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Abstract

This paper aims to study the q-wavelets and the continuous q-wavelet
transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using
the q-Riemann-Liouville and the q-Weyl transforms, we give some relations
between the continuous q-wavelet transform, studied in [3], and the con-
tinuous q-wavelet transform associated with the q-Bessel operator, and we
deduce formulas which give the inverse operators of the q-Riemann-Liouville
and the q-Weyl transforms.
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1. Introduction

In [7], A. Fitouhi and K. Trimèche generalized the theory of continuous
wavelet transforms as presented by T. H. Koornwinder [11] and studied
the generalized wavelets and the generalized continuous wavelet transforms
associated with a class of singular differential operators. This class contains,
in particular, the so called Bessel operator, which was studied extensively
by K. Trimèche in [13].

In [1], F. Bouzeffour studied fractional transforms associated with the
q-Bessel operator and as an application, he gave inversion formulas for the
q-Riemann-Liouville and q-Weyl transforms, introduced in [6].
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In this paper, we try to generalize our results from [3] by studying
wavelets and continuous wavelet transforms associated with the q-Bessel
operator, studied in [6]. The basic tool in this work are some elements of
q-harmonic analysis related to the just mentioned operator. Next, using the
q-Riemann-Liouville and the q-Weyl operators, we will give some relations
between the continuous q-wavelet transform, studied in [3], and the con-
tinuous q-wavelet transform associated with the q-Bessel operator, and we
deduce other formulas which give the inverse operators of the q-Riemann-
Liouville and the q-Weyl transforms. These formulas are better than those
given in [6] and [1] because they are simple and we have a large choice of
q-wavelets associated with the q-Bessel operator, that can be used in these
formulas.

We are not in a position to claim that all our results here are new, but
the methods used are direct and constructive, and have a good resemblance
with the classical ones. Our approach in this paper is very similar to the
classical picture developed in [7] and [13].

The paper is organized as follows: in Section 2, we present some q-
harmonic results associated with the q-Bessel operator. In Section 3, we
define the q-wavelets and the continuous q-wavelet transforms associated
with the q-Bessel operator. In Section 4, we give a characterization of the
image set of the q-wavelet transform associated with the q-Bessel operator.
Section 5 is devoted to give some inversion formulas of the q-Riemann-
Liouville and the q-Weyl transforms. Finally, in Section 6, we give the
inversion formulas for the q-Riemann-Liouville and the q-Weyl transforms
using wavelets.

2. Preliminaries on q-harmonic analysis
related to the q-Bessel operator

Throughout this paper, we fix q ∈]0, 1[ such that Log(1−q)
Logq ∈ Z and

α > −1
2 . We refer to [8] and [9] for the definitions, notations and properties

of the q-shifted factorials, the q-hypergeometric functions, the Jackson’s q-
derivative and the Jackson’s q-integrals. For the definitions and proprieties
of the special functions used here, we refer to the papers ([12], [6], [4], [2],
[1]). The main sets and functional spaces used are:

• Rq = {±qn : n ∈ Z}∪{0}, Rq,+ = {qn : n ∈ Z} and R̃q,+ = Rq,+∪{0}.
• D∗q(Rq) the space of restrictions on Rq of even infinitely q-differentiable
functions on R with compact supports.
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• C∗q,0(Rq) the space of restrictions on Rq of even smooth functions, contin-
ued in 0 and vanishing at ∞.
• S∗q(Rq) the space of restrictions on Rq of infinitely q-differentiable and
even functions satisfying: sup

x∈Rq ;0≤k≤n
| (1+x2)mDk

q f(x) |< +∞, n, m ∈ N.

• For p > 0, Lp
q,α(Rq,+) =

{
f : ‖f‖p,α,q =

(∫ ∞

0
|f(x)|px2α+1dqx

) 1
p

< ∞
}

.

The q-Bessel operator is defined and studied in [6] by

∆α,qf(z) =
(

1
x2α+1

Dq[x2α+1Dqf ]
)(

q−1z
)
.

