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Abstract

In the present paper a New Iterative Method [1] has been employed to
find solutions of linear and non-linear fractional diffusion-wave equations.
Illustrative examples are solved to demonstrate the efficiency of the method.
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1. Introduction

A space-time fractional diffusion-wave equation is obtained from clas-
sical diffusion equation by replacing the second order space derivative by
fractional derivative of order β (1 < β ≤ 2), and first order time derivative
by fractional derivative of order α (0 < α ≤ 1), [2]. Similar generaliza-
tions of classical wave equation have been discussed in the literature [3]-
[10]. Diffusion-wave equations involving Riemann-Liouville derivative [3],
[11], Caputo derivative [4], [5], [9], [14], [15] and Grünwald-Letnikov deriva-
tive [16] have been discussed by various researchers. Fujita [3] has presented
the existence and uniqueness of the solution of the following equation

Dα
t u = Dβ

xu, 0 < α ≤ 1, 0 < β ≤ 2. (1)
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Schneider and Wyss [4] have shown that the time-fractional diffusion equa-
tion (β = 2) represents sub-diffusion for 0 < α < 1. It has further been ob-
served that 1 < α < 2 represents enhanced diffusion only in one-dimension.
The solutions need not remain non-negative and can not represent physical
diffusion of any kind [4], [5] in higher dimensions for α > 1.

Fractional diffusion-wave equation has been used widely in many branches
of Science and Engineering. These equations represent propagation of me-
chanical waves in visco-elastic media [6], [7], [8], a non-Markovian diffusion
process with memory [9], charge transport in amorphous semiconductors
[10] and many more. Mainardi et al. [6], [7], [8] studied the fractional
wave equation governing the propagation of mechanical diffusive waves in
viscoelastic media which exhibit a power-law creep. Nigmatullin [11] used
fractional diffusion-wave equation to model electromagnetic acoustic, and
mechanical responses. Roman and Alemany [12] investigated a continuous
time random walks on fractals. Giona, Cerbelli and Roman [13] studied
the relaxation phenomena in complex viscoelastic material using fractional
diffusion equations.

Various methods such as Green’s function method [4], Finite sine trans-
form method [14], Method of images and Fourier transform [9], Separation
of variables method [15], Finite difference method [16], Adomian decompo-
sition method (ADM) [17], [18] have been used to solve these equations. Re-
cently, Daftardar-Gejji and Jafari [1] have devised a New Iterative Method
(NIM) to solve non-linear functional equations. This method is free from
rounding off errors since it does not involve discretization and has fairly
simple algorithm. Also it does not require prior knowledge of the concepts
such as Lagrange multipliers or homotopy.

In this article we employ the NIM ([1]) to solve the following fractional
diffusion-wave equation

Dα
t u (x̄, t) =

n∑

i=1

aiD
βi
xi

u (x̄, t) + A (u (x̄, t)) , 1 < βi ≤ 2, (2)

where x̄ = (x1, · · · , xn) ∈ <n, ai are constants, A(u) is non-linear function
of u, Dα

t and Dβi
xi denote Caputo partial fractional derivatives with respect

to t and with respect to xi, respectively.

2. Preliminaries

In this section we set up the notations and recall some basic definitions
(see for example, [19], [20]).
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Definition 1.1. A real function f(x), x > 0 is said to be in space
Cα, α ∈ <, if there exists a real number p (> α), such that f(x) = xpf1(x)
where f1(x) ∈ C[0,∞).

Definition 1.2. A real function f(x), x > 0 is said to be in space
Cm

α , m ∈ IN
⋃ {0}, if f (m) ∈ Cα.

Definition 1.3. Let f ∈ Cα and α ≥ −1, then the (left-sided)
Riemann-Liouville integral of order µ, µ > 0 is given by

Iµ
t f(x, t) =

1
Γ(µ)

∫ t

0
(t− τ)µ−1f(x, τ) dτ, t > 0. (3)

Definition 1.4. The (left sided) Caputo partial fractional derivative
of f with respect to t, f ∈ Cm

−1,m ∈ IN
⋃ {0}, is defined as:

Dµ
t f(x, t) =

∂m

∂tm
f(x, t), µ = m

= Im−µ
t

∂mf(x, t)
∂tm

, m− 1 < µ < m, m ∈ IN. (4)

Note that

Iµ
t Dµ

t f(x, t) = f(x, t)−
m−1∑

k=0

∂kf

∂tk
(x, 0)

tk

k!
, m− 1 < µ ≤ m, m ∈ IN, (5)

Iµ
t tν =

Γ(ν + 1)
Γ(µ + ν + 1)

tµ+ν . (6)

