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Abstract

In this paper we study the generalized Riemann-Liouville (resp. Caputo)
time fractional evolution equation in infinite dimensions. We show that the
explicit solution is given as the convolution between the initial condition
and a generalized function related to the Mittag-Leffler function. The fun-
damental solution corresponding to the Riemann-Liouville time fractional
evolution equation does not admit a probabilistic representation while for
the Caputo time fractional evolution equation it is related to the inverse
stable subordinators.
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1. Introduction

The time fractional diffusion equation is obtained from the standard dif-
fusion equation by replacing the first-order time derivative with a fractional
derivative of order α ∈ (0, 1), namely

Dα
t u(x, t) = ∆u(x, t), t > 0, x ∈ R, (1)
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where Dα
t is the Riemann-Liouville or Caputo derivative of order α. The

main physical purpose for investigating these type of equations is to describe
phenomena of anomalous diffusion appearing in transport processes and
disordered systems. For some recent and interesting reviews, see [20], [23]
and references therein. Almost all studies done on this subject treated the
finite dimensional case and sufficiently smooth initial condition, cf. [16],
[18], [21], [15]. The methods used to find the explicit solution consists in
applying in succession the transforms of Fourier - in space, and Laplace -
in time. The infinite dimensional case was studied by E. Bazhlekova for a
fixed Banach space X using semigroup technics. More precisely, she studied
the strong solution of the equation (1) with ∆ replaced by a densely defined
operator A on X and the time derivative is related to the Riemann-Liouville
derivative. We refer the interested reader to [2], [3] and [4] for more details.

The aim of this paper is to consider the above scheme in infinite dimen-
sions. First of all, we notice that the Gross Laplacian ∆G is the natural
generalization of the usual Laplacian to represent the diffusion in infinite di-
mensions. For α = 1 we have constructed a solution of equation (1) and gave
a probabilistic representation of it, cf. [8]. Second, the Fourier transform is
replaced by the so-called Laplace transform for generalized functions. By
the same method, the solution of the problem

Dα
t U(t) = ∆GU(t), t > 0 (2)

is given in terms of the convolution product of the fundamental solution
and the initial condition which is a generalized function. The fundamental
solution is related to the Mittag-Leffler function through the Laplace trans-
form. For the Riemann-Liouville time derivative problem, we show that the
corresponding fundamental solution does not correspond to a density of a
measure, cf. Remark 3.11. Hence (2) does not admit a probabilistic inter-
pretation. On the other hand, the same problem with the Caputo derivative
may be interpreted as a probability density of a stochastic process. The de-
tails of the construction of this process and measure will be the subject of
a forthcoming paper.

The paper is organized as follows. In Section 2 we provide the mathe-
matical background needed to solve the problem (2). Namely, we construct
the appropriate test functions space Fθ(N ′), Gθ∗(N) and the associated
generalized functions F ′θ(N ′). The elements in Fθ(N ′) (resp. Gθ∗(N)) are
entire functions on the co-nuclear space N ′ (resp. in N) with exponential
growth of order θ (a Young function) and of minimal type (resp. maximal
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type). F ′θ(N ′) is the topological dual of Fθ(N ′). An example of an entire
function is

N 3 ξ 7→ Eα,β(〈ξ, ξ〉) ∈ C,

where Eα,β is the Mittag-Leffler function, see Example 2.2 and Remark 2.5.
In Section 3 we solve the problem (2) using the introduced tools and study
the stability of the solution. We end the section proving that the solution
is continuous with respect to the initial data.

2. Preliminaries

In this section we will introduce the framework which is necessary later
on. Let X be a real nuclear Fréchet space with topology given by an increas-
ing family {| · |k; k ∈ N0} of Hilbertian norms, N0 := {0, 1, 2, . . .}. Then X
is represented as

X =
⋂

k∈N0

Xk,

where Xk is the completion of X with respect to the norm | · |k. We use
X−k to denote the dual space of Xk. Then the dual space X ′ of X can be
represented as

X ′ =
⋃

k∈N0

X−k

which is equipped with the inductive limit topology.
Let N = X + iX and Nk = Xk + iXk, k ∈ Z, be the complexifications

of X and Xk, respectively. For n ∈ N0, we denote by N ⊗̂n the n-fold
symmetric tensor product of N equipped with the π-topology and by N ⊗̂n

k

the n-fold symmetric Hilbertian tensor product of Nk. We will preserve the
notation | · |k and | · |−k for the norms on N ⊗̂n

k and N ⊗̂n
−k , respectively.

2.1. Functional spaces

Let θ : R+ −→ R+ be a continuous, convex, increasing function satis-
fying

lim
t→∞

θ(t)
t

= ∞ and θ(0) = 0.

Such a function is called a Young function. For a Young function θ we define

θ∗(x) := sup
t≥0
{tx− θ(t)}, x ≥ 0.
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This is called the polar function associated to θ. It is known that θ∗ is
again a Young function and (θ∗)∗ = θ, see [17] for more details and general
results.

