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Abstract

We study integral transforms of the form
/Kl = 1)+ f e == 1) = S+t )
(-t 1) du+/K2 (o —ul) — £(x + w)ldu

from L,(R;) to Ly(Ry), (1 < 2 p~t4¢! =1) with the help of a gen-
eralized convolution and prove Watson s and Plancherel’s theorems. Using
generalized convolutions a class of Toeplitz plus Hankel integral equations,
and also a system of integro-differential equations are solved in closed form.
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1. Introduction

The integral equation with the Toeplitz plus Hankel kernel is of the form
(18], [9], [19]) o0

f(x)+ / a(z + 9) + k(e — )] f (9)dy = g(2). (11)
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This equation has many useful applications, see [8], [19]. However, this
integral equation can be solved in closed form only in some particular cases
of the Hankel kernel k; and the Toeplitz kernel ks. The solution in closed
form in general case is still open.

Let F,. and Fs denote the Fourier cosine and Fourier sine transforms [2]

\[/cosxyf )dy, (Fsf)(x \f/smxyf )dy,

in case f € L1(R4), and

\F /f smwyd (Fuf) (@ \/5 / 1 cos:nyd

in case f € Ly(R;). These two definitions are identical, if f € Li(Ry) N
Lo(Ry).

In 1941, R.V. Churchill introduced the convolution of two functions f
and g for the Fourier cosine transform [12]

(f;:cg) T r/f g(|lz —u|) + g(z +u)]du, x>0, (1.2)

which satisfies the following factorization equality

F.(f x 9) () = (Fef)(y)(Feg)(y), Yy > 0. (1.3)

Using this factorization property one can easily solve the integral equation
with the Toeplitz plus Hankel kernel (1.1) in case the Toeplitz kernel ko (x)
and the Hankel kernel ki (z) are equal ko(z) = k1(|z|) (see [8], [9] for other
methods).

Churchill was also the first author who introduced the convolution for
two different integral transforms. Namely, in 1941 he defined the convolution
of two functions f and g for the Fourier sine and Fourier cosine transforms

([12])
(f = g) \ﬁ/f g(lx —u|) — g(x + u)]du, x>0, (1.4)

and showed that this convolutlon satisfy the following factorization identity
(see [12])
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Fs(fx9)(y) = (Fs ) (w)-(Feg)(y), Yy > 0. (1.5)

In this factorization equality, there are more than one integral transform
(F, and Fy). Convolutions of this kind are called generalized convolutions
(see [6]).

So the Toeplitz plus Hankel integral equation (1.1) with ko (z) =—Fk;(|z])
can be solved easily with the help of factorization equality (1.5). In fact,
equation (1.1) can be rewritten in the form

f(@) +V2r(f &)@+ V2 (f * ha) () = g(x),

where hi(z) = (k1 + k2)(2) and ha(z) = 3(k2 — k1)(z). From ko(z) =
—k1(|z|) we see that hy = 0, and therefore (1.5) can be applied.

In 1998, Kakichev and Nguyen Xuan Thao proposed a constructive
method for defining a generalized convolution for three arbitrary integral
transforms (see [6]). For instance, the generalized convolution of two func-
tions f and g for the Fourier cosine and sine transforms has been obtained
based on this method [7]

2

1 T .
(fx9)(x) = mg/f(ﬂ)[ﬁgn(u—fc)g(lu—ml) +9(u+z)ldu, x> 0. (1.6)

For this generalized convolution the following factorization equality holds
([7]):
Ee(fx9)(y) = (EsF) () (Fsg)(y), ¥y > 0. (1.7)

With ko(z) = signz.ki(|z|), the integrand of integral equation (1.1) will
have the form as in (1.6).

The following generalized convolution with the weight function (y) =
siny for the Fourier cosine and Fourier sine transforms has been studied in
[16]:

l%o/f(U)[g(lx+u1|)+g(|xU+1\) (1.9

v
(F39)@) =57

—glx+u+1)—g(|lz —u—1])]du, z>0.
It satisfies the factorization property ([16])
F(f £ 9)() = siny(Fof) ) (Feg) (), ¥y > 0. (1.9)
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Interchanging the variables one can easily see the generalized convolution
(1.8) becomes

.

xg)(x) = ——
(o) = 5
—sign(z +u—1)f(Jxr +u—1]) —sign(zx —u— 1) f(J]x —u—1])]du, x> 0.
Thus one can easily solve the Toeplitz plus Hankel integral equation (1.1)
when the kernel is defined by

ki(z) = k(x 4+ 1) —sign(x — 1)k(|x — 1]) and
ko(z) = sign(x + 1)k(|z + 1]) — sign(x — k(| — 1)
for some k. So studying generalized convolutions may extend the class of

integral equations with Toeplitz plus Hankel kernel (1.1) that can be solved
in a closed form.