We recall (see [6]) that for λ ∈ C, the problem{
∆α,qu(x) = −λ2u(x),
u(0) = 1, u′(0) = 0

(1)

has as unique solution the function z 7→ j
(3)
α (λz; q2), where j

(3)
α (.; q2) is the

normalized q-Bessel function.
The generalized q-Bessel translation operator Tα

q,x, x ∈ Rq,+ is defined
(see [6]) on D∗q(Rq) by

Tα
q,x(f)(y) =

∞∑

n=0

qn2

(q2, q2α+2; q2)n

(
x

y

)2n n∑

k=−n

(−1)n−kUk(n)f(qky),

y ∈ Rq,+ and Tα
q,0(f) = f , where

Uk(n) = qk(k−1)+2n(k+α)
k∑

p=0

[
n
p

]

q2

[
n

n + k − p

]

q2

q−2p(n+k+α−p)

is the q-Bessel-Binomial coefficient associated with the q-Bessel operator [6].
It verifies, in particular
∫ ∞

0
Tα

q,x(f)(y)g(y)y2α+1dqy =
∫ ∞

0
f(y)Tα

q,x(g)(y)y2α+1dqy, x ∈ R̃q,+, (2)

and

Tα
q,xj(3)

α (ty; q2) = j(3)
α (tx; q2)j(3)

α (ty; q2), x, y, t ∈ R̃q,+. (3)

The q-Bessel Fourier transform and the q-convolution product are defined
(see [6]) for f, g ∈ D∗q(Rq), by

Fα,q(f)(λ) = cα,q

∫ ∞

0
f(x)j(3)

α (λx; q2)x2α+1dqx, (4)
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f ∗B g(x) = cα,q

∫ ∞

0
Tα

q,xf(y)g(y)y2α+1dqy, (5)

where cα,q =
(1 + q−1)−α

Γq2(α + 1)
.

Using the properties of the generalized q-Bessel translation and the nor-
malized q-Bessel function, one can prove easily the following results.

Theorem 1. For f, g ∈ D∗q(Rq), we have

Fα,q(f ∗B g) = Fα,q(f)Fα,q(g), (6)

Fα,q(Tα
q,xf)(λ) = j(3)

α (λx; q2)Fα,q(f)(λ), x ∈ R̃q,+, λ ∈ Rq,+ (7)

and

Fα,q(∆α,qf)(λ) = − λ2

q2α+1
Fα,q(f)(λ), λ ∈ C. (8)

Theorem 2. For f ∈ L1
q,α(Rq,+), we have

Fα,q(f) ∈ C∗q,0(Rq) and ‖Fα,q(f)‖C∗q,0(Rq) ≤
cα,q

(q; q2)2∞
‖f‖1,α,q. (9)

Theorem 3. Fα,q is an isomorphism of S∗,q(Rq) onto itself and can be
extended continuously to an isomorphism of L2

q,α(Rq,+) onto itself, F−1
α,q =

q4α+2Fα,q and

∀f ∈ L2
q,α(Rq,+), ‖Fα,q(f)‖2,α,q = q2α+1‖f‖2,α,q. (10)

Proposition 1. Let f and g be in L2
q(Rq,+, x2α+1dqx), then:

1) f ∗B g ∈ L2
q,α(Rq,+) iff Fα,q(f)Fα,q(g) ∈ L2

q,α(Rq,+).
2)

q4α+2

∫ ∞

0

| f ∗B g(x) |2 x2α+1dqx =
∫ ∞

0

| Fα,q(f)(x) |2| Fα,q(g)(x) |2 x2α+1dqx,

(11)
where both sides are finite or infinite.

Remark 1. Using Theorem 3, the relation (7) and the fact that
supx∈Rq

|j(3)
α (x; q2)| ≤ 1

(q;q2)2∞
, one can see that, for f ∈ L2

q,α(Rq,+) (resp.