Given a Young function θ, we denote by Fθ(N ′) the space of holomorphic
functions on N ′ with exponential growth of order θ and of minimal type.
Similarly, let Gθ(N) denote the space of holomorphic functions on N with
exponential growth of order θ and of arbitrary type. More precisely, for
each k ∈ Z and m > 0, define Fθ,m(Nk) to be the Banach space of entire
functions f on Nk satisfying the condition

|f |θ,k,m := sup
x∈Nk

|f(x)|e−θ(m|x|k) < ∞. (3)

Then the spaces Fθ(N ′) and Gθ(N) may be represented as

Fθ(N ′) =
⋂

k∈N0,m>0

Fθ,m(N−k),

Gθ(N) =
⋃

k∈N0,m>0

Fθ,m(Nk)

which are equipped with the projective limit topology and the inductive
limit topology, respectively. The space Fθ(N ′) is called the space of test
functions on N ′. For a test function ϕ ∈ Fθ(N ′) there exists coefficients
ϕn ∈ N ⊗̂n, n ∈ N0 such that ϕ admits the decomposition

ϕ(x) =
∞∑

n=0

〈x⊗n, ϕn〉.

Its dual space F ′θ(N ′), equipped with the strong topology, is called the space
of generalized functions. The dual pairing between F ′θ(N ′) and Fθ(N ′) is
denoted by 〈〈·, ·〉〉.

Later on we need the comparison between test function spaces Fθ(N ′)
for different Young functions θ.

Lemma 2.1. Let θ, γ be two given Young functions and denote

lim inf
x→∞

θ(x)
γ(x)

=: c1 ,

lim sup
x→∞

θ(x)
γ(x)

=: c2 .
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1. If 0 < c1 ≤ c2 < ∞, then we have

Fθ(N ′) = Fγ(N ′) =⇒ F ′θ(N ′) = F ′γ(N ′).

2. If c2 = 0, then Fθ(N ′) ⊂ Fγ(N ′) =⇒ F ′γ(N ′) ⊂ F ′θ(N ′).

3. If c1 = ∞, then Fγ(N ′) ⊂ Fθ(N ′) =⇒ F ′θ(N ′) ⊂ F ′γ(N ′).

P r o o f. First we notice that the case c1 = c2 = 1 was studied in [10,
Lemme 3]. The idea of the proof follows from the fact that there exists
x0 > 0 such that

γ(x)
θ(x)

≥ ε, 0 < ε < 1, x ≥ x0,

then Fθ(N ′) ⊂ Fγ(N ′).

For k ∈ N0 and m > 0, we define the Hilbert spaces

Fθ,m(Nk) =

{
~ϕ = (ϕn)∞n=0; ϕn ∈ N ⊗̂n

k ,
∞∑

n=0

θ−2
n m−n|ϕn|2k < ∞

}
, (4)

Gθ,m(N−k) =

{
~Φ = (Φn)∞n=0 ; Φn ∈ N ⊗̂n

k ,
∞∑

n=0

(n!θn)2mn|Φn|2−k < ∞
}

, (5)

where

θn = inf
x>0

eθ(x)

xn
, n ∈ N0. (6)

We define

Fθ(N) :=
⋂

k∈N0,m>0

Fθ,m(Nk),

Gθ(N ′) :=
⋃

k∈N0,m>0

Gθ,m(N−k).

The space Fθ(N) equipped with the projective limit topology is a nuclear
Fréchet space, see [10, Proposition 2]. The space Gθ(N ′) carries the dual
topology of Fθ(N) with respect to the bilinear pairing given by

〈〈~Φ, ~ϕ〉〉 =
∞∑

n=0

n!〈Φn, ϕn〉, (7)

where ~Φ = (Φn)∞n=0 ∈ Gθ(N ′) and ~ϕ = (ϕn)∞n=0 ∈ Fθ(N).
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The Taylor map defined by

T : Fθ(N ′) −→ Fθ(N), ϕ 7→
(

1
n!

ϕ(n)(0)
)∞

n=0

is a topological isomorphism. The same is true between Gθ∗(N) and Gθ(N ′).
The action of a distribution Φ ∈ F ′θ(N ′) on a test function ϕ ∈ Fθ(N ′) can
be expressed in terms of the Taylor map as follows:

〈〈Φ, ϕ〉〉 = 〈〈~Φ, ~ϕ〉〉, (8)

where ~Φ = (T∗)−1Φ and ~ϕ = Tϕ.

Example 2.2. (Mittag-Leffler function) As an example of an ele-
ment in Gγ∗(N), with the Young function γ∗(x) = x2/α, 0 < α < 1 (polar
function of γ(x) = x2/(2−α)), we consider

N 3 ξ 7−→ Eα,β(〈ξ, ξ〉) ∈ C,

where Eα,β(z), z ∈ C is the (entire) Mittag-Leffler function defined by

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
, z ∈ C, α, β > 0. (9)

Moreover the corresponding Taylor series is given by

Eα,β(〈ξ, ξ〉) =
∞∑

n=0

〈En
α,β, ξ⊗n〉,

where the kernels En
α,β are given in (12) below.