127r/g(u)[f(w+u+1)+sign(x—u+1)f(|x—u+1|) (1.10)
0

Another generalized convolution of two functions f and ¢ with the
weight function ~(y) = siny for the Fourier sine and cosine transforms
has the form

(FL9)a) = Q\}%O/f(U)[g(\xﬂLu— ) +gle—u-1) (1)

gt ut 1) — g —ut1du, z>0
for which the following factorization identity holds ([15]):

Fo(f % 9)(y) = siny(Fef) (y)(Feg)(y), Yy > 0. (1.12)

In any convolution of two functions f and g, if we fix one function, say g,
as the kernel, and allow the other function f to vary in a certain function
space, we get an integral transform of convolution type. The most famous
integral transforms constructed in that way are the Watson transforms that
are related to the Mellin convolution and the Mellin transform ([17]):

f(z) — gla) = /0 " k(o) £ (y)dy.

Recently, several classes of integral transforms that are related to gen-
eralized convolutions (1.4), (1.6) have been investigated in [11], [10]. In this
paper we consider a class of integral transform which has a connection with
the generalized convolution (1.11), namely, the transforms of the form
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glx) = (1—j;){/k1<u>[f<m+u—1|>+f<|m—u—1|>—f<w+u+1>

0

— f(lz = u+ 1))]du + kg(u)[f(|:c—u|)—f(a:—i—u)]du}, x>0, (1.13)

We obtain necessary and sufficient conditions on the functions ki, ko €
Ls(R4) to ensure that the transformation (1.13) is unitary on Ly(Ry), and
define the inverse transformation. The Plancherel type theorem is also
obtained. Furthermore, the boundedness of the transformation (1.13) on
Ly(Ry) for 1 < p < 2 is studied. Next, we give several examples of these
transformations and apply on solving a system of integro-differential equa-
tions. In the last section we consider a class of integral equation with the
Toeplitz plus Hankel kernel that can be solved in closed form with the help
of generalized convolutions.

2. A Watson type theorem

LEMMA 1. Let f,g € Lo(R;). Then for any x > 0 the following
Parseval formulas hold:

/f(U)[g(ll‘ tu—1)+g(lz —u—1)) =gz +u+1) - g(lr —u+1f)]du
0

— 22 F, (siny(Fof) () (Feg) () @), (2.1)
and

oo

/f(U)[g(lw tu—1)+g(lz —u+1]) —glz+u+1) —g(lr —u—1))]du
0

= 2v27F,(siny(Fs f)(y) (Feg) (y)) (). (2.2)

P roof We will prove only formula (2.1), as the proof of formula (2.2)
is quite similar. Let f; and g; be even extensions of f and g from R to R.
Then Ffy = F.f and Fg; = F.g, where F stands for the Fourier transform

1 —1iTyY
(F1)@) = <= [ 5wy

For the Fourier transform we have the well-known Parseval identity
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/ e / (F£)(y) (Fg) ()™ dy.
We have

/f g +u—1)+g(z —u—1)—g@+u+1)—g(lz —u-+1])]du

/fl 91$+U—1du+/f1 w)g1(x —u —1)du

o0

—/fl(u)gl(x+u+1)du—/fl(u)gl(x—u—i—l)du
0

0

I/fl(u)gl(xuUdu/f1(U)g1(:vu+1)du

- / (FR))(Fgr)(y)e' ™ Dvdy / (Ff)()(Fg1)(y)e' ™ Dvdy

— 00 —00
(e 9]

- / (Ff1)()(Far) () cos(z — 1)y + isin(z — 1)yldy

—0o0
oo

- / (F 1)) (Fg1)()[cos(z + 1)y + isin(z + 1)yldy.