3. The New Iterative Method (NIM)

Daftardar-Gejji and Jafari [1] have introduced a new iterative method
for solving the functional equation

u(x̄, t) = f(x̄, t) + L(u(x̄, t)) + N(u(x̄, t)), (7)

where f is a given function, L and N are given linear and non-linear func-
tions of u respectively, x̄ = (x1, x2, · · · , xn). We are looking for a solution u
of (7) having the series form:

u(x̄, t) =
∞∑

i=0

ui(x̄, t). (8)

Since L is linear,

L

( ∞∑

i=0

ui

)
=

∞∑

i=0

L(ui). (9)

The nonlinear operator N is decomposed as (see [1])
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N

( ∞∑

i=0

ui

)
= N(u0) +

∞∑

i=1



N




i∑

j=0

uj


−N




i−1∑

j=0

uj






 . (10)

From equations (8)–(10), (7) is equivalent to
∞∑

i=1

ui = f +
∞∑

i=0

L(ui)+N(u0)+
∞∑

i=1



N




i∑

j=0

uj


−N




i−1∑

j=0

uj






 . (11)

We define the recurrence relation:

u0 = f

u1 = L(u0) + N(u0)
um+1 = L(um) + N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1), m = 1, 2, · · · .

(12)
Then,

(u1 + · · ·+ um+1) = L (u0 + · · ·+ um) + N (u0 + · · ·+ um) , m = 1, 2, · · · ,
(13)

and
∞∑

i=0

ui = f + L

( ∞∑

i=0

ui

)
+ N

( ∞∑

i=0

ui

)
. (14)

The k-term approximate solution of (7)–(8) is given by u = u0 + u1 + · · ·+
uk−1. For the convergence of the method, we refer the reader to paper [1].

4. Fractional Initial Value Problem

We consider the following fractional initial value problem, for x̄ ∈ <n:

Dα
t u (x̄, t) =

n∑

i=1

aiD
βi
xi

u (x̄, t) + A (u (x̄, t)) , t > 0, m− 1 < α ≤ m,

(15)
∂ju

∂tj
(x̄, 0) = hj(x̄), 0 ≤ j ≤ m− 1, m = 1, 2, 1 < βi ≤ 2, (16)

where ai are constants, A(u) is non-linear function of u and hk are functions
of x̄. Applying Iα

t on both sides of (15) and using (16) we get

u (x̄, t) =
m−1∑

j=0

hj(x̄)
tj

j!
+ Iα

t

(
n∑

i=1

aiD
βi
xi

u (x̄, t)

)
+ Iα

t A(u). (17)
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Equation (17) has the form (7) with f =
m−1∑
j=0

hj
tj

j!
, L(u) = Iα

t

(
n∑

i=1
aiD

βi
xiu

)

and N(u) = Iα
t A(u) and can be solved using NIM.

5. Illustrative Examples

Some illustrative examples are presented below.

Example 1. Consider the time-fractional diffusion equation

Dα
t u(x, t) = uxx(x, t), t > 0, x ∈ <, 0 < α ≤ 1, (18)

u(x, 0) = sin(x). (19)

System (18)–(19) is equivalent to

u = sin(x) + Iα
t uxx. (20)

Using the algorithm (12) of NIM, we get the recurrence relation

u0 = sin(x), u1 = − sin(x)
tα

Γ(α + 1)
, ... (21)

In general uj = (−1)j sin(x) tjα

Γ(jα+1) , j = 0, 1, 2, ... The solution of (18)–(19)
is thus

u(x, t) =
∞∑

j=0

uj(x, t) = sin(x)
∞∑

j=0

(−tα)j

Γ(jα + 1)

= sin(x)Eα(−tα).

Example 2. Consider the time-fractional wave equation

Dα
t u(x, t) = k · uxx(x, t), t > 0, x ∈ <, 1 < α ≤ 2, (22)

u(x, 0) = x2, ut(x, 0) = 0. (23)

We get the equivalent integral equation of initial value problem (22)–(23)
as

u = x2 + k · Iα
t uxx. (24)

Applying the NIM, we get u0 = x2, u1 = 2k · tα

Γ(α+1) , u2 = 0, · · · . The
solution of (22)–(23) is

u(x, t) =
∞∑

i=0

ui = x2 + 2k · tα

Γ(α + 1)
. (25)
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Fig. 1: (Ex. 1, α = 0.5) Fig. 2: (Ex. 2, k = 1, α = 1.7)

Example 3. Consider the space-fractional diffusion equation

ut(x, t) = k ·Dβ
xu(x, t), t > 0, x ∈ <, 1 < β ≤ 2, (26)

u(x, 0) =
2xβ

Γ(1 + β)
. (27)