S∗q(Rq)), we have for x ∈ R̃q,+, Tα
q,xf is in L2

q,α(Rq,+) (resp. S∗q(Rq)) and

‖Tα
q,xf‖2,α,q ≤ 1

(q; q2)2∞
‖f‖2,α,q. (12)
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3. q-Wavelet transforms associated with
the q-Bessel operator

Definition 1. A q-wavelet associated with the q-Bessel operator is an
even function g ∈ L2

q,α(Rq,+) satisfying the following admissibility condition:

0 < Cα,g =
∫ ∞

0
| Fα,q(g)(a) |2 dqa

a
< ∞. (13)

Remarks:

1) For all λ ∈ Rq,+, we have Cα,g =
∫ ∞

0
|Fα,q(g)(aλ)|2 dqa

a
.

2) Let f be a nonzero function in S∗q(Rq) (resp. D∗q(Rq)). Then g =
∆α,qf is a q-wavelet associated with the q-Bessel operator, in S∗q(Rq) (resp.

D∗q(Rq)) and we have Cα,g =
1

q4α+2

∫ ∞

0
a3 | Fα,q(f)(a) |2 dqa.

Example: Consider the functions G(x; q2) = Aαe
− q−(2α+1)

(1+q)2
x2

q2 and

g = ∆α,qG(.; q2), where Aα = cα,q

∫∞
0 x2α+1e−x2

q2 dqx and ex
q2 = 1

(x;q2)∞ .
We have G(.; q2) ∈ S∗q(Rq) and with the use of the relation [6],
Fα,q(G(.; q2))(x) = q4α+2e−x2

q2 , we get 0 <
∫∞
0 |Fα,q(g)|2(a)dqa

a = q4α

(1+q) .
So, g is a q-wavelet associated with the q-Bessel operator.

Proposition 2. Let g 6= 0 be a function in L2
q,α(Rq,+) satisfying:

1) Fα,q(g) is continuous at 0.
2) ∃β > 0 such that Fα,q(g)(x)−Fα,q(g)(0) = O(xβ), as x → 0.
Then, (13) is equivalent to

Fα,q(g)(0) = 0. (14)

P r o o f. • If Fα,q(g)(0) 6= 0, then from the condition 1) there exist
p0 ∈ N and M > 0, such that for all n ≥ p0, | Fα,q(g)(qn) |≥ M. Then,
the q-integral in (13) would be equal to ∞.

• Conversely, we suppose that Fα,q(g)(0) = 0.
As g 6= 0, we deduce from Theorem 3, that the first inequality in (13)

is satisfied.
On the other hand, from the condition 2), there exist n0 ∈ N and ε > 0,

such that for all n ≥ n0, | Fα,q(g)(qn) |≤ εqnβ. Then using the definition of
the q-integral and Theorem 3, we obtain

∫ ∞

0
| Fα,q(g)(a) |2 dqa

a
= (1− q)

∞∑
n=−∞

| Fα,q(g)(qn) |2
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≤ ‖Fα,q(g)‖2
2,α,q

q(2α+2)n0
+

1− q

1− q2β
ε2.

This proves the second inequality of (13).

Remark 2. For g ∈ L1
q,α(Rq,+), the continuity assumption in the pre-

vious proposition holds. Then (14) can be written as
∫∞
0 g(x)x2α+1dqx = 0,

which proves that g changes the sign on Rq,+ and tends to 0 at ∞.

Theorem 4. For a ∈ Rq,+ and g ∈ L2
q,α(Rq,+) (resp. S∗q(Rq)), the

function ga : x 7→ 1
a2α+2 g

(
x
a

)
belongs to L2

q,α(Rq,+) (resp. S∗q(Rq)) and we
have

‖ga‖2,α,q =
1

aα+1
‖g‖2,α,q, (15)

Fα,q(ga)(λ) = Fα,q(g)(aλ), λ ∈ Rq,+. (16)

P r o o f. The change of variable u =
x

a
gives the result.

Theorem 5. Let g be a q-wavelet associated with the q-Bessel operator
in L2

q,α(Rq,+) (resp. S∗q(Rq)). Then for all a ∈ Rq,+ and b ∈ R̃q,+, the
function

g(a,b),α(x) =
√

a Tα
q,b(ga), (17)

is a q-wavelet associated with the q-Bessel operator in L2
q,α(Rq,+) (resp.

