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Abstract

This paper aims to study the g-wavelets and the continuous ¢g-wavelet
transforms, associated with the g-Bessel operator for a fixed ¢ €]0, 1]. Using
the g-Riemann-Liouville and the g-Weyl transforms, we give some relations
between the continuous g-wavelet transform, studied in [3], and the con-
tinuous g-wavelet transform associated with the g-Bessel operator, and we
deduce formulas which give the inverse operators of the ¢g-Riemann-Liouville
and the ¢-Weyl transforms.
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1. Introduction

In [7], A. Fitouhi and K. Trimeéche generalized the theory of continuous
wavelet transforms as presented by T. H. Koornwinder [11] and studied
the generalized wavelets and the generalized continuous wavelet transforms
associated with a class of singular differential operators. This class contains,
in particular, the so called Bessel operator, which was studied extensively
by K. Trimeche in [13].

In [1], F. Bouzeffour studied fractional transforms associated with the
g-Bessel operator and as an application, he gave inversion formulas for the
¢-Riemann-Liouville and ¢-Weyl transforms, introduced in [6].
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In this paper, we try to generalize our results from [3] by studying
wavelets and continuous wavelet transforms associated with the ¢-Bessel
operator, studied in [6]. The basic tool in this work are some elements of
g-harmonic analysis related to the just mentioned operator. Next, using the
g-Riemann-Liouville and the ¢-Weyl operators, we will give some relations
between the continuous g-wavelet transform, studied in [3], and the con-
tinuous g-wavelet transform associated with the g-Bessel operator, and we
deduce other formulas which give the inverse operators of the ¢-Riemann-
Liouville and the g-Weyl transforms. These formulas are better than those
given in [6] and [1] because they are simple and we have a large choice of
g-wavelets associated with the g-Bessel operator, that can be used in these
formulas.

We are not in a position to claim that all our results here are new, but
the methods used are direct and constructive, and have a good resemblance
with the classical ones. Our approach in this paper is very similar to the
classical picture developed in [7] and [13].

The paper is organized as follows: in Section 2, we present some ¢-
harmonic results associated with the ¢-Bessel operator. In Section 3, we
define the g-wavelets and the continuous g-wavelet transforms associated
with the ¢-Bessel operator. In Section 4, we give a characterization of the
image set of the g-wavelet transform associated with the g-Bessel operator.
Section 5 is devoted to give some inversion formulas of the g-Riemann-
Liouville and the g-Weyl transforms. Finally, in Section 6, we give the
inversion formulas for the ¢g-Riemann-Liouville and the ¢g-Weyl transforms
using wavelets.

2. Preliminaries on ¢g-harmonic analysis
related to the ¢-Bessel operator

Throughout this paper, we fix ¢ €]0,1[ such that %EQ) € Z and
a > —3%. We refer to [8] and [9] for the definitions, notations and properties
of the g-shifted factorials, the ¢-hypergeometric functions, the Jackson’s ¢-
derivative and the Jackson’s g-integrals. For the definitions and proprieties
of the special functions used here, we refer to the papers ([12], [6], [4], [2],
[1]). The main sets and functional spaces used are:

e R, = {+¢" :n € Z}U{0}, R,y ={¢":neZ} and R,, =R, U{0}.
e D,,(R,) the space of restrictions on R, of even infinitely g-differentiable
functions on R with compact supports.
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o C.q0(R,) the space of restrictions on R, of even smooth functions, contin-
ued in 0 and vanishing at oo.
o S.y(R,) the space of restrictions on R, of infinitely g-differentiable and

even functions satisfying: sup | (1+ x2)mD§f(a:) |< 400, n,m e N.
z€R;0<k<n

1
% »
o For p >0, Lf o (Ry+) = {f A llpong = (/O If(:r)lpfﬂ2“+1dqfv> < OO} :

The g-Bessel operator is defined and studied in [6] by

Agqf(z) = <332i+1DQ[$2aHqu]> (qilz) '

We recall (see [6]) that for A € C, the problem

Ay qu(r) = —Nu(x),
{ w(0) = 1,4/(0) = 0 (1)

has as unique solution the function z — jg’)()\z; q?), where j((f)(.; q?) is the

normalized g-Bessel function.
The generalized g-Bessel translation operator Tp',, = € R, 4 is defined
(see [6]) on Dyg(Ry) by

00 n2 T 2n n
R () S (1) U(n) F g ),

k=—n

k
_ k(k—1)+2n(k+a) n n —2p(n+k+a—p)
Ur(n) =¢q E [p]qQ[n—Hf—pLQq

p=0

is the ¢-Bessel-Binomial coefficient associated with the ¢g-Bessel operator [6].
It verifies, in particular

/0 Te () (W)g()y**dgy = /0 FOTL ) W)y** dgy, ©€ Ry, (2)
and
10,58 (ty ) = 59 (ta: )i (tys ), 2,y.t € Ry s (3)

The g-Bessel Fourier transform and the g-convolution product are defined
(see [6]) for f,g € Dig(Ry), by

Faa(H)N) = Cag /0 F(@)i® (s a2 dya, 4)
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f %5 9(2) = cog /0 TT F)g)y gy, (5)