P r o o f. It is sufficient to prove that there exist m > 0 and k ∈ N
such that |Eα,β|γ∗,k,m < ∞. Let us denote the Taylor coefficients of Eα,β by
(En

α,β)∞n=0 ⊂ N ′. Then according to the isomorphism between Gγ∗(N) and
Gγ(N ′), γ∗(x) = x2/(2−α) the following series has to be finite

∞∑

n=0

(n!γn)2mn|En
α,β|2−k. (10)

In order to find the Taylor coefficients (En
α,β)∞n=0, first we introduce the trace

operator τ defined as

τ : N⊗2 −→ C, ξ ⊗ η 7−→ 〈τ, ξ ⊗ η〉 := 〈ξ, η〉. (11)
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It is clear that there exists k ∈ N such that τ ∈ N ⊗̂2
−k . Then the function

Eα,β can be written as

Eα,β(〈ξ, ξ〉) =
∞∑

n=0

〈ξ, ξ〉n
Γ(αn + β)

=
∞∑

n=0

〈En
α,β, ξ⊗n〉,

where {
E2n

α,β = τ⊗n

Γ(αn+β)

E2n+1
α,β = 0

(12)

Therefore, (10) becomes
∞∑

n=0

(2n)!2γ2
2nm2n 1

Γ2(αn + β)
|τ |2n

−k (13)

which should be finite. By definition θn is given by (6) and it is not hard
to prove that θn is given by

γn =
[

en

nn

(
2

2− α

)n](2−α)/2

.

Using the inequalities

|Γ(x)| ≥ e−x
√

2πxx−1/2, x > 0
n! ≤

√
2πe−nnn+1/2, n ∈ N

we can prove that there exists a constant m(α, |τ |−k) such that the series
(13) converges.

With the same calculations as in the previous example, we have the
following:

Example 2.3. For any p ∈ N\{0} we define an element in Gγ∗p (N) with
the Young function γ∗p(x) := x2p/α (polar function of γp(x) = x2p/(2p−α)) by

N 3 ξ 7−→ Eα,β(〈ξ, ξ〉p).

Moreover its Taylor series is given by

Eα,β(〈ξ, ξ〉p) =
∞∑

m=0

〈Em
α,β, ξ⊗m〉,
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where {
Em

α,β = τ⊗m/2

Γ(β+αm/(2p)) , m ∈ 2pN,

0, otherwise.

Remark 2.4. The Mittag-Leffler function Eα,β defined in (9) is an
element of Fθr(C) for any Young function θr(x) = xr where r > 1

α . For
r = 1

α we have Eα,β ∈ Gθr(C). This can be seen using the same arguments
from the previous example.

2.2. Laplace transform

We write, for a generic function f(t) the usual Laplace transform as
follows

Lf(s) :=
∫ ∞

0
e−stf(t) dt, s ∈ C.

For each ξ ∈ N , the exponential function

eξ(z) = e〈z,ξ〉, z ∈ N ′,

is a test function in the space Fθ(N ′) for any Young function θ, cf. [10,
Lemme 2]. Thus we can define the Laplace transform of a generalized func-
tion Φ ∈ F ′θ(N ′) by

Φ̂(ξ) := (LΦ)(ξ) := 〈〈Φ, eξ〉〉, ξ ∈ N. (14)

The Laplace transform is a topological isomorphism

L : F ′θ(N ′) −→ Gθ∗(N), (15)

cf. [10, Théorème 1].

Remark 2.5.

1. As in Example 2.2, we may show that for any t > 0

N 3 ξ 7−→ Eα,β(〈ξ, ξ〉tα) ∈ Gγ∗(N), γ∗(x) = x2/α.

Therefore, there exists a unique element Ψα,β,t ∈ F ′γ(N ′) such that

LΨα,β,t(ξ) = Eα,β(〈ξ, ξ〉tα) (16)

and γ(x) = x2/(2−α).
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2. For p ∈ N\{0} we can see that there exists an unique element Ψα,β,p,t ∈
F ′γp

(N ′) such that

LΨα,β,p,t(ξ) = Eα,β(〈ξ, ξ〉ptα) (17)

and γp(x) = x2p/(2p−α).

Let T be a fixed positive real number. Consider a family {Φ(t); t ∈
[0, T ]} of generalized functions in F ′θ(N ′). We assume that the function
t 7→ Φ(t) is continuous from [0, T ] into F ′θ(N ′). Then the function t 7→ LΦ(t)
is continuous from [0, T ] into Gθ∗(N). Thus for each t ∈ [0, T ], the set
{LΦ(s); s ∈ [0, t]} is a compact subset of Gθ∗(N). In particular, it is bounded
in Gθ∗(N). Hence there exist constants k ∈ N0, m > 0 and C(t) > 0 such
that

|LΦ(s)(ξ)| ≤ C(t)eθ∗(m|ξ|k), ∀s ∈ [0, t], ξ ∈ Nk. (18)

This inequality shows that the function ξ 7→ ∫ t
0 LΦ(s)(ξ) ds belongs to the

space Gθ∗(N). Hence there exists a unique generalized function, denoted by∫ t
0 Φ(s) ds, in F ′θ(N ′) satisfying

L
(∫ t

0
Φ(s)ds

)
(ξ) =

∫ t

0
LΦ(s)(ξ) ds, ξ ∈ N. (19)

Moreover, the generalized function X(t) :=
∫ t
0 Φ(s)ds, t ∈ [0, T ] is differen-

tiable in F ′θ(N ′) and satisfies the equation

∂

∂t
X(t) = Φ(t). (20)

In the following we need to define integrals of F ′θ(N ′)-valued generalized
functions (Φ(t))t≥0 as ∫ ∞

0
Φ(s) ds.