On the other hand, note that

(Ff)(y)(Fg1)(y)sin(z — 1)y and (Ff1)(y)(Fg1)(y) sin(z + 1)y

are odd functions in y. Hence, their integrals over R vanish, and therefore

/f gz +u—1)) +g(z —u—1]) — gl +u+1) — g(lz — v+ 1])]du

[e.e]

- / (F 1)) (Far) () cose — Lydy — / (F 1)) (Fa1)(y) cos(z + Lyydy

—0o0 —00
[e.9]

= 2/(Ff1)(y)(Fgl)( y) siny sin(zy)dy = 4/(Ff y) siny sin(zy)dy

. 0
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— 2V2rF, (siny(Fuf) () (Fug) () ().

This completes the proof. We have assumed that all the integrals over
R are interpreted as Cauchy principal value integrals, if necessary. ]

THEOREM 1. Let kq,ks € Lo(Ry). Then
1
2siny(F .k 4+ (Fuk B
2siny(Eh) W) + (Foh2)0)| = = o

is a necessary and sufficient condition to ensure that the integral transform
f—ug:

(2.3)

o) = (1= N [ Bl e + w1+ e~ w1~ s +u s 1)

0
~Ho—us et [l - u) - fo+wlda} (24

is unitary on Lo (R+) and the reciprocal transform has the form

f@)=(1- ){ g1z +u—1)+Fr(jz —ut1]) —Fr(z +u+1)
—ki(|r —u—1|) u+/g [sign(u — x)kg(]u—:z|)+k2(u+x)]du} (2.5)
0

P r o o f. Necessity. Suppose that k; and ko satisfy condition (2.3).
It is Well—known that h(y), yh(y), y*h(y) € L2(Ry) if and only if (Fh)(z),
%(Fh)(l‘), 2 (Fh)(z) € La(Ry) (Theorem 68, [17]). Moreover,
d? .
72 (Fh)(z) = F((~iy)*h(y)) (@).
In particular, in case h is an even or odd function such that (1 + y2)h(y) €
La(Ry), the following equalities hold

d2
(1 - W> (Feh)(z) = F.((1+ y®)h(y)) (x),

d2
(1- =) (Bh)(@) = F((1+52)h(y)) @):

Using Lemma 1 and the factorization equalities for the generalized convo-
lutions (1.4), (1.8) we have

2
9(2) = (103 ) Pu (2327 sim y(Fos ) (o) (B ) /2R (Euo) (0) (B () ()

= F, (V2r(1+ ) (2siny(Foka) (9) + (Fok) () (Fo) () ) (@),

(2.6)
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By virtue of the Parseval identity for the Fourier cosine and sine transforms
1 fllLory) = 1FefllLa@ry) = 1 FsfllLy®, ) and from condition (2.3) we get

19l zaey = ||[V2R(1+ 9?) [25iny(Fka) (9) + (Foko) ()] (Fe ) (w)|

= 1Fefllro@sy = 1l Loy
It shows that the transformation (2.4) is unitary.

On the other hand, formula (2.3) implies that (1+y?)(2siny(Fek1)(y)+
(Fsk2)(y)) is bounded on Ry, hence (14 y?)[2siny(Fok1)(y) + (Fska)(y)
(Fef)(y) € La(R4). We have

(Fsg)(y) = V2r (1 +y°) [2siny(Fek1) (y) + (Fokz) ()] (Fef) ()-
Using condition (2.3) we obtain

(Fs/)(y) = V2r(L + y?)[2siny(Feki)(y) + (Fska) (4)] (Feg) (y)-

Again, condition (2.3) shows that (14y2)[2sin y(F.k1)(y)+(Fsk2)(y)](Feg)(y)
€ La(R,), then formula (2.6) yields

£(2) = Fe((1-+ y7)[2siny(FFa) () + (FoF2) ()](Fu) () 2)
= (1 25 ) Re(2vam simy () (o) (Fag)(9) + V2R (FiFo) () (Fog) () ().

dx?
Using formula (2.2) and the factorization equality for the generalized con-

volution (1.6) we have

La(R4)

d2
 da?