Integrating (26) and using (27) we get

u(x, t) =
2xβ

Γ(1 + β)
+ k

∫ t

0

(
Dβ

xu(x, t)
)

dt. (28)

Applying the NIM, we get

u0 =
2xβ

Γ(1 + β)
, u1 = 2kt, u2 = 0, · · · . (29)

The solution of (26)–(27) turns out to be

u(x, t) =
2xβ

Γ(1 + β)
+ 2kt. (30)

Example 4. Now we consider the space and time fractional diffusion
equation

Dα
t u(x, t) = k ·Dβ

xu(x, t), t > 0, x ∈ <, (31)

u(x, 0) =
3xβ

Γ(1 + β)
0 < α ≤ 1, 1 < β ≤ 2. (32)

Applying Iα
t on both sides of (31) and using condition (32), we get

u(x, t) =
3xβ

Γ(1 + β)
+ Iα

t (Dβ
xu(x, t)). (33)

Using the algorithm of NIM we get

u0 =
3xβ

Γ(1 + β)
, u1 = 3k

tα

Γ(α + 1)
, u2 = 0, · · · . (34)
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Thus u(x, t) = 3xβ

Γ(1+β) + 3k tα

Γ(α+1) is solution of (31)–(32).
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Fig. 3: (Ex. 3, k = 1, β = 1.2) Fig. 4: (Ex. 4, k = 1, α = 0.8)

Example 5. Consider the two-dimensional time fractional wave equa-
tion

Dα
t u(x̄, t) = 2

(
∂2

∂x2
1

+
∂2

∂x2
2

)
u(x̄, t), t > 0, x̄ ∈ <2, (35)

u(x̄, 0) = sin(x1) · sin(x2), ut(x̄, 0) = 0, 1 < α ≤ 2. (36)

The problem (35)–(36) is equivalent to

u = sin(x1) · sin(x2) + 2Iα
t

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
. (37)

In the view of the NIM,

uj = sin(x1) · sin(x2)
(−4tα)j

Γ(jα + 1)
, j = 0, 1, 2, · · · (38)

Hence,

u(x̄, t) =
∞∑

j=0

uj = sin(x1) sin(x2)
∞∑

j=0

(−4tα)j

Γ(jα + 1)

= sin(x1) sin(x2)Eα (−4tα) (39)

is solution of (35)– (36).

Comment. In two-dimensions, since α > 1, the solution is not neces-
sarily positive hence does not represent diffusion (cf. Fig. 5) of any kind
[4], [5].

Example 6. Consider the nonlinear time fractional diffusion equation

Dα
t u(x, t) = uxx(x, t) + 2u(x, t)2, t > 0, x ∈ <, 0 < α ≤ 1, (40)

u(x, 0) = e−x. (41)
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The equivalent integral equation of the initial value problem (40)–(41) is

u = e−x + Iα
t (uxx) + 2Iα

t

(
u2

)
. (42)

Equation (42) has the form (7) with f = e−x, L(u) = Iα
t (uxx) , and N(u) =

2Iα
t

(
u2

)
. The algorithm (12) of NIM gives

u0 = e−x,

u1 = e−x
(
1 + 2e−x

) tα

Γ(α + 1)
,

u2 = e−x
(
1 + 8e−x

) t2α

Γ(2α + 1)
+ 2

(
e−x + 2e−2x

)2 t3αΓ(2α + 1)
Γ(3α + 1)Γ(α + 1)2

+4e−2x
(
1 + 2e−x

) t2α

Γ(2α + 1)
,

and so on. Three term solution of (40)–(41) is u = u0 + u1 + u2.
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Fig. 5: (Ex. 5, x1 = π/4, α = 1.5) Fig. 6: (Ex. 6, α = 0.5)

Example 7. Consider the nonlinear time fractional wave equation

D1.5
t u(x, t) = uxx(x, t) + u(x, t)3, t > 0, x ∈ <, (43)

u(x, 0) = 0, ut(x, 0) = x2. (44)
The initial value problem (43)–(44) can be written as

u = t · x2 + I1.5
t (uxx) + I1.5

t

(
u3

)
. (45)

The NIM algorithm (12) gives

u0 = tx2,

u1 = 1.12838
(
0.53333t2.5 + 0.101587t4.5x6

)
,

u2 = 0.00842932t9 + 0.05574t7.5x2 + 0.38125t6x4 + 0.00353593t11x6

+0.014726t9.5x8 + 0.0159598t8x10 + 0.000521324t13x12

+0.00104532t11.5x14 + 0.0000265981t15x18,
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and so on. Here, u = u0 +u1 +u2 is three-term solution of (43)–(44), which
has been plotted in Fig. 7.
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Fig. 7: (Ex. 7)

Mathematica 6 has been used for the computations in the present paper.
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