To this end, it is sufficient that, for each ξ ∈ N , the integral
∫ ∞

0
LΦ(s)(ξ) ds

exists in Gθ∗(N). In particular, the function [0,∞) 3 t 7→ C(t) ∈ [0,∞) in
(18) is in L1([0,∞), dt). In addition, we have

L
(∫ ∞

0
Φ(s) ds

)
(ξ) =

∫ ∞

0
LΦ(s)(ξ) ds. (21)
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As a consequence, the Laplace transform (in t) of F ′θ(N ′)-valued generalized
functions (Φ(t))t≥0 is given by

LΦ(·)(s) =
∫ ∞

0
e−stΦ(t) dt

provided the right hand side exists. In terms of the estimate in (18) this
means that the Laplace transform of the map [0,∞) 3 t 7→ C(t) ∈ [0,∞)
exists.

Proposition 2.6. Let (Φn)n∈N be a sequence of generalized functions
in F ′θ(N ′). Then the following two conditions are equivalent:

1. The sequence (Φn)n∈N converges in F ′θ(N ′) strongly.

2. The sequence (Φ̂n)n∈N of Laplace transform of (Φn)n∈N satisfies the
following two conditions:

(a) There exists k ∈ N and m ∈]0,∞[ such that the sequence (Φ̂n)n∈N

belongs to Fθ∗,m(Nk) and is bounded in this Banach space.

(b) For every point z ∈ N , the sequence of complex numbers
(Φ̂n(z))∞n=0 converges.

2.3. Convolution operators

For ϕ ∈ Fθ(N ′), the translation txϕ of ϕ by x ∈ N ′ is defined by

(txϕ)(y) = ϕ(y − x), y ∈ N ′.

It is easy to check that tx is a continuous linear operator from Fθ(N ′) into
itself for any x ∈ N ′, cf. [9, Proposition 2.1]. By duality we may define the
translation tx on F ′θ(N ′) as follows: For any Φ ∈ F ′θ(N ′) the generalized
function txΦ is defined by

〈〈txΦ, ϕ〉〉 := 〈〈Φ, t−xϕ〉〉, Fθ(N ′).

The convolution Φ ∗ ϕ of a distribution Φ ∈ F ′θ(N ′) and a test function
ϕ ∈ Fθ(N ′) is the function given by

(Φ ∗ ϕ)(x) = 〈〈Φ, t−xϕ〉〉, x ∈ N ′.
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Notice that the dual pairing is given in terms of the convolution, namely

(Φ ∗ ϕ)(0) = 〈〈Φ, ϕ〉〉.

By a convolution operator on the test space Fθ(N ′) we mean a con-
tinuous linear operator C from Fθ(N ′) into itself which commutes with all
translation operators tx, x ∈ N ′, see [8, Definition A.1]. Moreover, the
mapping CΦ defined by

CΦ : Fθ(N ′) −→ Fθ(N ′), ϕ 7→ Φ ∗ ϕ,

is a convolution operator, see [8, Proposition A.2]. On the other hand, all
convolution operators on Fθ(N ′) occur this way, i.e., if C is a convolution
operator on Fθ(N ′), then there exists a unique Φ ∈ F ′θ(N ′) such that C =
CΦ, or equivalently,

C(ϕ) = CΦ(ϕ) = Φ ∗ ϕ, ϕ ∈ Fθ(N ′), (22)

see [8, Corollary A.3].
Let Φ, Ψ ∈ F ′θ(N ′) be given and CΦ and CΨ be the convolution operators

given by Φ and Ψ, respectively, as in equation (22). It is clear that the
composition CΦ ◦CΨ is also a convolution operator on Fθ(N ′). Hence there
exists a unique distribution, denoted by Φ ∗Ψ, in F ′θ(N ′) such that

CΦ ◦ CΨ = CΦ∗Ψ. (23)

The distribution Φ ∗ Ψ in equation (23) is called the convolution of Φ and
Ψ. In particular, for any p ∈ N the p-composition of CΦ is given by

CΦ ◦ . . . ◦ CΦ = CΦ∗p . (24)

Remark 2.7. For any ϕ ∈ Fθ(N ′) and Φ, Ψ ∈ F ′θ(N ′) we have

1. 〈〈Φ ∗Ψ, ϕ〉〉 = 〈〈Φ,Ψ ∗ ϕ〉〉,
2. For any ξ ∈ N we have

CΦ(eξ) = Φ ∗ eξ = (LΦ)(ξ)eξ

and this implies the following property

L(Φ ∗Ψ) = LΦLΨ. (25)
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3. The convolution exponential functional of Φ, denoted by exp∗Φ, is
defined as

L(exp∗Φ) = exp(LΦ)

which is an element in F ′
(eθ∗ )∗(N

′).