){/g(u)[k:l(]m+u— 1)+ Fi(je —u+ 1)) — By(z +u+ 1)

0 o0

—k1(Jz —u —1|)]du + /g(u)[sign(u — 2)ka(lu — x|) + k2 (u + :U)]du}

f@) = (1

0
Therefore the transformation (2.4) is unitary on Ls(Ry) and the inverse
transformation is defined by (2.5).

Sufficiency. If transform (2.4) is unitary on R, then the Parseval iden-
tities for the Fourier sine and cosine transforms yield

19l Loeyy = V20 (1 + y)2siny (Feki) (y) + (Fsk2) ) (Fef) W) | Lory )

= Fefllary) = Il oy
By virtue of the Hahn-Banach Theorem, the middle equality hold for all

f € La(Ry) if and only if

[V2r(L+ y?)[2siny(Fek1) (y) + (Esk2) )] (Fe) ()| = [(Fef) ()],

It shows that k; and ko satisfy condition (2.3). This completes the proof of
Theorem 1. |
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We show now the existence of functions k; and ks satisfying (2.3). Let
hi,ho € Lo (R+) satisfy
1

|(Fsh1)(y)(Feho)(y)| = (1+y2)(1 +sin’y)’

The existence of such functions hy, he that satisfy (2.7) is clear. For instance,
eiv1(y) etv2(y) )

Fy( )(@), h(@)=F(

V(1+y?)(1+sin® y) V(1+y?) (1 +sin® y)
where v1,v9 are arbitrary real-valued functions defined on Ry. Let k1, ko €
Ly (R4 ) be defined by

ba() = = Fha)(@).  Kal) = —=(n 1 ha)0).
We have

12siny(Foki)(y) + (Fs
sin® y(Fsha) (y) (Feha)(y) +

(2.7)

hl (LU) =

O

) 2)(y)|
N (Fshl)(y)(Fchg)(y)l

_ J%umhl)(y)(nmxyn(l + sin y) =

Thus k; and ks satisfy condition (2.3).

2le

3. A Plancherel type theorem

THEOREM 3. Let k; and ko be functions satisfying condition (2.3) and
d? d?
suppose that Ki(z) = (1 - d2> ki(z) and Ka(x) = (1 - d2> ko(z) are
locally bounded. Let f € Lo(R4) and for each positive integer N, put

/m WAz +u— 1)+ Nz —u—1) — @ +ut1)

— N (z — ut 1)) du+/K2 V(e —ul) — Y@+ u)lde, (31)

where fN = f. X(o,n), the restrlctwn of f over (0, N). Then:

1) gy € LQ(R+) and as N — oo, gy converges in Ly(Ry) norm to a
function g € La(Ry), moreover, ||gllr,w,) = 1fll o)

2) Reciprocally,

N
() = /g(u)[Kl(laz fu— 1)+ Kz —ut1)) - K(z+u+1)
0
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N
—K1(|Jz —u—1])]du+ / g(u)[sign(u — 2)Ka(|Ju — x|) + Ka(u+z)]du (3.2)
0
belongs to La(R4) and converges in Lo(R,) norm to f as N — oo.

REMARK 1. Because of the definitions of gy and fy these integrals
are over finite intervals and therefore converge.

REMARK 2. The convolution (1.4) can be rewritten as follows
[sign(z — u) f(|z — ul|) + f(z + u)]du.
(f 3 9)(a m/ gn(e —u)f(ja — ul) + f(a+u)

Moreover, by the commutativity of the generalized convolution (1.11) (see
[15]), we can interchange f and g without changing the value of the gener-
alized convolution,

/f gl +u—1)+ gz —u—1)) — gz +u+1) — gl — u+1))]du
0

=/g(u)[ (le+u—1)+ f(lz—u—-1) = fle+u+1) - f(lz —u+1])]du
0
Proof of Theorem 2. Applying Remark 2, we have

/f VK (2 +u— 1) + Ki(jz —u—1]) — Ky(2+u+1)
—K1(|:L‘—u—|—1)]du—{—/fN(u)[sign(:L‘—u)K2(|x—u|)—|—K2(:B+u)]du
(1—7 /fN Wiz +u— 1)) + kr(je — u—1]) — by (2 +u+ 1)

—k1(|z — u+1))]du + / IV (u)[sign(z — u)ks (|2 — ul) + ko (x + u)}du}.