S∗q(Rq)) and we have

Cα,g(a,b),α
= a

∫ ∞

0

(
j(3)
α

(
xb

a
; q2

))2

| Fα,q(g)(x) |2 dqx

x
. (18)

P r o o f. As ga is in L2
q,α(Rq,+) (resp. S∗q(Rq)), Remark 1 shows that the

relation (17) defines an element of L2
q,α(Rq,+) (resp. S∗q(Rq)). Furthermore,

from the relations (16) and (7), we have for all λ ∈ Rq,+,

Fα,q(g(a,b),α)(λ) =
√

a j(3)
α (bλ; q2)Fα,q(g)(aλ).

This relation implies (18).
On the other hand, as g 6= 0, we deduce from (18) and Theorem 3 that

Cα,g(a,b),α
6= 0. Moreover, from the relation (13) and the fact that

supx∈Rq
|j(3)

α (x; q2)| ≤ 1
(q;q2)2∞

, we deduce that Cα,g(a,b),α
≤ a

(q; q2)4∞
Cα,g,

which gives the result.
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Proposition 3. Let g be a q-wavelet associated with the q-Bessel
operator in L2

q,α(Rq,+). Then the mapping F : (a, b) 7→ g(a,b),α is continuous

from Rq,+ × R̃q,+ into L2
q,α(Rq,+).

P r o o f. It is clear that F is a mapping from Rq,+×R̃q,+ into L2
q,α(Rq,+)

and it is continuous at all (a, b) ∈ Rq,+ × Rq,+. The properties of the
generalized q-Bessel translation, Theorem 3 and the Lebesgue theorem prove
that F is continuous at all points (a, 0), a ∈ Rq,+.

Definition 2. Let g be a q-wavelet associated with the q-Bessel oper-
ator in L2

q,α(Rq,+). We define the continuous q-wavelet transform associated
with the q-Bessel operator, for f ∈ L2

q,α(Rq,+), by

Ψα
q,g(f)(a, b) = cα,q

∫ ∞

0
f(x)g(a,b),α(x)x2α+1dqx, a ∈ Rq,+, b ∈ R̃q,+. (19)

Remark 3. The relation (19) can also be written in the form

Ψα
q,g(f)(a, b) =

√
af ∗B ga(b) =

√
aq−4α−2Fα,q [Fα,q(f).Fα,q(ga)] (b).

We give some properties of Ψα
q,g in the following proposition.

Proposition 4. Let g be a q-wavelet associated with the q-Bessel op-
erator in L2

q,α(Rq,+) and f ∈ L2
q,α(Rq,+), then, for all a ∈ Rq,+, the function

b 7→ Ψα
q,g(f)(a, b) is continuous on R̃q,+, lim

b→∞
Ψα

q,g(f)(a, b) = 0 and

∀b ∈ R̃q,+, | Ψα
q,g(f)(a, b) |≤ cα,q

(q; q2)2∞aα+1/2
‖f‖2,α,q‖g‖2,α,q. (20)

Additionally, if f and g are in S∗q(Rq), then for all a ∈ Rq,+, the function
b 7→ Ψα

q,g(f)(a, b) is in S∗q(Rq).

P r o o f. The result follows from the properties of the generalized q-
Bessel translation, the properties of the normalized q-Bessel function, the
properties of the q-Bessel convolution product and Theorem 3.

Theorem 6. Let g ∈ L2
q,α(Rq,+) be a q-wavelet associated with the

operator ∆α,q.
i) Plancheral formula for Ψα

q,g: For f ∈ L2
q,α(Rq,+), we have

1
Cα,g

∫ ∞

0

∫ ∞

0
| Ψα

q,g(f)(a, b) |2 b2α+1 dqbdqa

a2
= ‖f‖2

2,α,q. (21)

ii) Parseval formula for Ψα
q,g: For f1, f2 ∈ L2

q,α(Rq,+), we have



334 A. Fitouhi, N. Bettaibi, W. Binous

∫ ∞

0
f1(x)f2(x)x2α+1dqx=

1
Cα,g

∫ ∞

0

∫ ∞

0
Ψα

q,g(f1)(a, b)Ψα
q,g(f2)(a, b)b2α+1 dqadqb

a2
.