4. The convolution product of generalized functions is associative due to
the associativity of the composition of operators.

In Section 3 we also need the convolution of two distributions not nec-
essarily on the same space. This is given in the following lemma which is a
direct consequence of Lemma 2.1.

Lemma 2.8. Let θ, γ be two Young functions and c1, c2 as in Lemma 2.1.
Let Φ ∈ F ′θ(N ′) and Ψ ∈ F ′γ(N ′) be given. Then we have

1. If 0 < c1 ≤ c2 < ∞, then Φ ∗Ψ ∈ F ′θ(N ′) = F ′γ(N ′).

2. If c2 = 0, then Φ ∗Ψ ∈ F ′θ(N ′).

3. If c1 = ∞, then Φ ∗Ψ ∈ F ′γ(N ′).

As an example of convolution operator we give the Gross Laplacian. For
ϕ ∈ Fθ(N ′) of the form

ϕ(x) =
∞∑

n=0

〈x⊗n, ϕ(n)〉, (26)

we define the Gross Laplacian ∆G of ϕ at x ∈ N ′ by

(∆Gϕ)(x) :=
∞∑

n=0

(n + 2)(n + 1)〈x⊗n, 〈τ, ϕ(n+2)〉〉,

where the contraction 〈τ, ϕ(n+2)〉 is defined by

〈x⊗n, 〈τ, ϕ(n+2)〉〉 := 〈x⊗n⊗̂τ, ϕ(n+2)〉
and τ is the trace operator given by

〈τ, ξ ⊗ η〉 := 〈ξ, η〉, ξ, η ∈ N. (27)

For more information on the Gross Laplacian, see [12], [13]. The Gross
Laplacian ∆G is a convolution operator, namely

∆G(Ψ) = CT (Ψ) = T ∗Ψ, Ψ ∈ F ′θ(N ′), (28)
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where T is the generalized function in F ′θ(N ′) associated with ~T = (0, 0, τ, 0, · · ·) ∈
Gθ(N ′).

Since the powers of the Gross Laplacian are convolution operators, then
(28) allows us to derive their associated distributions. That is the content
of the next lemma.

Lemma 2.9. For every positive integer p ∈ N we have

∆p
G(Φ) = T ∗p ∗ Φ, Φ ∈ F ′θ(N ′). (29)

The generalized function T ∗p associated with ∆p
G is given by

−−→T ∗p = (0, . . . , 0, τ⊗p, 0, . . .), (30)

where τ⊗p is at the 2p position.

P r o o f. Using the definition of the convolution operator (23) and (28)
we obtain equation (29). To obtain the associated power series (30), first
we notice that

LT (ξ) = 〈τ, ξ⊗2〉 = 〈ξ, ξ〉.
Hence LT ∗p(ξ) = 〈ξ, ξ〉p. On the other hand, if (T ∗pn )∞n=0 denotes the formal
power series of T ∗p, then

LT ∗p(ξ) =
∞∑

n=0

〈T ∗pn , ξ⊗n〉 = 〈ξ, ξ〉p

which implies the result by identification.

Lemma 2.10. Let Φ, U(t) ∈ F ′θ(N ′) be given such that the Laplace
transform (in s) of the function

[0,∞) 3 t −→ LU(t) ∈ Gθ∗(N)

exists. Then we have

[L(Φ ∗ U(·))](s) = Φ ∗ [LU(·)](s).

P r o o f. Since the Laplace transform of the function [0,∞) 3 t 7→
LΦLU(t) exists, using (21) we get

L[L(Φ ∗ U(·))](s)(ξ) =
∫ ∞

0
e−stL(Φ ∗ U(t))(ξ) dt
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= LΦ(ξ)
∫ ∞

0
e−stLU(t)(ξ) dt

= LΦ(ξ)L
(∫ ∞

0
e−stU(t) dt

)
(ξ)

= LΦ ∗ [LU(·)](s)(ξ).

The result follows by the topological isomorphism (15) induced by L.

3. Fractional diffusion equation

In this section we study the generalized fractional diffusion equation as-
sociated to Riemann-Liouville and Caputo fractional time derivative. The
solution is given in terms of the convolution product between the fundamen-
tal solution and the initial data. The Laplace transform of the fundamental
solution is expressed in terms of the Mittag-Leffler function which enables
us to represent it as a power series with explicit kernels, cf. Remarks 3.5
and 3.10.

