr

)
,

(20)

dPap

dt
=

1

cap

(
Qr −

Pap − Pvp

Rap

)
,

dPvp

dt
=

1

cvp

(
Pap − Pvp

Rap
− Pvp − Plv

Rmv(t)

)
,

dPlv

dt
= Elv

(
dElv
dt Plv

Elv
2 +

Pvp − Plv

Rmv(t)
− Plv − Psa

Rav(t)

)
,

dSr

dt
= σr,

dσr

dt
= −αrSr − γrσr + βrH,

where the time-varying resistances Rav(t) and Rmv(t) are given in equation (11),
the cardiac output of the right ventricle Qrv is given in equation (6) and other

auxiliary equations such as for krv and arv are given in (8), the duration for
diastole td is given in (9) and the right ventricular contractility Sr is given in
(19).

2. Simulation Results and Discussions

Figure 3 shows the preliminary simulation results of the combined car-
diovascular model (1.7) using the values of the parameters given in Table 1. The

parameters are estimated to produce an average normal pulsatile pressures in
the finger arteries which is 120/90 mmHg. Less pulsatility is observed in the ar-
terial systemic compartment. In the venous pulmonary and arterial pulmonary

compartments, the pulsatility is very small which is observed physiologically.
Here, the contractility of the right ventricle is assumed to be constant consider-
ing a rest normal condition. Furthermore, it is also observed numerically that
when the heart rate is increased, pulsatility is increased. The blood pressures in

most of the compartments except the venous systemic compartment increased.
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This is due to the Frank- Starling mechanism assumed in the filling process of
the right ventricle as assumed in [1]. On the other hand, decreasing the heart
rate produces the opposite result.

Parameter Meaning Value Units

csa Compliance of the systemic aorta compartment 1.15 mL/mmHg

cfa Compliance of the finger arteries compartment 0.105 mL/mmHg

cas Compliance of the arterial systemic compartment 3.75 mL/mmHg

cvs Compliance of the venous systemic compartment 750.95 mL/mmHg

crv Compliance of the relaxed right ventricle 44.131 mL/mmHg

cap Compliance of the arterial pulmonary compartment 25.15 mL/mmHg

cvp Compliance of the venous pulmonary compartment 175.75 mL/mmHg

Rmv,open Resistance when the mitral valve is open 0.001 mmHg s/mL

Rav,open Resistance when the aortic valve is open 0.001 mmHg s/mL

Rsa1
Resistance between systemic aorta and finger arteries 0.4745 mmHg s/mL

Rsa2
Resistance between systemic aorta and arterial systemic 0.1834 mmHg s/mL

Rfa Resistance between finger and venous systemic compartment 44.9980 mmHg s/mL

Ras Resistance in the peripheral region of the systemic circuit 1.2229 mmHg s/mL

Rrv Inflow resistance of the right ventricle 0.002502 mmHg s/mL

Rap Resistance in the peripheral region of the pulmonary circuit 0.1097 mmHg s/mL

Em Minimum elastance value of the left heart 0.029 mmHg/mL

Vd Unstressed left heart volume 10 mL

κ Constant in the Bazett’s formula 0.35 s

αr Coefficient of Sr in the differential equation for Sr 0.00797 s−2

βr Coefficient of H in the differential equation for Sr 0.02355 mmHg/s

γr Coefficient of Ṡr in the differential equation for Sr 0.03102 s−1

a Constant in the Gompertz function 3 mmHg/mL

b Constant in the Gompertz function 10

c Constant in the Gompertz function 3.415 s−1

Table 1. The table of parameters.

3. Ongoing and Future Work

This modeling effort is a work in progress. A lot of considerations can
be accounted to have a more holistic view of the overall behavior of the human
cardiovascular system under specific conditions. The following are ongoing and

future work on this area:
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(a)

(b)
Figure 3. Simulations depicting the plots of the state variables
at the heart rates (a) H = 70/60 beats per second and (b) H =
75/60 beats per second.
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• to look closer into the relationship between the right ventricle contractil-
ity Sr and the left ventricle elastance EM with regard to its physiological
relevance,

• to investigate the behavior of the pulsatile model under a constant work-
load,

• to design a feedback law mechanism which controls the heart rate,

• to estimate and identify sensitive parameters,
• to investigate further the role of the unstressed volumes in the modeling

process, and

• to include the respiratory system in the global pulsatile model.

Moreover, the model can be extended to describe the response of the cardiovas-
cular system under a constant workload as in [4] and [12], its behavior under
orthostatic stress as in [5] and [3], and to study blood loss due to haemorrhage.
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