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Abstract

We study integral transforms of the form

g(x) =

∞∫

0

K1(u)[f(|x + u− 1|) + f(|x− u− 1|)− f(x + u + 1)

− f(|x− u + 1|)]du +

∞∫

0

K2(u)[f(|x− u|)− f(x + u)]du

from Lp(R+) to Lq(R+), (1 6 p 6 2, p−1 + q−1 = 1) with the help of a gen-
eralized convolution and prove Watson’s and Plancherel’s theorems. Using
generalized convolutions a class of Toeplitz plus Hankel integral equations,
and also a system of integro-differential equations are solved in closed form.
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1. Introduction

The integral equation with the Toeplitz plus Hankel kernel is of the form
([8], [9], [19])

f(x) +

∞∫

0

[k1(x + y) + k2(x− y)]f(y)dy = g(x). (1.1)
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This equation has many useful applications, see [8], [19]. However, this
integral equation can be solved in closed form only in some particular cases
of the Hankel kernel k1 and the Toeplitz kernel k2. The solution in closed
form in general case is still open.

Let Fc and Fs denote the Fourier cosine and Fourier sine transforms [2]

(Fcf)(x) =

√
2
π

∞∫

0

cosxyf(y)dy, (Fsf)(x) =

√
2
π

∞∫

0

sinxyf(y)dy,

in case f ∈ L1(R+), and

(Fcf)(x) =

√
2
π

d

dx

∞∫

0

f(y)
sinxy

y
dy, (Fsf)(x) =

√
2
π

d

dx

∞∫

0

f(y)
1−cosxy

y
dy,

in case f ∈ L2(R+). These two definitions are identical, if f ∈ L1(R+) ∩
L2(R+).

In 1941, R.V. Churchill introduced the convolution of two functions f
and g for the Fourier cosine transform [12]

(f ∗
Fc

g)(x) =
1√
2π

∞∫

0

f(u)[g(|x− u|) + g(x + u)]du, x > 0, (1.2)

which satisfies the following factorization equality

Fc(f ∗
Fc

g)(y) = (Fcf)(y)(Fcg)(y), ∀y > 0. (1.3)

Using this factorization property one can easily solve the integral equation
with the Toeplitz plus Hankel kernel (1.1) in case the Toeplitz kernel k2(x)
and the Hankel kernel k1(x) are equal k2(x) = k1(|x|) (see [8], [9] for other
methods).

Churchill was also the first author who introduced the convolution for
two different integral transforms. Namely, in 1941 he defined the convolution
of two functions f and g for the Fourier sine and Fourier cosine transforms
([12])

(f ∗
1
g)(x) =

1√
2π

∞∫

0

f(u)[g(|x− u|)− g(x + u)]du, x > 0, (1.4)

and showed that this convolution satisfy the following factorization identity
(see [12])
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Fs(f ∗
1
g)(y) = (Fsf)(y).(Fcg)(y), ∀y > 0. (1.5)

In this factorization equality, there are more than one integral transform
(Fc and Fs). Convolutions of this kind are called generalized convolutions
(see [6]).

So the Toeplitz plus Hankel integral equation (1.1) with k2(x)=−k1(|x|)
can be solved easily with the help of factorization equality (1.5). In fact,
equation (1.1) can be rewritten in the form

f(x) +
√

2π(f ∗
Fc

h1)(x) +
√

2π(f ∗
1
h2)(x) = g(x),

where h1(x) = 1
2(k1 + k2)(x) and h2(x) = 1

2(k2 − k1)(x). From k2(x) =
−k1(|x|) we see that h1 = 0, and therefore (1.5) can be applied.

In 1998, Kakichev and Nguyen Xuan Thao proposed a constructive
method for defining a generalized convolution for three arbitrary integral
transforms (see [6]). For instance, the generalized convolution of two func-
tions f and g for the Fourier cosine and sine transforms has been obtained
based on this method [7]

(f ∗
2
g)(x) =

1√
2π

∞∫

0

f(u)[sign(u− x)g(|u− x|) + g(u + x)]du, x > 0. (1.6)

For this generalized convolution the following factorization equality holds
([7]):

Fc(f ∗
2
g)(y) = (Fsf)(y)(Fsg)(y), ∀y > 0. (1.7)

With k2(x) = signx.k1(|x|), the integrand of integral equation (1.1) will
have the form as in (1.6).

The following generalized convolution with the weight function γ(y) =
sin y for the Fourier cosine and Fourier sine transforms has been studied in
[16]:

(f
γ∗
2

g)(x) =
1

2
√

2π

∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u + 1|) (1.8)

− g(x + u + 1)− g(|x− u− 1|)]du, x > 0.

It satisfies the factorization property ([16])

Fc(f
γ∗
2

g)(y) = sin y(Fsf)(y)(Fcg)(y), ∀y > 0. (1.9)
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Interchanging the variables one can easily see the generalized convolution
(1.8) becomes

(f
γ∗
2
g)(x) =

1
2
√

2π

∞∫

0

g(u)[f(x+u+1)+sign(x−u+1)f(|x−u+1|) (1.10)

− sign(x + u− 1)f(|x + u− 1|)− sign(x− u− 1)f(|x− u− 1|)]du, x > 0.

Thus one can easily solve the Toeplitz plus Hankel integral equation (1.1)
when the kernel is defined by

k1(x) = k(x + 1)− sign(x− 1)k(|x− 1|) and

k2(x) = sign(x + 1)k(|x + 1|)− sign(x− 1)k(|x− 1|)
for some k. So studying generalized convolutions may extend the class of
integral equations with Toeplitz plus Hankel kernel (1.1) that can be solved
in a closed form.