3.1. Riemann-Liouville time fractional diffusion equation

In this subsection we are interested in the following Riemann-Liouville
time fractional diffusion equation{

RLDα
t U(t) = ∆GU(t), t > 0

Dα−1
t U(t)|t=0 = Φ,

(31)

where Φ ∈ F ′θ(N ′) and RLDα
t is the Riemann-Liouville operator defined by

RLDα
t U(t) =

1
Γ(1− α)

d

dt

∫ t

0

U(τ)
(t− τ)α

dτ, 0 < α < 1,

and Dα−1
t U(t)|t=0 is given by

Dα−1
t U(t)|t=0 := lim

t↓0
1

Γ(1− α)

∫ t

0

U(τ)
(t− τ)α

dτ.

Lemma 3.1. For any generalized function Ψ(t) ∈ F ′θ(N ′) we have

L(RLDα
· Ψ(·))(s) = sαL(Ψ(·))(s)−Dα−1

t Ψ(t)|t=0. (32)
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P r o o f. Applying the Laplace transform L to the left side of (32) gives

L[L(RLDα
· Ψ(·))](ξ) = 〈〈L(RLDα

· Ψ(·)), eξ〉〉 = L〈〈(RLDα
· Ψ(·)), eξ〉〉.

The second equality is obtained using (19). Using (20) and again (19) we
obtain

〈〈(RLDα
· Ψ(·)), eξ〉〉 = RLDα

· 〈〈Ψ(·), eξ〉〉 = RLDα
· LΨ(·)(ξ).

The Laplace of the function [0,∞) 3 t 7→ RLDα
t LΨ(t)(ξ) ∈ Gθ∗(N) is given

by
∫ ∞

0
e−st RLDα

t LΨ(t)(ξ) dt = sαL(LΨ(·)(ξ))(s)−Dα−1
t LΨ(t)(ξ)|t=0

which follows from an integration by parts formula, see for example [22].
Finally, a similar argument shows that

L[L(RLDα
· Ψ(·))](ξ) = L[sαLΨ(·)(s)−Dα−1

t Ψ(t)|t=0](ξ).

The result now is a consequence of the fact that the Laplace transform L is
a topological isomorphism between F ′θ(N ′) and Gθ∗(N).

The following theorem gives the existence for the solution of the Riemann-
Liouville time fractional diffusion equation.

Theorem 3.2. Let Φ ∈ F ′θ(N ′), γ(x) = x2/(2−α) and c1, c2 be as in
Lemma 2.8. The solution of the fractional diffusion equation (31) is given
by

U(t) = tα−1Ψα,α,t ∗ Φ, (33)

where Ψα,t is defined in (16). Moreover the solution U(t) belongs to the
space:

1. F ′γ(N ′) if 0 < c1 ≤ c2 < ∞ or c1 = ∞;

2. F ′θ(N ′) if c2 = 0.

P r o o f. Having in mind the representation (28) of the Gross Laplacian
and applying the Laplace transform (in s) in both sides of (31) we get

L(RLDα
· U(·))(s) = sαL(U(·))(s)− Φ = T ∗ LU(·)(s).
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Now applying the Laplace transform (in ξ) yields

sαL[LU(·)(s)](ξ)− LΦ(ξ) = 〈ξ, ξ〉L[LU(·)(s)](ξ)
which gives

L[LU(·)(s)](ξ) =
LΦ(ξ)

sα − 〈ξ, ξ〉 .

For fixed ξ ∈ N we notice that, see for example [7]

L(tα−1Eα,α(〈ξ, ξ〉tα))(s) =
∫ ∞

0
e−sttα−1Eα,α(〈ξ, ξ〉tα) dt

=
1

sα − 〈ξ, ξ〉 , <(s) > |〈ξ, ξ〉|1/α

and therefore,
LU(t)(ξ) = tα−1Eα,α(〈ξ, ξ〉tα)LΦ(ξ).

Finally, using Remark 2.1 (16), the solution U(t) is given by

U(t) = Φ ∗ (tα−1Ψα,α,t).

To conclude the proof, it is sufficient to use Lemma 2.8.

Remark 3.3. We would like to emphasis the stability of the solu-
tion given in the theorem above. For any Young function θ such that
limx→∞ θ(x)/x2/(2−α) is constant (resp. infinity) the solution U(t) does not
leave the space F ′θ(N ′) (resp. leave the space F ′θ(N ′) to the bigger F ′γ(N ′)).

Remark 3.4.

1. The Laplace transform (in ξ) of the fundamental solution U(t) is given
by (notice that δ0 is the neutral element for the convolution)

LU(t)(ξ) = tα−1Eα,α(tα〈ξ, ξ〉). (34)

In a neighborhood of zero the function [0,∞) 3 t 7→ Eα,α(tα〈ξ, ξ〉)
is equivalent to 1

Γ(α) . Therefore L(U(t))(ξ) diverges as t → 0. The
finite dimensional analogous case was studied by many authors, see
for example [6], [14], [16], [21] and references therein.

2. Setting in (34) ξ = 0, then LU(t)(0) = tα−1

Γ(α) and therefore LU(t)
cannot be the Laplace transform of a probability density because its
normalization would depend on t. In particular, equation (31) does
not admit a probabilistic representation.
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Remark 3.5. The fundamental solution of (31) is given by U(t) =
tα−1Ψα,α,t and its formal power series (Un(t))∞n=0 associated to the funda-
mental solution is

Un(t) =

{
U2n(t) = tα(n+1)−1τ⊗n

Γ(α(n+1))

U2n+1(t) = 0.
(35)

This is a direct consequence of Example 2.2.