(22)

P r o o f. i) By using Fubini’s theorem, Theorem 3, Remark 3 and the
relations (16) and (11), we get the relation (21).

ii) The result is easily deduced from (21).

Theorem 7. Let g be a q-wavelet associated with the q-Bessel operator
in L2

q,α(Rq,+), then for all f ∈ L2
q,α(Rq,+), we have

f(x) =
cα,q

Cα,g

∫ ∞

0

∫ ∞

0
Ψα

q,g(f)(a, b)g(a,b),α(x)b2α+1 dqadqb

a2
, x ∈ Rq,+. (23)

P r o o f. For f ∈ L2
q,α(Rq,+) and x ∈ Rq,+, take in (22) f1 = f and

f2 = δx. The result follows then from the definitions of Ψα
q,g and the q-

Jackson’s integral.

4. Coherent states

Theorem 6 shows that the continuous q-wavelet transform associated
with the q-Bessel operator Ψα

q,g is isometry from the Hilbert space L2
q,α(Rq,+)

into the Hilbert space ÃL2
q(Rq,+ × R̃q,+; b2α+1 dqadqb

a2Cα,g
) (the space of square

integrable functions on Rq,+×R̃q,+ with respect to the measure b2α+1 dqadqb
a2Cα,g

).
For the characterization of the image of Ψα

q,g, we consider the vectors g(a,b),α,
(a, b) ∈ Rq,+×R̃q,+, as a set of coherent states in the Hilbert space L2

q,α(Rq,+)
(see [11]).

Definition 3. A set of coherent states in a Hilbert space H is a subset
{gl}l∈L of H such that:

i) L is a locally compact topological space and the mapping l 7→ gl is
continuous from L into H.

ii) There is a positive Borel measure dl on L such that, for f ∈ H,

‖ f ‖2=
∫

L
| (f, gl) |2 dl,

where (., .) and ‖ . ‖ are respectively the scalar product and the norm of H.
Let now H = L2

q,α(Rq,+), L = Rq,+ × R̃q,+ equipped with the in-
duced topology of R2. Choose a nonzero function g ∈ L2

q,α(Rq,+) and let
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gl = g(a,b),α, l = (a, b) ∈ L be given by the relation (17). Then we have a set
of coherent states. Indeed, i) of Definition 3 is satisfied, because of Propo-

sition 3, and ii) of Definition 3 is satisfied for the measure b2α+1 dqadqb

a2Cα,g
(see

Theorem 6). By adaptation of the approach introduced by T.H. Koorn-
winder in [11], we obtain the following result:

Theorem 8. Let F be in ÃL2
q(Rq,+×R̃q,+; b2α+1 dqadqb

a2Cα,g
). Then F belongs

to ImΨα
q,g if and only if

F (a, b)=
1

Cα,g

∫ ∞

0

∫ ∞

0

F (a′, b′)
(∫ ∞

0

g(a′,b′),α(x)g(a,b),α(x)x2α+1dqx

)
(b′)2α+1 dqa

′dqb
′

(a′)2
.

5. Inversion formulas for the q-Riemann-Liouville
and the q-Weyl operators

In the sequel, we will use the following spaces:

• S∗q,α(Rq) =
{

f ∈ S∗q(Rq) :
∫ ∞

0
f (x)x2k+2α+1dqx = 0, k = 0, 1, ...

}
.

• S0
∗q(Rq) =

{
f ∈ S∗q(Rq) : D2k

q f(0) = 0, k = 0, 1, ...
}

.

The q-Riemann-Liouville transform Rα,q is defined on D∗q(Rq) by (see
[6])

Rα,q (f) (x) =
(1 + q)Γq2 (α + 1)
Γq2

(
1
2

)
Γq2

(
α + 1

2

)
∫ 1

0

(
t2q2; q2

)
∞

(t2q2α+1; q2)∞
f(xt)dqt. (24)

The q-Weyl transform is defined on D∗q(Rq) by (see [6])

Wα,q(f)(x)=
q(1+q−1)−α+ 1

2 Γq2(α+1)
Γ2

q2(α + 1
2)

∫ ∞

qx

(x2/t2q2; q2)∞
(q2α+1x2/t2; q2)∞

f(t)t2αdqt.