It is legitimate to interchange the order of integration and differentiation
since the integrals are actually over finite intervals. By applying Remark 2
one more time, we obtain
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(@)= (1= ){ [ Bl o= 1)+ £ (= u1) = ¥ (@t us 1)
0

oo

=Pl = dut [ Ea(lsign(e - Y (e ) + £+ a)ldu).
0

From this and in view of Theorem 1, we conclude that gy € La(Ry). Let
g be the transform of f under the transformation (2.4). Then Theorem 1
implies that g € La(Ry), and | gl|r,w,) = [IfllL,®,)- Furthermore, the
reciprocal formula (2.5) holds. We have
d i N N
(-9m)@) = (1= ){ [ @ (7= ) o+ u=1)+ (7= ) o —u=1)
0
—(f =@ +ut1) = (F = ) (e = ut1])]du
+ [ Ba(wlsigate — )7 = )l )+ (F = )+ w)ldu).
0

Again by Theorem 1, g — gy € L2(R4), and

lg = gnllLasy = 1 = YV | aes)-

Since [|g — gnllyw,) — 00 as N — oo, then gy converges in Lz(R4) norm
to g as N — oo.
The second part of the theorem can be obtained by the similar way. =

REMARK 3. Theorem 1 and Theorem 2 show that the integral trans-
form (2.4) is unitary in L9(Ry) and the inverse transform is defined by
formula (2.5). Moreover, integral operators (2.4) and (2.5) can be approxi-
mated in Lo(R4) norm by operators (3.1) and (3.2), respectively.

d2
If we assume in addition that K;(z) = (1 — ﬁ)kl(m) and Ko(x) =
x
d2
<1 — W)kg(ac) are bounded on R, then the transformations (2.4) and
x
(2.5) are bounded operators from Lj(Ry) into Lo (Ry).

On the other hand, Theorem 2 implies that the transformations (2.4)
and (2.5) are bounded on Ly(Ry). Then the Riesz’s interpolation theorem
yields
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THEOREM 3. Let ky, ko be functions satisfying condition (2.3) and sup-
pose that Ki(x) and Ko(x), defined as in Theorem 2, are bounded on R .
Let 1 < p < 2 and q be its conjugate exponent (Zl7 + % = 1). Then the
transformations

f@r—gla) = tim_{ [Ka@Ur (oru= 1)+ o -u-1) - )

- ut dut [ Ko u) - Pt lda) (33)
0

and

N
f(@)—g(z)= lim {/f(U)[Kl(Ieru—1|)+K1(|x—u+1|)—K1(x+u+1)

N—oo

N
~Ki(Jz—u—1|)] du+/f [sign(u—x)Ka(|Ju— :c|)+K2(u+33)]du} (3.4)
0

are bounded operators from L,(R;) into Ly(Ry). Here the limits are un-
derstood in Ly(Ry) norm.

4. Examples

Now we consider some examples of k1 and ko for which the condition
(2.3) holds.

ExXAMPLE 1. It is obvious that the kernels ki, ko defined as follows
satisfy condition (2.3):

- 2
siny cos®y
Fhk(y) = ——2Y  Fhy(y) = —2 Y
Then
sin y
ki(x) =F; x
(@) (2\/27r(1+y ))( )
1 smycosa:y /sm (x+ 1)y — sin(z — 1)yd
T ) (1+¢?) v

0

Using formula (2.2.14) from [4], we get

ki(z) = é[e_(”l)ﬁi(:n +1) — eV Ei(—2z — 1) (4.1)
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—e @ VEi(z—1) — " VEi(—z + 1],
where Ei(z) is the exponential integral (formula 5.1.2, [1])

oo ,—t x t
Bi(z) = / ert: / %dt, (4.2)

—T —00
and the integral here is understood as the Cauchy principle value integral.
On the other hand,

oo
ko () :F< cos?y _ 1/ 1+Cos2y sin xy
\/277(1+y 7r0 2(1 + y?)
oo
B 1/ 2sinzy + sin(x + 2)y + sin(z — 2)yd
r 1+12) v
0

Using formula (1.2.11) from [4], we have
1 — _
ko(x) = 3 [2¢""Fi(z) — 2e® Bi(—x) + e~ "t Ei(z 4 2) (4.3)

_e(x+2)Ei(_x _ 2) 4 e*(:t:fZ)E(x + 2) _ e(erl)EZ‘(_g; — 2)]

Following formula (5.1.10) from [1], K; and K3 defined as in Theorem 2 are
obviously locally bounded, so Theorem 1 shows that the reciprocal trans-
formations (2.4) and (2.5) with functions k; and ks defined by (4.1) and
(4.3) are unitary on Ly(Ry), and by Theorem 2, they can be approximated
by sequences of operators defined by (3.1), (3.2).