Now we show that the solution (33) is continuous with respect to the
initial data Φ.

Proposition 3.6. Let (Φj)j∈N be a sequence in F ′θ(N ′). Denote by
Uj(t), t ∈ [0, T ] the corresponding solutions of (31) with initial data Φj . If
(Φj)j∈N converges in F ′θ(N ′) strongly to Φ ∈ F ′θ(N ′), then for each t ∈ [0, T ],
Uj(t) converges strongly to U(t) in F ′θ(N ′), where {U(t), t ∈ [0, T ]} is the
solution of (31) with initial condition Φ . Moreover for each ε > 0 and
ξ ∈ N we have

sup
t∈[ε,T ]

|(LUj(t)− LU(t))(ξ)| −→ 0, j →∞. (36)

P r o o f. First we notice that Uj(t) is given by

Uj(t) = tα−1Ψα,α,t ∗ Φj

and its Laplace transform is

LUj(t)(ξ) = tα−1Eα,α(〈ξ, ξ〉tα)LΦj(ξ).

Using Proposition 2.6 and the hypothesis we derive that for each t ∈ (0, T ],
Uj(t) converges strongly to U(t) in F ′θ(N ′). Finally it is clear that

sup
t∈[ε,T ]

tα−1|Eα,α(〈ξ, ξ〉tα)| ≤ εα−1Eα,α(|〈ξ, ξ〉|Tα) < ∞

and (36) follows.

For any p ∈ N\{0} we consider the Riemann-Liouville time fractional
evolution equation{

RLDα
t U(t) = ∆p

GU(t), t > 0

Dα−1
t U(t)|t=0 = Φ.

(37)

where Φ ∈ F ′θ(N ′). For p = 1 (37) is exactly the same as the equation (31).
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Proposition 3.7. Let Φ ∈ F ′θ(N ′), γp(x) = x2p/(2p−α) and c1, c2 as in
Lemma 2.8.

1. The solution of the time fractional diffusion equation (37) is given by

U(t) = tα−1Ψα,α,p,t ∗ Φ,

where Ψα,α,p,t is defined in (17).

2. Moreover the solution U(t) belongs to the space:

(a) F ′γp
(N ′) if 0 < c1 ≤ c2 < ∞ or c1 = ∞;

(b) F ′θ(N ′) if c2 = 0.

3. The fundamental solution of (37) is given by U(t) = tα−1Ψα,α,p,t.
Moreover, its formal power series (Un(t))∞n=0 associated to the funda-
mental solution is

{
Um(t) = tα(1+m/(2p))−1τ⊗m/2

Γ(α(1+m/(2p)) , m ∈ 2pN

0, otherwise.

3.2. Caputo time fractional diffusion equation

In this subsection we are interested in the following Caputo time frac-
tional diffusion equation

{
CDα

t U(t) = ∆GU(t), t > 0

U(0) = Φ,
(38)

where Φ ∈ F ′θ(N ′) and CDα
t is the Caputo time fractional derivative defined

by
CDα

t U(t) =
1

Γ(1− α)
d

dt

∫ t

0

U(τ)− U(0)
(t− τ)α

dτ, 0 < α < 1.

The Caputo derivative is a sort of regularization in the time origin of the
Riemann-Liouville derivative by incorporating the relevant initial condi-
tions, see for example [11] for detailed considerations and its major ap-
plications.

The following lemma is the analogue of Lemma 3.1 for the Caputo
derivative.
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Lemma 3.8. For any generalized function Ψ(t) ∈ F ′θ(N ′) we have

L(CDα
· Ψ(·))(s) = sαL(Ψ(·))(s)− sα−1Φ. (39)

The existence result for the solution of the Caputo time fractional dif-
fusion equation (38) is given as follows.

Theorem 3.9. Let Φ ∈ F ′θ(N ′), γ(x) = x2/(2−α) and c1, c2 be as in
Lemma 2.8. The solution of the fractional diffusion equation (38) is given
by

U(t) = Ψα,1,t ∗ Φ, (40)

where Ψα,1,t is defined in (16). Moreover the solution U(t) belongs to the
space:

1. F ′γ(N ′) if 0 < c1 ≤ c2 < ∞ or c1 = ∞;

2. F ′θ(N ′) if c2 = 0.

P r o o f. The proof follows the same idea as in Theorem 3.2. Applying
the Laplace in s and in ξ, we obtain

sαL[LU(·)(s)](ξ)− sα−1LΦ(ξ) = 〈ξ, ξ〉L[LU(·)(s)](ξ)

which gives

L[LU(·)(s)](ξ) =
sα−1LΦ(ξ)
sα − 〈ξ, ξ〉 .