(25)
On D∗q(Rq) we have the relations (see [6])

∆α,q ◦Rα,q = Rα,q ◦∆q and Rα,q(f ∗q g) = Rα,q(f) ∗B Rα,q(g),

where ”∗q” is the q-even convolution product associated with the operator
∆q : f 7→ D2

q(f)(q−1.) studied in [5].

The q-Fourier-cosine transform Fq (studied in [5]) and the q-Bessel
transform are linked by the following relation (see [6]):
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Proposition 5. For f ∈ S∗q(Rq), we have

Fα,q(f) = Fq ◦Wα,q(f). (26)

We state the following results, useful in the sequel.

Theorem 9. The q-Fourier-cosine transform Fq is a topological iso-
morphism from S∗q,−1/2(Rq) into S0∗q(Rq).

P r o o f. The result follows from the Plancheral formula of Fq (see [2])
and the fact that D2

q cos(x; q2) = − cos(qx; q2).

Similarly, we have the following result.

Theorem 10. The q-Fourier-Bessel transform Fα,q is a topological iso-
morphism from S∗q,α(Rq) into S0∗q(Rq).

Corollary 1. The q-Weyl transform Wα,q is a topological isomor-
phism from S∗q,α(Rq) into S∗q,−1/2(Rq).

P r o o f. We deduce the result from the relation Fα,q = Fq ◦Wα,q and
Theorems 9 and 10.

Proposition 6. For f in S∗q,−1/2(Rq) (resp. S∗q,α(Rq)) and g in S∗q(Rq)
the function f ∗q g (resp. f ∗B g) belongs to S∗q,−1/2(Rq) (resp. S∗q,α(Rq)).

P r o o f. The result follows from Theorem 9 (resp. Theorem 10) and the
fact that f∗qg=Fq(Fq(f).Fq(g)) (resp. f∗Bg=q−4α−2Fα,q(Fα,q(f).Fα,q(g)).

Proposition 7. The operator Kα,q,1 defined by

Kα,q,1(f) =
Γq2 (1/2)

q3α+3/2(1 + q)(α+1/2)Γq2(α + 1)
F−1

q (|λ|2α+1Fq(f))

is a topological isomorphism from S∗q,−1/2(Rq) onto itself.

P r o o f. The multiplication operator

f 7→ Γq2 (1/2)
q3α+3/2(1 + q)(α+1/2)Γq2(α + 1)

|λ|2α+1 f

is a topological isomorphism from S0∗q(Rq) into itself. The inverse is given

by f 7→ q3α+3/2(1+q)(α+1/2)Γq2 (α+1)

Γq2 (1/2)|λ|2α+1 f. The result follows then from Theorem

9.
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Proposition 8. The operator Kα,q,2 defined by

Kα,q,2(f)(x) =
Γq2 (1/2)

q3α+3/2(1 + q)(α+1/2)Γq2(α + 1)
F−1

α,q(|λ|2α+1Fα,q(f))(x)

is a topological isomorphism from S∗q,α(Rq) onto itself.

P r o o f. From the relation Fα,q = Fq◦Wα,q and the definition of Kα,q,1,
we have for all f ∈ S∗q,α(Rq)

Kα,q,2 = W−1
α,q ◦Kα,q,1 ◦Wα,q. (27)

We deduce the result from Proposition 7 and Corollary 1.

Proposition 9. i) For all f ∈ S∗q,−1/2(Rq) and g ∈ S∗q(Rq), we have

Kα,q,1(f ∗q g) = Kα,q,1(f) ∗q g.

ii) For all f ∈ S∗q,α(Rq) and g ∈ S∗q(Rq), we have

Kα,q,2(f ∗B g) = Kα,q,2(f) ∗B g.

P r o o f. The result follows from the properties of the q-convolution
products and the definitions of Kα,q,1 and Kα,q,2.