EXAMPLE 2. Let

1COSY cos 2y
(Fek1)(y) = 2+ 57 and (Fsk2)(y) = V2t 42

One can check easily that k1 and ke defined as above satisfy condition (2.3),
since
cos 2y + isin 2y

V2r (1 + y2)

2siny(Feki)(y) + (Foka) (y)] = \

i2y
’\/271' (1+y?) ‘ B \/27r(1+y )
Since (Fck1)(y) and (Fsks)(y) are functions in Lo(Ry), we have

o0

1COS Y 1 COS 1 COS TY
(o) = R Y= [ eseonr,
1( ) c 27T(1+y2) T 1_|_y2 Yy
0
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o
/cosy x+1) +cosy(x - 1)d
o 1492 Y
0
Using formula 1.2.11 in [4], we get
by (2) = i(ﬁx“) + (@), (4.4)
On the other hand,
oo
cos 2y 1 [ cos2ysinzxy
ka(x —F()—/d
2(z) =F 2m(1+ y2) Tro 1+ y2 Y
o0
1 siny(m+2)+siny(w—2)d
o 1+9y2 v
0
From formula 2.2.14 in [4], we have
1 .
ko(z) = y= [e*(””H)Ei(x +2) — D Ei(—z — 2) (4.5)
7r

+e O DEi(z — 2) — D Ei(—z + 2)].

So, Theorem 1 shows that the transformations (2.4) and (2.5) with func-
tions (4.4) and (4.5) define unitary operators on La(Ry). Theorem 2 shows
that one can approximate them in Ly(R4) norm by sequences of operators

(3.1), (3.2).

ExaMPLE 3. Finally, let us choose

__ an =
Fkw) =5 oy ™ BRI =

Obviously, the condition (2.3) holds with these functions. Moreover, formula
1.2.11 in [4] give us 0o

1 ] cos TY T _
Y R S Ay
0
And following formula 2.2.14 in [4], we have

cosy 1 7Siny(:n+l)+siny(x—1)
k =F(————— ) =— d 4.7
2(2) (%<1+y2>> o | T y (47

_ % e @ Bi(z+1) D Bi(—z—1)+e” OV Ei(z—1) -V Bi(—a+1)].
™

Transformations (2.4) and (2.5) with functions (4.6) and (4.7) are unitary
on Ly(R4) and can be approximated by operators defined as in Theorem 2.
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5. Application to system of integro-differential equations

Consider the system of integro-differential equations

2
fla) - %f(af) (K p0) () = h(a),
o (5.1)
)\g/f )01 (z udu+/\3/f )02 (z, u)du + g(x) = k(x),
0

where K, (.) is the transformation (2.4) with ky = ¢ = ¢ % po; ko = 1;
O1(z,u) = sign(u — 2)¢(Ju — z[) + {(u + 2),

O2(2,u) =0z +u—1)) +n(lz —u+ 1)) = n(z + u+ 1) = n(|z —u = 1|);
o1, 92,0, &, € L1(Ry) are given function; f and g are unknown functions
such that f/, f”, ¢, ¢" € L1(Ry) and f(0) =0

Since f, f’ € L1(Ry), then there exist the Fourier sine and Fourier cosine

transforms of f, f’. Furthermore,
o

Ny) = '(x) sin zydx
(Ff)0) = = 0/ f'(a) sinayd 5:2)
= \/12?{f(x) sina:y‘oo — y/f ) coszydar} = —y(Fef)(y),
and o0
(F.f)( \ﬁo/ x) cos zydx (5.3)
= J;{f(x) cosxy’zo + y]of(sc) sinzydz} = £(0) + y(Fsf)(y).
i 0

THEOREM 4. Suppose the following condition holds:
L= dmdieFe(€ £ 9)(y) — 2e\ M Fe(v 1 €)(y) (54)

— 8T A1 A3 Fe(ip1 % (02 % ) (y) — dr Az Fe(y :5/ w)(y) # 0, Vy >0,

and

F) =[5 () 5 ) (@) = 2V0mN (0 F B) () = V() 5 b))
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1/ 5 ((A(u) + e+ D) (@) — 2v2mA (¢ % k) + D) (@) = V2r((y # k) 1) (@),

2wy
g(z) = k() = Tha((h(u) £ ™) £€)(@) = 2m((h(w) e ™) F ) @) + (k  D)(a)

—mha((h(w) £ €7 £)  D(a) = 2n(((h(w) ) § 1) 1 Da)

satisty that f',f",q',¢" € L1(Ry). Then (f,g) defined as above is the
unique solution of system (5.1) in Li(Ry).