For fixed ξ ∈ N we notice that, see for example [7]

L(Eα,1(〈ξ, ξ〉tα))(s) =
sα−1

sα − 〈ξ, ξ〉 , <(s) > |〈ξ, ξ〉|1/α

and therefore
LU(t)(ξ) = Eα,1(〈ξ, ξ〉tα)LΦ(ξ).

Finally, using Remark 2.5, (16), the solution U(t) is given by

U(t) = Ψα,1,t ∗ Φ.

To conclude the proof it is sufficient to use Lemma 2.8.
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Remark 3.10. If the initial condition Φ is equal to the Dirac distri-
bution δ0, then the fundamental solution of (38) is given by U(t) = Ψα,1,t.
Moreover, its formal power series (Un(t))∞n=0 associated to the fundamental
solution is

Un(t) =

{
U2n(t) = tαnτ⊗n

Γ(αn+1)

U2n+1(t) = 0.

Remark 3.11. The fundamental solution Ψα,1,t admits a probabilistic
representation. More precisely, we first notice that

L(Eα,1(〈ξ, ξ〉tα))(s) =
sα−1

sα − 〈ξ, ξ〉
= sα−1

∫ ∞

0
e−(sα−|ξ|2)r dr

=
∫ ∞

0
sα−1e−sαre|ξ|

2r dr. (41)

Let gα(t) be de density of a α-stable random variable, cf. [5], i.e.,

(Lgα)(s) := e−sα
, s ∈ [0,∞).

It is easy to see that

e−sαr =
∫ ∞

0
e−stgα(r−1/αt)r−1/α dt.

Moreover,

sα−1e−sαr = − 1
αr

d

ds

(
e−sαr

)

= − 1
αr

d

ds

(∫ ∞

0
e−stgα(r−1/αt)r−1/α dt

)

=
1

αr1+1/α

∫ ∞

0
te−stgα(r−1/αt) dt.

Hence (41) may be written as (using Fubini’s theorem)

L(Eα,1(〈ξ, ξ〉tα))(s)=
∫ ∞

0

(
1

αr1+1/α

∫ ∞

0
te−stgα(r−1/αt) dt

)
e|ξ|

2r dr

=
1
α

∫ ∞

0
e−st

∫ ∞

0

t

r1+1/α
gα(r−1/αt)e|ξ|

2r dr dt

1
α

L

(∫ ∞

0

t

r1+1/α
gα(r−1/αt)e|ξ|

2r dr

)
(s).
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Therefore we have

Eα,1(〈ξ, ξ〉tα) =
1
α

∫ ∞

0

t

r1+1/α
gα(r−1/αt)e|ξ|

2r dr

=
∫ ∞

0
gα(u)e|ξ|

2(u/t)α
du.

=
∫ ∞

0
gα(u)(Le∗(u/t)αT )(ξ) du

= L
(∫ ∞

0
gα(u)e∗(u/t)αT du

)
(ξ).

Finally, the fundamental solution is given as

Ψα,1,t =
∫ ∞

0
gα(u)e∗(u/t)αT du

which is related to the inverse stable subordinators. The finite dimensional
case is well studied, see for example [1], [19], and references therein. A
rigorous construction of this probabilistic representation in our framework
will be the subject of a forecoming paper.

Finally we show the continuity of the solution with respect to the initial
data.

Proposition 3.12. Let (Φj)j∈N, Φ be given in F ′θ(N ′). Denote by
Uj(t) (resp. U(t)), t ∈ [0, T ] the corresponding solutions of (38) with initial
data Φj (resp. Φ). If (Φj)j∈N converges in F ′θ(N ′) strongly to Φ ∈ F ′θ(N ′),
then for each t ∈ [0, T ], Uj(t) converges strongly to U(t) in F ′θ(N ′). More-
over for each ξ ∈ N we have

sup
t∈[0,T ]

|(LUj(t)− LU(t))(ξ)| −→ 0, j →∞. (42)

P r o o f. First we notice that Uj(t) is given by

Uj(t) = Ψα,1,t ∗ Φj

and its Laplace transform is

LUj(t)(ξ) = Eα,1(〈ξ, ξ〉tα)LΦj(ξ).

Using Proposition 2.6 and the hypothesis we derive that for each t ∈ [0, T ],
Uj(t) converges strongly to U(t) in F ′θ(N ′). Finally, it is clear that

sup
t∈[ε,T ]

|Eα,1(〈ξ, ξ〉tα)| ≤ Eα,1(|〈ξ, ξ〉|Tα) < ∞

and (42) follows.
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[7] A. E r d é l y i, W. M a g n u s, et al., Tables of integral transforms,
Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London
(1954).

[8] M. E r r a o u i, H. O u e r d i a n e, and J. L. S i l v a, Heat equation with
generalized Gross Laplacian: Solution and probabilistic representation.
Subm. to: Communications on Stochastic Analysis (2007).

[9] R. G a n n o u n, R. H a c h a i c h i, P. K r e e, et al., Division de
fonctions holomorphes a croissance θ-exponentielle. Technical Report
E 00-01-04, BiBoS, University of Bielefeld (2000).

[10] R. G a n n o u n, R. H a c h a i c h i, et al., Un théoréme de du-
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