Another generalized convolution of two functions f and g with the
weight function γ(y) = sin y for the Fourier sine and cosine transforms
has the form

(f
γ∗
1

g)(x) =
1

2
√

2π

∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u− 1|) (1.11)

− g(x + u + 1)− g(|x− u + 1|)]du, x > 0
for which the following factorization identity holds ([15]):

Fs(f
γ∗
1
g)(y) = sin y(Fcf)(y)(Fcg)(y), ∀y > 0. (1.12)

In any convolution of two functions f and g, if we fix one function, say g,
as the kernel, and allow the other function f to vary in a certain function
space, we get an integral transform of convolution type. The most famous
integral transforms constructed in that way are the Watson transforms that
are related to the Mellin convolution and the Mellin transform ([17]):

f(x) 7−→ g(x) =
∫ ∞

0
k(xy)f(y)dy.

Recently, several classes of integral transforms that are related to gen-
eralized convolutions (1.4), (1.6) have been investigated in [11], [10]. In this
paper we consider a class of integral transform which has a connection with
the generalized convolution (1.11), namely, the transforms of the form
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g(x) =
(
1− d2

dx2

){ ∞∫

0

k1(u)[f(|x + u− 1|) + f(|x− u− 1|)− f(x + u + 1)

− f(|x− u + 1|)]du +

∞∫

0

k2(u)[f(|x− u|)− f(x + u)]du
}

, x > 0. (1.13)

We obtain necessary and sufficient conditions on the functions k1, k2 ∈
L2(R+) to ensure that the transformation (1.13) is unitary on L2(R+), and
define the inverse transformation. The Plancherel type theorem is also
obtained. Furthermore, the boundedness of the transformation (1.13) on
Lp(R+) for 1 6 p 6 2 is studied. Next, we give several examples of these
transformations and apply on solving a system of integro-differential equa-
tions. In the last section we consider a class of integral equation with the
Toeplitz plus Hankel kernel that can be solved in closed form with the help
of generalized convolutions.

2. A Watson type theorem

Lemma 1. Let f, g ∈ L2(R+). Then for any x > 0 the following
Parseval formulas hold:

∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u− 1|)− g(x + u + 1)− g(|x− u + 1|)]du

= 2
√

2πFs

(
sin y(Fcf)(y)(Fcg)(y)

)
(x), (2.1)

and

∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u + 1|)− g(x + u + 1)− g(|x− u− 1|)]du

= 2
√

2πFc

(
sin y(Fsf)(y)(Fcg)(y)

)
(x). (2.2)

P r o o f. We will prove only formula (2.1), as the proof of formula (2.2)
is quite similar. Let f1 and g1 be even extensions of f and g from R+ to R.
Then Ff1 = Fcf and Fg1 = Fcg, where F stands for the Fourier transform

(Ff)(x) =
1√
2π

∫

R
e−ixyf(y)dy.

For the Fourier transform we have the well-known Parseval identity
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∫

R
f(y)g(x− y)dy =

∫

R
(Ff)(y)(Fg)(y)eixydy.

We have
∞∫

0

f(u)[g(|x + u− 1|)+g(|x− u− 1|)−g(x + u + 1)−g(|x− u + 1|)]du

=

∞∫

0

f1(u)g1(x + u− 1)du +

∞∫

0

f1(u)g1(x− u− 1)du

−
∞∫

0

f1(u)g1(x + u + 1)du−
∞∫

0

f1(u)g1(x− u + 1)du

=

∞∫

−∞
f1(u)g1(x− u− 1)du−

∞∫

−∞
f1(u)g1(x− u + 1)du

=

∞∫

−∞
(Ff1)(y)(Fg1)(y)ei(x−1)ydy −

∞∫

−∞
(Ff1)(y)(Fg1)(y)ei(x+1)ydy

=

∞∫

−∞
(Ff1)(y)(Fg1)(y)[cos(x− 1)y + i sin(x− 1)y]dy

−
∞∫

−∞
(Ff1)(y)(Fg1)(y)[cos(x + 1)y + i sin(x + 1)y]dy.

On the other hand, note that

(Ff1)(y)(Fg1)(y) sin(x− 1)y and (Ff1)(y)(Fg1)(y) sin(x + 1)y

are odd functions in y. Hence, their integrals over R vanish, and therefore
∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u− 1|)− g(x + u + 1)− g(|x− u + 1|)]du

=

∞∫

−∞
(Ff1)(y)(Fg1)(y) cos(x− 1)ydy −

∞∫

−∞
(Ff1)(y)(Fg1)(y) cos(x + 1)ydy

= 2

∞∫

−∞
(Ff1)(y)(Fg1)(y) sin y sin(xy)dy=4

∞∫

0

(Ff)(y)(Fg)(y) sin y sin(xy)dy
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= 2
√

2πFs

(
sin y(Fcf)(y)(Fcg)(y)

)
(x).

This completes the proof. We have assumed that all the integrals over
R are interpreted as Cauchy principal value integrals, if necessary.