Theorem 11. For all f ∈ S∗q,α(Rq), we have the following inversion
formulas for the operator Rα,q

f = Rα,q ◦Kα,q,1 ◦Wα,q(f), (28)

f = Rα,q ◦Wα,q ◦Kα,q,2(f). (29)

P r o o f. Using the properties of the operator Rα,q, studied in [6],
Theorem 3 and Proposition 5, we obtain for x ∈ R̃q,+,

q4α+2f(x) = cα,q

∫ ∞

0
Fα,q(f)(λ)j(3)

α (λx; q2)λ2α+1dqλ

= Rα,q

[
cα,q

∫ ∞

0
Fα,q(f)(λ) cos(λ¦; q2)λ2α+1dqλ

]
(x)

= Rα,q

{
cα,q

c−1/2,q
F−1

q

[
λ2α+1Fq ◦Wα,q(f)

]}
(x)

= q4α+2Rα,q ◦Kα,q,1 ◦Wα,q(f)(x).

We deduce the second from the first relation and the the relation (27).
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Corollary 2. The operator Rα,q is a topological isomorphism from
S∗q,−1/2(Rq) into S∗q,α(Rq).

P r o o f. We deduce the result from Proposition 7, Corollary 1 and
relation (28).

Similarly, we have the following result.

Theorem 12. For all f ∈ S∗q,−1/2(Rq), we have the following inversion
formulas for the operator Wα,q

f = Wα,q ◦Rα,q ◦Kα,q,1(f), (30)

f = Wα,q ◦Kα,q,2 ◦Rα,q(f). (31)

P r o o f. For f ∈ S∗q,−1/2(Rq), Corollary 1 (resp. Corollary 2) implies
that W−1

α,q(f) (resp. Rα,q(f)) belongs to S∗q,α(Rq). Then by writing the
relation (28) (resp. (29)) for W−1

α,q(f) (resp. Rα,q(f)), we obtain the result.

Corollary 3. i) For all f, g ∈ S∗q,α(Rq), we have

Wα,q (f ∗B g) = Wα,q(f) ∗q Wα,q(g). (32)

ii) For all f, g ∈ S∗q,−1/2(Rq) we have

Rα,q (f ∗q g) = Rα,q (f) ∗B W−1
α,q(g). (33)

6. Inversion formulas for the q-Riemann-Liouville
and the q-Weyl operators using wavelets

In this section, we assume that the reader is familiar with the notions
and notations presented in [3]. In particular, we recall the following two
notations:

Ha(f)(x) =
1√
a
f

(x

a

)
and Cg =

∫ ∞

0
|Fq(g)|2(a)

dqa

a
.

We begin by the next useful and easily verified result.

Proposition 10. For all a ∈ Rq,+ and g ∈ L2
q,α(Rq,+), we have

ga =
1

a2α+3/2
Ha(g)=

q−4α−2

√
a

Fα,q◦Ha−1 ◦Fα,q(g) =
1√
a
W−1

α,q◦Ha◦Wα,q(g). (34)
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Proposition 11. Let g be a q-wavelet associated with the q-Bessel
operator in S∗q,α(Rq). Then for all f in S∗q,α(Rq), we have the following
relation

Ψα
q,g(f)(a, .) = W−1

α,q

[
Φq,Wα,q(g) (Wα,q(f)) (a, .)

]
, a ∈ Rq,+. (35)

P r o o f. Let a ∈ Rq,+, from the properties of the continuous q-wavelet
transform (see [3]), and relations (32) and (34), we have

Ψα
q,g(f)(a, .) =

√
af ∗B ga =

√
aW−1

α,q [Wα,q(f) ∗q Wα,q(ga)]

= W−1
α,q

[
Wα,q(f) ∗q Ha ◦Wα,q(g)

]

= W−1
α,q

[
Φq,Wα,q(g) (Wα,q(f)) (a, .)

]
.

Theorem 13. Let g be a q-wavelet associated with the q-Bessel oper-
ator in S∗q,α(Rq). Then:

1) For all f in S∗q,α(Rq), we have for a ∈ Rq,+, b ∈ R̃q,+,

Ψα
q,g(f)(a, b) = Rα,q

[
Φq,Wα,q(g)

(
R−1

α,q(f)
)
(a, .)