N ¥ 2

P r o o f. One can rewrite system (5.1) in the form
d? 7
(1- =) {f@ +2v2rh(p 1 9)@) + V2T (6 £ 9)(a) | = h(a),

V2 (f 5 €)(x) + 2V2mNs(f % 1) (@) + g(2) = k(2).

With condition that ¢’ and ¢” belong to Li(R4), we conclude that %(cp%

9)(@), £ # 9)(@). 45 (% g)() and {5 (¢ * g)(x) also belong to Ly (R+).
Moreover,
(¢49)(0) = (W5 9)(0) =0.

Applying F;s and F, respectively on the first and the second equations of
system (5.1), and in view of the factorization equalities (1.5), (1.7), (1.9),
(1.12) and formulas (5.2), (5.3) we obtain

(1+y*)Fof(y) + V2rAi (1 + y?) [2siny Fp(y) + Fob(y)| Feg(y) =Fsh(y),
V2 A Fy f(y)Fol(y) + 2V2m A3 sinyFo f (y) Fo(y) + Feg(y) =Fek(y).
(5.5)

Note that (see [4], formula 1.4.1)

= 3R

So the system is equivalent to

Fof () + VBN 25y Feg) + Fab)] Fealy) =[5 Foh) o)),

V2o Fuf(y) Fi (y) + 2V2m A sin y Fu f (y) Feply) + Feg(y) = Fek(y).
We have
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A 1 V2rAL(2siny Feo(y) + Fap(y))
| V2 F(y) + 2v2m Az siny Fop(y) 1

= 1 4mARF(§ £9)(y) — 2rA e Fe(¥ £ €)(y) — 8TA N Fel(io1 £ (1022 1)) (y)

—ATA S FL(0 % 1) (9).

With condition (5.4) and applying the Wiener-Levy theorem, we obtain

1= X [L - 4mAFUE F 0)(0) — 2N FL (5 )(0) — STAM L1 F (92 % 1) (1)

~

W] =1+ [REE ) + 2R £ O)

—47T)\1)\3FC(¢ s
v
*
2

Y
*
2
+STANFo(1 3 (92 § 1)) + AmA (0 E i) ()] X [1 = 4mAdaFulg § 0) W)

-1

2 A A Fu(¥)

N ¥

§)(y) — 8T A3 Fe(p1 % (2 % 1) (y) — AT Az Fe (v % ) (y)
=1+ (Fcl)(y)7
for some | € L1(R4).
We have
VEF(h(w) e () V2rM(2sinyFp(y) + Fub(y) ‘

A =
Fek(y) 1

Z\/st(h(U) * e~ (y) — 2V2r A Fy(p % k)(y) — V271 Fo(¢ x k) ();

1 2 s (h(u) x e)(y)
V2T Fi€(y) + 227 A3 siny Fopi(y) Fek(y)

=Fuk(y) = A F((h(u) €™ 5 €) () — 20 ((h(w) £ ) § 1) (9):

Hence,

Ay =

(Faf)) = 5 = [ TR0 1)) — 2B R TR

—V2r (4 1K) ()] (L+(F) () = B
VBB 5 () e 5

(h(u) x ™) =2v2mA1 (¢ % k)

|3
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~2V2mA (9 £ 1) +1) = V2 (0 £ K) 1) ) (0).
This shows that

F) = 4[5 (h(w) 5 e ™) (@) = 2V2mN (¢  B) (@) = V2m (o x k) (@)
+\/§((h(u) xe) 1) (2)—2v27 A1 ((¢ ;13 k) 1) () — V2 ((y k) 1) (2).
One can check easily that f(0) = 0.
Similarly, A,

—mdaFe(((h(u) 5 €7) 5 €) s 1) (y) = 20Fe((hu) £ €7 5 1) % D) (W),

Therefore,

(b)) £€) x 1))~ 2n(((hCw) ™) T ) 2 ) )
Hence, if ', f", ', g" € L1(Ry) then (f, g) is the solution of system (5.1). m

6. A class of Toeplitz plus Hankel integral equations

Finally, we consider a class of integral equations with the Toeplitz plus
Hankel kernel (1.1), that can be solved in closed form with the use of gen-
eralized convolutions.