Theorem 1. Let k1, k2 ∈ L2(R+). Then

|2 sin y(Fck1)(y) + (Fsk2)(y)| = 1√
2π(1 + y2)

(2.3)

is a necessary and sufficient condition to ensure that the integral transform
f 7−→ g:

g(x) =
(
1− d2

dx2

){ ∞∫

0

k1(u)[f(|x + u− 1|) + f(|x− u− 1|)− f(x + u + 1)

− f(|x− u + 1|)]du +

∞∫

0

k2(u)[f(|x− u|)− f(x + u)]du
}

(2.4)

is unitary on L2(R+) and the reciprocal transform has the form

f(x) =
(
1− d2

dx2

){ ∞∫

0

g(u)[k1(|x + u− 1|) + k1(|x− u + 1|)− k1(x + u + 1)

− k1(|x−u− 1|)]du+

∞∫

0

g(u)[sign(u−x)k2(|u−x|)+ k2(u+x)]du
}

. (2.5)

P r o o f. Necessity. Suppose that k1 and k2 satisfy condition (2.3).
It is well-known that h(y), yh(y), y2h(y) ∈ L2(R+) if and only if (Fh)(x),
d
dx(Fh)(x), d2

dx2 (Fh)(x) ∈ L2(R+) (Theorem 68, [17]). Moreover,
d2

dx2
(Fh)(x) = F

(
(−iy)2h(y)

)
(x).

In particular, in case h is an even or odd function such that (1 + y2)h(y) ∈
L2(R+), the following equalities hold

(
1− d2

dx2

)
(Fch)(x) = Fc

(
(1 + y2)h(y)

)
(x),

(
1− d2

dx2

)
(Fsh)(x) = Fs

(
(1 + y2)h(y)

)
(x).

(2.6)

Using Lemma 1 and the factorization equalities for the generalized convo-
lutions (1.4), (1.8) we have

g(x)=
(
1− d2

dx2

)
Fs

(
2
√

2π sin y(Fck1)(y)(Fcf)(y)+
√

2π(Fsk2)(y)(Fcf)(y)
)
(x)

= Fs

(√
2π(1 + y2)

(
2 sin y(Fck1)(y) + (Fsk2)(y)

)
(Fcf)(y)

)
(x).
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By virtue of the Parseval identity for the Fourier cosine and sine transforms
‖f‖L2(R+) = ‖Fcf‖L2(R+) = ‖Fsf‖L2(R+) and from condition (2.3) we get

‖g‖L2(R+) =
∥∥∥
√

2π(1 + y2)
[
2 sin y(Fck1)(y) + (Fsk2)(y)

]
(Fcf)(y)

∥∥∥
L2(R+)

= ‖Fcf‖L2(R+) = ‖f‖L2(R+).
It shows that the transformation (2.4) is unitary.

On the other hand, formula (2.3) implies that (1+y2)
(
2 sin y(Fck1)(y)+

(Fsk2)(y)
)

is bounded on R+, hence (1 + y2)
[
2 sin y(Fck1)(y) + (Fsk2)(y)

]
(Fcf)(y) ∈ L2(R+). We have

(Fsg)(y) =
√

2π(1 + y2)
[
2 sin y(Fck1)(y) + (Fsk2)(y)

]
(Fcf)(y).

Using condition (2.3) we obtain

(Fsf)(y) =
√

2π(1 + y2)[2 sin y(Fck1)(y) + (Fsk2)(y)](Fcg)(y).
Again, condition (2.3) shows that (1+y2)[2 sin y(Fck1)(y)+(Fsk2)(y)](Fcg)(y)
∈ L2(R+), then formula (2.6) yields

f(x) = Fc

(
(1 + y2)[2 sin y(Fck1)(y) + (Fsk2)(y)](Fcg)(y)

)
(x)

=
(
1− d2

dx2

)
Fc

(
2
√

2π sin y(Fck1)(y)(Fsg)(y) +
√

2π(Fsk2)(y)(Fsg)(y)
)
(x).

Using formula (2.2) and the factorization equality for the generalized con-
volution (1.6) we have

f(x) =
(
1− d2

dx2

){ ∞∫

0

g(u)[k1(|x + u− 1|) + k1(|x− u + 1|)− k1(x + u + 1)

− k1(|x− u− 1|)]du +

∞∫

0

g(u)[sign(u− x)k2(|u− x|) + k2(u + x)]du
}

.

Therefore the transformation (2.4) is unitary on L2(R+) and the inverse
transformation is defined by (2.5).

Sufficiency. If transform (2.4) is unitary on R+, then the Parseval iden-
tities for the Fourier sine and cosine transforms yield

‖g‖L2(R+) = ‖
√

2π(1 + y2)[2 sin y(Fck1)(y) + (Fsk2)(y)](Fcf)(y)‖L2(R+)

= ‖Fcf‖L2(R+) = ‖f‖L2(R+).
By virtue of the Hahn-Banach Theorem, the middle equality hold for all
f ∈ L2(R+) if and only if

|
√

2π(1 + y2)[2 sin y(Fck1)(y) + (Fsk2)(y)](Fcf)(y)| = |(Fcf)(y)|.
It shows that k1 and k2 satisfy condition (2.3). This completes the proof of
Theorem 1.
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We show now the existence of functions k1 and k2 satisfying (2.3). Let
h1, h2 ∈ L2(R+) satisfy

|(Fsh1)(y)(Fch2)(y)| = 1
(1 + y2)(1 + sin2 y)

. (2.7)

The existence of such functions h1, h2 that satisfy (2.7) is clear. For instance,

h1(x)=Fs

( eiv1(y)

√
(1+y2)(1+sin2 y)

)
(x), h1(x)=Fc

( eiv2(y)

√
(1+y2)(1+sin2 y)

)
(x),

where v1, v2 are arbitrary real-valued functions defined on R+. Let k1, k2 ∈
L2(R+) be defined by

k1(x) =
1

2
√

2π
(h1

γ∗
2
h2)(x), k2(x) =

1√
2π

(h1 ∗
1
h2)(x).