]
(b). (36)

2) For all f in S∗q,−1/2(Rq), we have for a ∈ Rq,+, b ∈ R̃q,+,

Φq,Wα,q(g)(f)(a, b) = Wα,q

[
Ψα

q,g

(
W−1

α,q(f)
)
(a, .)

]
(b). (37)

P r o o f. We deduce the result from Corollary 3, the properties of the
continuous q-wavelet transform (see [3]) and the relation (34).

Proposition 12. 1) If g is a q-wavelet in S∗q,−1/2(Rq), then Kα,q,1(g)
is a q-wavelet in S∗q,−1/2(Rq) and we have

Kα,q,1 ◦Ha(g) =
1

a2α+1
Ha ◦Kα,q,1(g), a ∈ Rq,+. (38)

2) If g is a q-wavelet associated with the q-Bessel operator in S∗q,α(Rq),
then Kα,q,2(g) is a q-wavelet in S∗q,α(Rq) and we have

Kα,q,2(ga) =
1

a2α+1
(Kα,q,2(g))a, a ∈ Rq,+. (39)

P r o o f. 1) Let g be a q-wavelet in S∗q,−1/2(Rq). From the definition
of Kα,q,1, we have for λ ∈ Rq,+,
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Fq(Kα,q,1(g))(λ) =
Γq2 (1/2)

q3α+3/2(1 + q)(α+1/2)Γq2(α + 1)
λ2α+1Fq(g)(λ).

Proposition 4 of [3], implies that Kα,q,1(g) is a q-wavelet. On the other
hand, using the fact Fq ◦Ha = Ha−1 ◦Fq, a ∈ Rq,+ and the above equality,
we obtain

Fq(Ha ◦Kα,q,1(g))(λ)

= a2α+1 Γq2 (1/2)
q3α+3/2(1 + q)(α+1/2)Γq2(α + 1)

λ2α+1Fq (Ha(g)) (λ),

which gives the result.
2) The same way of 1) leads to the result.

Theorem 14. Let g be a q-wavelet associated with the q-Bessel oper-
ator in S∗q,α(Rq). Then for a ∈ Rq,+ and b ∈ R̃q,+, we have:

1) For all f in S∗q,α(Rq),

Ψα
q,g(f)(a, b) =

1
a2α+1

Rα,q

[
Φq,Kα,q,1◦Wα,q(g)(Wα,q(f))(a, .)

]
(b). (40)

2) For all f in S∗q,−1/2(Rq),

Φq,Wα,q(g)(f)(a, b) =
1

a2α+1
Wα,q

[
Ψα

q,Kα,q,2(g)(Rα,q(f))(a, .)
]
(b). (41)

P r o o f. 1) Let f be in S∗q,α(Rq), a ∈ Rq,+ and b ∈ R̃q,+. Using
Corollary 3, we obtain

Ψα
q,g(f)(a, b) =

√
af ∗B ga(b) =

√
aRα,q

[
Wα,q(f) ∗q R−1

α,q(ga)
]
(b).

So, Theorem 11, Proposition 12 and the relation (34), achieve the proof.
2) Follows from Corollary 3, Theorem 12 and Propositions 9 and 12.

Theorem 15. Let g be a q-wavelet associated with the q-Bessel oper-
ator in S∗q,α(Rq). Then for all x ∈ Rq,+:

1) For all f in S∗q,−1/2(Rq), we have
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W−1
α,q(f)(x) =

cα,q

Cα,g

∫ ∞

0

×
(∫ ∞

0
Rα,q[Φq,Kα,q,1◦Wα,q(g)(f)(a, .)](b)× g(a,b),α(x)

b2α+1

a2α+3
dqb

)
dqa.

2) For all f in S∗q,α(Rq), we have

R−1
α,q(f)(x) =

c− 1
2 ,q

Cg

∫ ∞

0

(∫ ∞

0

Wα,q

[
Ψα

q,Kα,q,2(g)(f)(a, .)
]
(b)ga,b(x)

dqb

a2α+3

)
dqa.

P r o o f. The result follows from the previous theorem, Theorem 7 and
([3], Theorem 7).
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