First, let us recall the generalized convolution with the weight function
v(y) = siny for the Fourier sine transform of two functions f and g [5], [14]

+oo
(fl%sg)(m): 2\/1% / f(u)[sign(z+u—1)g(|z+u—1|)+sign(z—u+1) (6.1)
0

xg(lt —u+1]) — gz +u+1) —sign(z —u—1)g(|x — u—1|)]du, x> 0.
This convolution satisfies the following factorization equality [5], [14]:
g .
Es(f x 9)(y) = siny(Es ) () (Fs9)(y), Yy > 0. (6.2)
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Consider the integral equation with the Toeplitz plus Hankel kernel

o0

f@)+ [+ ) + kala = D))y = g(a), (6.3
0
where the Toeplitz kernel k1 and the Hankel kernel ko are defined as follows:

k(1) :21ﬂ sign(t — Dan(Jt — 1)) - 2% sign(t + Dhn (|t + 1)) — ng(t),
(6.4)
ko (t) :2\15 sign(t — Dhn(lt — 1)) — 2\1/5 sign(t + Dhn (|t + 1)) + \}ﬁhz(|t|).

(6.5)

Moreover, we assume that hi(z) = (¢ * v2)(x), the generalized convolution
of ¢1 and ¢ for the Fourier sine and cosine transforms (1.4), and that 1,
9 and ho are functions in Li (R4 ).

THEOREM 5. Suppose that the condition
L4+ A(siny(Fshi)(y) + (Feha)(y)) #0, Yy >0, (6.6)

holds. Then the integral equation with Toeplitz plus Hankel kernel (6.3)
has a unique solution in L(R}) of the form

F(2) = glx) + (9 2 (). (67)
Here l € L1(Ry) is defined by
A(Fe(pr 5 02)(y) + (Feha) (y))

(FDW) = 17 A(Fe(er % 02)(y) + (Feha) ()

P r o o f. We can rewrite the Toeplitz plus Hankel equation (6.3) as
follows:

fleHM ] f(u)] [—=(sign(z+u—1)h(|z+u—1|)—hi(x4+u+1))——=ho(z+u)]
0/ { 2v2 V2
+ [z\l/i(sign(:c —u—1Dhi(Jr —u—1|) —sign(z —u+ 1)hi(|z — u+1]))
+ \}§h2(‘$ - u\)]}du = g(x). (6.8)

Rearranging the terms in the integrand, we obtain
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flz)+ Ahlﬁo/f(u)[sign(x—ku —Dh(jlz+u—1]) —hi(z+u+1)
+sign(z —u — D)hi(|lz —u —1|) —sign(z — u+ 1)hi(Jz — u + 1|)]du

+)\/f Vha(lo — ul) — ho(z + w)]du = g(z). (6.9)

Applying the Fourler sine transform on two side of equation (6.9) and using
the factorization equalities (6.2), (1.5) we get

(Fsf)(y) + Asiny(Fs f)(y) (Fsh1)(y) + MFs ) (y) (Feha)(y) = (Fsg)(y)-

Using the assumption that hi(z) = (o1 ’ 2)(x) and condition (6.6) we
obtain
[ A(siny(Fsh F.h
(Ff)(y) =(Fag)) |1 - (siny(Fuh)(y) + (Foho) ()

)
14+ A(siny(Fsh)(y) + (Fehe)(y ))}

) L AGiny(Fae) () (Fep2) () + (Feha) ()
=(Fs9)(y) - 1+ M(siny(Fsp1)(y) (Fep2)(y) + (Fch2)(y))}
gt AEere)) + () ()

=( sg)(y)_ 1+)\( (¢1*¢2)(y) (Feh2)(y )):|

In view of the Wiener-Levy theorem, there exits a function [ € Li(R) such

that
o A(Fe(er % 02)(y) + (Feha) (v))
D) = S Ror s o) T E0) @)
Then,
(Fs)(y) = (Fsg) ()1 — (Fel)(y)]
= (Fsg)(y) = Fs(g+ D(y) = Fs(g — 9+ D)(y)-
Therefore,

fla) = g(z) = (g % )(x).

So we obtain the solution of the integral equation with the Toeplitz plus
Hankel kernel (6.3), where the Toeplitz kernel k; and the Hankel kernel ko
are defined by (6.4) and (6.5), in closed form. It completes the proof of
Theorem 5. |
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