We have
|2 sin y(Fck1)(y) + (Fsk2)(y)|

= | 2
2
√

2π
sin2 y(Fsh1)(y)(Fch2)(y) +

1√
2π

(Fsh1)(y)(Fch2)(y)|

=
1√
2π
|(Fsh1)(y)(Fch2)(y)|(1 + sin2 y) =

1√
2π(1 + y2)

.

Thus k1 and k2 satisfy condition (2.3).

3. A Plancherel type theorem

Theorem 3. Let k1 and k2 be functions satisfying condition (2.3) and

suppose that K1(x) =
(

1− d2

dx2

)
k1(x) and K2(x) =

(
1− d2

dx2

)
k2(x) are

locally bounded. Let f ∈ L2(R+) and for each positive integer N , put

gN (x) =

∞∫

0

K1(u)[fN (|x + u− 1|) + fN (|x− u− 1|)− fN (x + u + 1)

− fN (|x− u + 1|)]du +

∞∫

0

K2(u)[fN (|x− u|)− fN (x + u)]du, (3.1)

where fN = f.χ(0,N), the restriction of f over (0, N). Then:
1) gN ∈ L2(R+) and as N → ∞, gN converges in L2(R+) norm to a

function g ∈ L2(R+), moreover, ‖g‖L2(R+) = ‖f‖L2(R+).
2) Reciprocally,

fN (x) =

N∫

0

g(u)[K1(|x + u− 1|) + K1(|x− u + 1|)−K1(x + u + 1)
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−K1(|x−u− 1|)]du+

N∫

0

g(u)[sign(u−x)K2(|u−x|)+K2(u+x)]du (3.2)

belongs to L2(R+) and converges in L2(R+) norm to f as N →∞.

Remark 1. Because of the definitions of gN and fN these integrals
are over finite intervals and therefore converge.

Remark 2. The convolution (1.4) can be rewritten as follows

(f ∗
1

g)(x) =
1√
2π

∞∫

0

g(u)[sign(x− u)f(|x− u|) + f(x + u)]du.

Moreover, by the commutativity of the generalized convolution (1.11) (see
[15]), we can interchange f and g without changing the value of the gener-
alized convolution,

∞∫

0

f(u)[g(|x + u− 1|) + g(|x− u− 1|)− g(x + u + 1)− g(|x− u + 1|)]du

=

∞∫

0

g(u)[f(|x + u− 1|) + f(|x− u− 1|)− f(x + u + 1)− f(|x− u + 1|)]du.

P r o o f o f T h e o r e m 2. Applying Remark 2, we have

gN (x) =

∞∫

0

fN (u)[K1(|x + u− 1|) + K1(|x− u− 1|)−K1(x + u + 1)

−K1(|x− u + 1|)]du +

∞∫

0

fN (u)[sign(x− u)K2(|x− u|) + K2(x + u)]du

=
(
1− d2

dx2

){ ∞∫

0

fN (u)[k1(|x + u− 1|) + k1(|x− u− 1|)− k1(x + u + 1)

−k1(|x− u + 1|)]du +

∞∫

0

fN (u)[sign(x− u)k2(|x− u|) + k2(x + u)]du
}

.

It is legitimate to interchange the order of integration and differentiation
since the integrals are actually over finite intervals. By applying Remark 2
one more time, we obtain
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gN (x)=
(
1− d2

dx2

){ ∞∫

0

k1(u)[fN (|x+u−1|)+fN (|x−u−1|)−fN (x+u+1)

− fN (|x− u + 1|)]du +

∞∫

0

k2(u)[sign(x− u)fN (|x− u|) + fN (x + u)]du
}

.

From this and in view of Theorem 1, we conclude that gN ∈ L2(R+). Let
g be the transform of f under the transformation (2.4). Then Theorem 1
implies that g ∈ L2(R+), and ‖g‖L2(R+) = ‖f‖L2(R+). Furthermore, the
reciprocal formula (2.5) holds. We have

(g−gN )(x) =
(
1− d2

dx2

){ ∞∫

0

k1(u)
[
(f−fN )(|x+u−1|)+(f−fN )(|x−u−1|)

− (f − fN )(x + u + 1)− (f − fN )(|x− u + 1|)]du

+

∞∫

0

k2(u)[sign(x− u)(f − fN )(|x− u|) + (f − fN )(x + u)]du
}

.

Again by Theorem 1, g − gN ∈ L2(R+), and

‖g − gN‖L2(R+) = ‖f − fN‖L2(R+).

Since ‖g − gN‖L2(R+) →∞ as N →∞, then gN converges in L2(R+) norm
to g as N →∞.

The second part of the theorem can be obtained by the similar way.

Remark 3. Theorem 1 and Theorem 2 show that the integral trans-
form (2.4) is unitary in L2(R+) and the inverse transform is defined by
formula (2.5). Moreover, integral operators (2.4) and (2.5) can be approxi-
mated in L2(R+) norm by operators (3.1) and (3.2), respectively.

If we assume in addition that K1(x) =
(
1 − d2

dx2

)
k1(x) and K2(x) =

(
1 − d2

dx2

)
k2(x) are bounded on R+, then the transformations (2.4) and

(2.5) are bounded operators from L1(R+) into L∞(R+).
On the other hand, Theorem 2 implies that the transformations (2.4)

and (2.5) are bounded on L2(R+). Then the Riesz’s interpolation theorem
yields
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Theorem 3. Let k1, k2 be functions satisfying condition (2.3) and sup-
pose that K1(x) and K2(x), defined as in Theorem 2, are bounded on R+.
Let 1 6 p 6 2 and q be its conjugate exponent (1

p + 1
q = 1). Then the

transformations

f(x) 7−→g(x)= lim
N→∞

{ ∞∫

0

K1(u)[fN (|x+u−1|)+fN (|x−u−1|)−fN (x+u+1)

− fN (|x− u + 1|)]du +

∞∫

0

K2(u)[fN (|x− u|)− fN (x + u)]du
}

(3.3)

and

f(x) 7−→g(x)= lim
N→∞

{ N∫

0

f(u)[K1(|x+u−1|)+K1(|x−u+1|)−K1(x+u+1)

−K1(|x−u−1|)]du+

N∫

0

f(u)[sign(u−x)K2(|u−x|)+K2(u+x)]du
}

(3.4)

are bounded operators from Lp(R+) into Lq(R+). Here the limits are un-
derstood in Lq(R+) norm.

4. Examples

Now we consider some examples of k1 and k2 for which the condition
(2.3) holds.

Example 1. It is obvious that the kernels k1, k2 defined as follows
satisfy condition (2.3):

Fck1(y) =
sin y

2
√

2π(1 + y2)
, Fsk2(y) =

cos2 y√
2π(1 + y2)

.

Then

k1(x) =Fc

( sin y

2
√

2π(1 + y2)

)
(x)

=
1
2π

∞∫

0

sin y cosxy

(1 + y2)
dy =

1
4π

∞∫

0

sin(x + 1)y − sin(x− 1)y
(1 + y2)

dy.

Using formula (2.2.14) from [4], we get

k1(x) =
1
8
[
e−(x+1)Ei(x + 1)− e(x+1)Ei(−x− 1) (4.1)
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−e−(x−1)Ei(x− 1)− e(x−1)Ei(−x + 1)
]
,

where Ei(x) is the exponential integral (formula 5.1.2, [1])

Ei(x) =
∫ ∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt, (4.2)

and the integral here is understood as the Cauchy principle value integral.
On the other hand,

k2(x) = Fs

( cos2 y√
2π(1 + y2)

)
(x) =

1
π

∞∫

0

(1 + cos 2y) sinxy

2(1 + y2)
dy

=
1
4π

∞∫

0

2 sin xy + sin(x + 2)y + sin(x− 2)y
(1 + y2)

dy.

Using formula (1.2.11) from [4], we have

k2(x) =
1
8
[
2e−xEi(x)− 2e(x)Ei(−x) + e−(x+2)Ei(x + 2) (4.3)

−e(x+2)Ei(−x− 2) + e−(x−2)Ei(x + 2)− e(x+1)Ei(−x− 2)
]
.

Following formula (5.1.10) from [1], K1 and K2 defined as in Theorem 2 are
obviously locally bounded, so Theorem 1 shows that the reciprocal trans-
formations (2.4) and (2.5) with functions k1 and k2 defined by (4.1) and
(4.3) are unitary on L2(R+), and by Theorem 2, they can be approximated
by sequences of operators defined by (3.1), (3.2).

Example 2. Let

(Fck1)(y) =
i cos y√

2π(1 + y2)
and (Fsk2)(y) =

cos 2y√
2π(1 + y2)

.

One can check easily that k1 and k2 defined as above satisfy condition (2.3),
since

|2 sin y(Fck1)(y) + (Fsk2)(y)| =
∣∣∣cos 2y + i sin 2y√

2π(1 + y2)

∣∣∣

=
∣∣∣ ei2y

√
2π(1 + y2)

∣∣∣ =
1√

2π(1 + y2)
.

Since (Fck1)(y) and (Fsk2)(y) are functions in L2(R+), we have

k1(x) = Fc

( i cos y√
2π(1 + y2)

)
=

i

π

∞∫

0

cos y cosxy

1 + y2
dy
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=
i

2π

∞∫

0

cos y(x + 1) + cos y(x− 1)
1 + y2

dy.

Using formula 1.2.11 in [4], we get

k1(x) =
i

4
(e−(x+1) + e−(x−1)). (4.4)

On the other hand,

k2(x) =Fs

( cos 2y√
2π(1 + y2)

)
=

1
π

∞∫

0

cos 2y sinxy

1 + y2
dy

=
1
2π

∞∫

0

sin y(x + 2) + sin y(x− 2)
1 + y2

dy.

From formula 2.2.14 in [4], we have

k2(x) =
1
4π

[
e−(x+2)Ei(x + 2)− e(x+2)Ei(−x− 2) (4.5)

+ e−(x−2)Ei(x− 2)− e(x−2)Ei(−x + 2)
]
.

So, Theorem 1 shows that the transformations (2.4) and (2.5) with func-
tions (4.4) and (4.5) define unitary operators on L2(R+). Theorem 2 shows
that one can approximate them in L2(R+) norm by sequences of operators
(3.1), (3.2).

Example 3. Finally, let us choose

(Fck1)(y) =
1

2
√

2π(1 + y2)
and (Fsk2)(y) =

cos y√
2π(1 + y2)

.

Obviously, the condition (2.3) holds with these functions. Moreover, formula
1.2.11 in [4] give us

k1(x) = Fc

( 1
2
√

2π(1 + y2)

)
=

i

2π

∞∫

0

cosxy

1 + y2
dy =

i

4
e−x. (4.6)

And following formula 2.2.14 in [4], we have

k2(x) = Fs

( cos y√
2π(1 + y2)

)
=

1
2π

∞∫

0

sin y(x + 1) + sin y(x− 1)
1 + y2

dy (4.7)

=
1
4π

[
e−(x+1)Ei(x+1)−e(x+1)Ei(−x−1)+e−(x−1)Ei(x−1)−e(x−1)Ei(−x+1)

]
.

Transformations (2.4) and (2.5) with functions (4.6) and (4.7) are unitary
on L2(R+) and can be approximated by operators defined as in Theorem 2.
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5. Application to system of integro-differential equations

Consider the system of integro-differential equations

f(x)− d2

dx2
f(x) + λ1(Kϕ,ψg)(x) = h(x),

λ2

∞∫

0

f(u)θ1(x, u)du + λ3

∞∫

0

f(u)θ2(x, u)du + g(x) = k(x),
(5.1)

where Kϕ,ψ(.) is the transformation (2.4) with k1 ≡ ϕ ≡ ϕ1 ∗
2

ϕ2; k2 ≡ ψ;

θ1(x, u) = sign(u− x)ξ(|u− x|) + ξ(u + x),

θ2(x, u) = η(|x + u− 1|) + η(|x− u + 1|)− η(x + u + 1)− η(|x− u− 1|);
ϕ1, ϕ2, ψ, ξ, µ ∈ L1(R+) are given function; f and g are unknown functions
such that f ′, f ′′, g′, g′′ ∈ L1(R+) and f(0) = 0.

Since f, f ′ ∈ L1(R+), then there exist the Fourier sine and Fourier cosine
transforms of f, f ′. Furthermore,

(Fsf
′)(y) =

1√
2π

∞∫

0

f ′(x) sin xydx (5.2)

=
1√
2π

{
f(x) sin xy

∣∣∣
∞

0
− y

∞∫

0

f(x) cosxydx
}

= −y(Fcf)(y),

and

(Fcf
′)(y) =

1√
2π

∞∫

0

f ′(x) cos xydx (5.3)

=
1√
2π

{
f(x) cos xy

∣∣∣
∞

0
+ y

∞∫

0

f(x) sinxydx
}

= f(0) + y(Fsf)(y).

Theorem 4. Suppose the following condition holds:

1− 4πλ1λ2Fc(ξ
γ∗
2
ϕ)(y)− 2πλ1λ2Fc(ψ ∗

2
ξ)(y) (5.4)

− 8πλ1λ3Fc(ϕ1
γ∗
2

(ϕ2
γ∗
2
µ))(y)− 4πλ1λ3Fc(ψ

γ∗
2

µ)(y) 6= 0, ∀y > 0,

and

f(x) =
√

π

2
(h(u) ∗

1
e−u)(x)− 2

√
2πλ1(ϕ

γ∗
1

k)(x)−
√

2π(ψ ∗
1
k)(x)
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+
√

π

2
((h(u) ∗

1
e−u) ∗

1
l)(x)− 2

√
2πλ1((ϕ

γ∗
1

k) ∗
1

l)(x)−
√

2π((ψ ∗
1

k) ∗
1
l)(x),

g(x) = k(x)− πλ2((h(u) ∗
1
e−u) ∗

2
ξ)(x)− 2π((h(u) ∗

1
e−u)

γ∗
2
µ)(x) + (k ∗

Fc

l)(x)

−πλ2(((h(u) ∗
1
e−u) ∗

2
ξ) ∗

Fc

l)(x)− 2π(((h(u) ∗
1
e−u)

γ∗
2

µ) ∗
Fc

l)(x)

satisfy that f ′, f ′′, g′, g′′ ∈ L1(R+). Then (f, g) defined as above is the
unique solution of system (5.1) in L1(R+).

P r o o f. One can rewrite system (5.1) in the form

(
1− d2

dx2

){
f(x) + 2

√
2πλ1(ϕ

γ∗
1

g)(x) +
√

2πλ1(ψ ∗
1

g)(x)
}

= h(x),

λ2

√
2π(f ∗

2
ξ)(x) + 2

√
2πλ3(f

γ∗
2

µ)(x) + g(x) = k(x).

With condition that g′ and g′′ belong to L1(R+), we conclude that d
dx(ϕ

γ∗
1

g)(x), d
dx(ψ ∗

1
g)(x), d2

dx2 (ϕ
γ∗
1
g)(x) and d2

dx2 (ψ ∗
1
g)(x) also belong to L1(R+).

Moreover,
(ϕ

γ∗
1

g)(0) = (ψ ∗
1

g)(0) = 0.

Applying Fs and Fc respectively on the first and the second equations of
system (5.1), and in view of the factorization equalities (1.5), (1.7), (1.9),
(1.12) and formulas (5.2), (5.3) we obtain

(1 + y2)Fsf(y) +
√

2πλ1(1 + y2)
[
2 sin yFcϕ(y) + Fsψ(y)

]
Fcg(y) =Fsh(y),√

2πλ2Fsf(y)Fsξ(y) + 2
√

2πλ3 sin yFsf(y)Fcµ(y) + Fcg(y) =Fck(y).
(5.5)

Note that (see [4], formula 1.4.1)
1

1 + y2
=

√
π

2
Fc(e−u)(y).

So the system is equivalent to

Fsf(y) +
√

2πλ1

[
2 sin yFcϕ(y) + Fsψ(y)

]
Fcg(y) =

√
π

2
Fs(h(u) ∗

1
e−u)(y),

√
2πλ2Fsf(y)Fsξ(y) + 2

√
2πλ3 sin yFsf(y)Fcµ(y) + Fcg(y) = Fck(y).

We have
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∆ =
∣∣∣∣

1
√

2πλ1(2 sin yFcϕ(y) + Fsψ(y))√
2πλ2Fsξ(y) + 2

√
2πλ3 sin yFcµ(y) 1

∣∣∣∣

= 1−4πλ1λ2Fc(ξ
γ∗
2
ϕ)(y)−2πλ1λ2Fc(ψ ∗

2
ξ)(y)−8πλ1λ3Fc(ϕ1

γ∗
2
(ϕ2

γ∗
2
µ))(y)

−4πλ1λ3Fc(ψ
γ∗
2
µ)(y).

With condition (5.4) and applying the Wiener-Levy theorem, we obtain

1
∆

= 1×
[
1− 4πλ1λ2Fc(ξ

γ∗
2

ϕ)(y)− 2πλ1λ2Fc(ψ ∗
2

ξ)(y)− 8πλ1λ3Fc(ϕ1
γ∗
2

(ϕ2
γ∗
2

µ))(y)

− 4πλ1λ3Fc(ψ
γ∗
2

µ)(y)
]−1

= 1 +
[
4πλ1λ2Fc(ξ

γ∗
2

ϕ)(y) + 2πλ1λ2Fc(ψ ∗
2

ξ)(y)

+8πλ1λ3Fc(ϕ1
γ∗
2

(ϕ2
γ∗
2

µ))(y) + 4πλ1λ3Fc(ψ
γ∗
2

µ)(y)
]
×

[
1− 4πλ1λ2Fc(ξ

γ∗
2

ϕ)(y)

−2πλ1λ2Fc(ψ ∗
2

ξ)(y)− 8πλ1λ3Fc(ϕ1
γ∗
2

(ϕ2
γ∗
2

µ))(y)− 4πλ1λ3Fc(ψ
γ∗
2

µ)(y)
]−1

= 1 + (Fcl)(y),

for some l ∈ L1(R+).
We have

∆1 =

∣∣∣∣∣

√
π
2 Fs(h(u) ∗

1
e−u)(y)

√
2πλ1(2 sin yFcϕ(y) + Fsψ(y))

Fck(y) 1

∣∣∣∣∣

=
√

π

2
Fs(h(u) ∗

1
e−u)(y)− 2

√
2πλ1Fs(ϕ

γ∗
1
k)(y)−

√
2πFs(ψ ∗

1
k)(y);

∆2 =

∣∣∣∣∣
1

√
π
2 Fs(h(u) ∗

1
e−u)(y)√

2πλ2Fsξ(y) + 2
√

2πλ3 sin yFcµ(y) Fck(y)

∣∣∣∣∣

=Fck(y)− πλ2Fc

(
(h(u) ∗

1
e−u) ∗

2
ξ
)
(y)− 2πFc

(
(h(u) ∗

1
e−u)

γ∗
2

µ
)
(y).

Hence,

(Fsf)(y) =
∆1

∆
=

[√π

2
Fs(h(u) ∗

1
e−u)(y)− 2

√
2πλ1Fs(ϕ

γ∗
1

k)(y)

−
√

2πFs(ψ ∗
1

k)(y)
]
(1+(Fcl)(y))=Fs

(√
π

2
(h(u) ∗

1
e−u)−2

√
2πλ1(ϕ

γ∗
1

k)

−
√

2π(ψ ∗
1

k)+
√

π

2
(
(h(u) ∗

1
e−u) ∗

1
l
)
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−2
√

2πλ1

(
(ϕ

γ∗
1

k) ∗
1
l
)−

√
2π

(
(ψ ∗

1
k) ∗

1
l
))

(y).

This shows that

f(x) =
√

π

2
(h(u) ∗

1
e−u)(x)− 2

√
2πλ1(ϕ

γ∗
1

k)(x)−
√

2π(ψ ∗
1
k)(x)

+
√

π

2
(
(h(u) ∗

1
e−u) ∗

1
l
)
(x)−2

√
2πλ1

(
(ϕ

γ∗
1

k) ∗
1

l
)
(x)−

√
2π

(
(ψ ∗

1
k) ∗

1
l
)
(x).

One can check easily that f(0) = 0.
Similarly,

(Fcg)(y) =
∆2

∆

=
[
Fck(y)−πλ2Fc

(
(h(u)∗

1
e−u)∗

2
ξ
)
(y)−2πFc

(
(h(u)∗

1
e−u)

γ∗
2
µ
)
(y)

]
(1+Fcl(y))

= Fck(y)−πλ2Fc

(
(h(u)∗

1
e−u)∗

2
ξ
)
(y)−2πFc

(
(h(u)∗

1
e−u)

γ∗
2
µ
)
(y)+Fc(k ∗

Fc

l)(y)

−πλ2Fc

(
((h(u) ∗

1
e−u) ∗

2
ξ) ∗

Fc

l
)
(y)− 2πFc

(
((h(u) ∗

1
e−u)

γ∗
2

µ) ∗
Fc

l
)
(y).

Therefore,

g(x) = k(x)−πλ2

(
(h(u) ∗

1
e−u) ∗

2
ξ
)
(x)− 2π

(
(h(u) ∗

1
e−u)

γ∗
2
µ
)
(x)+ (k ∗

Fc

l)(x)

−πλ2

(
((h(u) ∗

1
e−u) ∗

2
ξ) ∗

Fc

l
)
(x)− 2π

(
((h(u) ∗

1
e−u)

γ∗
2

µ) ∗
Fc

l
)
(x).

Hence, if f ′, f ′′, g′, g′′ ∈ L1(R+) then (f, g) is the solution of system (5.1).

6. A class of Toeplitz plus Hankel integral equations

Finally, we consider a class of integral equations with the Toeplitz plus
Hankel kernel (1.1), that can be solved in closed form with the use of gen-
eralized convolutions.

First, let us recall the generalized convolution with the weight function
γ(y) = sin y for the Fourier sine transform of two functions f and g [5], [14]

(f
γ∗
Fs

g)(x) =
1

2
√

2π

+∞∫

0

f(u)[sign(x+u−1)g(|x+u−1|)+sign(x−u+1) (6.1)

× g(|x− u + 1|)− g(x + u + 1)− sign(x− u− 1)g(|x− u− 1|)]du, x > 0.

This convolution satisfies the following factorization equality [5], [14]:

Fs(f
γ∗
Fs

g)(y) = sin y(Fsf)(y)(Fsg)(y), ∀y > 0. (6.2)
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Consider the integral equation with the Toeplitz plus Hankel kernel

f(x) +

∞∫

0

[k1(x + y) + k2(x− y)]f(y)dy = g(x), (6.3)

where the Toeplitz kernel k1 and the Hankel kernel k2 are defined as follows:

k1(t) =
1

2
√

2
sign(t− 1)h1(|t− 1|)− 1

2
√

2
sign(t + 1)h1(|t + 1|)− 1√

2
h2(t),

(6.4)

k2(t) =
1

2
√

2
sign(t− 1)h1(|t− 1|)− 1

2
√

2
sign(t + 1)h1(|t + 1|) +

1√
2
h2(|t|).

(6.5)

Moreover, we assume that h1(x) = (ϕ1 ∗
1
ϕ2)(x), the generalized convolution

of ϕ1 and ϕ2 for the Fourier sine and cosine transforms (1.4), and that ϕ1,
ϕ2 and h2 are functions in L1(R+).

Theorem 5. Suppose that the condition

1 + λ
(
sin y(Fsh1)(y) + (Fch2)(y)

) 6= 0, ∀y > 0, (6.6)

holds. Then the integral equation with Toeplitz plus Hankel kernel (6.3)
has a unique solution in L1(R+) of the form

f(x) = g(x) + (g ∗
1

l)(x). (6.7)

Here l ∈ L1(R+) is defined by

(Fcl)(y) =
λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

)

1 + λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

) .

P r o o f. We can rewrite the Toeplitz plus Hankel equation (6.3) as
follows:

f(x)+λ

∞∫

0

f(u)
{

[
1

2
√

2
(sign(x+u−1)h1(|x+u−1|)−h1(x+u+1))− 1√

2
h2(x+u)]

+ [
1

2
√

2
(sign(x− u− 1)h1(|x− u− 1|)− sign(x− u + 1)h1(|x− u + 1|))

+
1√
2
h2(|x− u|)]

}
du = g(x). (6.8)

Rearranging the terms in the integrand, we obtain
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f(x) + λ
1

2
√

2

∞∫

0

f(u)[sign(x + u− 1)h1(|x + u− 1|)− h1(x + u + 1)

+ sign(x− u− 1)h1(|x− u− 1|)− sign(x− u + 1)h1(|x− u + 1|)]du

+λ
1√
2

∞∫

0

f(u)[h2(|x− u|)− h2(x + u)]du = g(x). (6.9)

Applying the Fourier sine transform on two side of equation (6.9) and using
the factorization equalities (6.2), (1.5) we get

(Fsf)(y) + λ sin y(Fsf)(y)(Fsh1)(y) + λ(Fsf)(y)(Fch2)(y) = (Fsg)(y).

Using the assumption that h1(x) = (ϕ1 ∗
1

ϕ2)(x) and condition (6.6) we
obtain

(Fsf)(y) =(Fsg)(y)
[
1− λ

(
sin y(Fsh1)(y) + (Fch2)(y)

)

1 + λ
(
sin y(Fsh1)(y) + (Fch2)(y)

)
]

=(Fsg)(y)
[
1− λ

(
sin y(Fsϕ1)(y)(Fcϕ2)(y) + (Fch2)(y)

)

1 + λ
(
sin y(Fsϕ1)(y)(Fcϕ2)(y) + (Fch2)(y)

)
]

=(Fsg)(y)
[
1−

λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

)

1 + λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

)
]
.

In view of the Wiener-Levy theorem, there exits a function l ∈ L1(R+) such
that

(Fcl)(y) =
λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

)

1 + λ
(
Fc(ϕ1 ∗

1
ϕ2)(y) + (Fch2)(y)

) .

Then,
(Fsf)(y) = (Fsg)(y)[1− (Fcl)(y)]

= (Fsg)(y)− Fs(g ∗
1

l)(y) = Fs(g − g ∗
1
l)(y).

Therefore,
f(x) = g(x)− (g ∗

1
l)(x).

So we obtain the solution of the integral equation with the Toeplitz plus
Hankel kernel (6.3), where the Toeplitz kernel k1 and the Hankel kernel k2

are defined by (6.4) and (6.5), in closed form. It completes the proof of
Theorem 5.
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