1+g ')
qu (a+1) '

Using the properties of the generalized ¢-Bessel translation and the nor-
malized ¢-Bessel function, one can prove easily the following results.

where cq 4 =

THEOREM 1. For f,g € Dy(R,), we have

fa,q(f *B g) = ]:a,q(f)fa,q(g)7 (6)
FoaTge YN =i O ¢*) Fag(HN),  weRyp, NeR  (7)

and
)\2
Faq(Bagqf)(A) = —Wfa,q(f)(k), A eC. (8)

THEOREM 2. For f € L}, (Rq,4), we have

Ca,q
—2 |1 fll1,0.q- 9
(q;qg)go” e (9)

THEOREM 3. F, 4 is an isomorphism of S, 4(R,) onto itself and can be
extended continuously to an isomorphism of L2 (R, ) onto itself, F, i =
4a+2f d ’ ’
q g an

V€L (Ret), [ Faqlf)

Foaf) € Cogo(Rg) and || Foq(f)llc.qomy) <

2,0, = QQQHHfHZa,q- (10)

PROPOSITION 1. Let f and g be in LZ(Ry 4, 2°* " d,x), then:
1) fxpge Lg,a(Rqu) iff Foq(f)Faq(g) € Lg,a(Rqu)'
2)

oo

gt / | f e g(a) P a2 dgr = / | Faa (@) P Faglg)(@) |2 22 dya,
(11)

where both sides are finite or infinite.
REMARK 1. Using Theorem 3, the relation (7) and the fact that

SUPgeR, |j&3) (z;¢%)| < m, one can see that, for f € Laa(Rq,Jr) (resp.
Siq(Ry)), we have for = € @Wm T, fisin L2 (Rg ) (resp. Seq(Rg)) and

1
HT;[foZa,q < (q,qg)g HfHQ,a,q- (12)
? o0
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3. ¢-Wavelet transforms associated with
the ¢-Bessel operator

DEFINITION 1. A g-wavelet associated with the g-Bessel operator is an

even function g € LZ (R, ) satisfying the following admissibility condition:
o dqa

0< Cog= [ | Faaloa) P %L < o0, (13)

0

REMARKS: oo d
1) For all A € R, 1, we have (o4 = / \fa,q(g)(a/\)PLa‘
a

0
2) Let f be a nonzero function in S.;(R,) (resp. Diq(R,)). Then g =

Aqqf is a g-wavelet associated with the g-Bessel operator, in S,4(R) (resp.

1 oo
D,q(Ry)) and we have Cy 4 = W/o a® | Faq(f)(a) |? dya.

—(2a+1)
q 2

. . - 7 =
ExAMPLE: Consider the functions G(z;¢%) = Aae o () and

9= ADaqG(:;5¢%), where Aq = cayq [y x2a+16q_2x2dqx and ep, = m
We have G(.; ¢?) € Sq(R,) and with the use of the relation [6],

—r2 d, 4o
Faq(G:a*))(@) = ¢** e, we get 0 < [(% |Fag(9)* ()7 = Ly
So, g is a g-wavelet associated with the g-Bessel operator.

PROPOSITION 2. Let g # 0 be a function in Lg?a(Rq#) satisfying:
1) Fa,4(g) is continuous at 0.

2) 38 > 0 such that F, 4(9)(2) — Faq(g)(0) = O(2P), as z — 0.
Then, (13) is equivalent to

Foq(9)(0) = 0. (14)

Proof elIf F,4(9)(0) # 0, then from the condition 1) there exist
po € N and M > 0, such that for all n > pg, | Faq(9)(¢") |[> M. Then,
the g-integral in (13) would be equal to co.

e Conversely, we suppose that F, 4(¢g)(0) = 0.

As g # 0, we deduce from Theorem 3, that the first inequality in (13)
is satisfied.

On the other hand, from the condition 2), there exist ny € N and € > 0,
such that for all n > ng, | Faq(9)(¢") |< €¢™. Then using the definition of
the g-integral and Theorem 3, we obtain

o0

/Ooo|fa,q<g><a> A ) S | Fago)@)

n=—oo
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Hfoé,q(g)H%,a,q 1— q 62
q(2a+2)n0 1— q2ﬁ ’

This proves the second inequality of (13). n
REMARK 2. For g € L;a(Rq,Jr), the continuity assumption in the pre-

vious proposition holds. Then (14) can be written as [} g(x)2?*Td,z = 0,
which proves that g changes the sign on R, ; and tends to 0 at oo.

THEOREM 4. For a € Ry and g € L2 ,(Ry ) (resp. Suq(Rg)), the
function g, : x — am%g (%) belongs to L2 ,(Ry ) (resp. Siq(Ry)) and we
have

1
I9all2.0.0 =~ 1912000 (15)
Faq(9a)(A) = Faq(g)(ar), AeRy. (16)
P r o o f. The change of variable u = z gives the result. ]
a

THEOREM 5. Let g be a g-wavelet associated with the q-Bessel operator
in L2 ,(Ry ) (resp. Siq(Rg)). Then for all a € Ryy and b € Ry y, the

function

I(ap)a(®) = Va Ty (ga), (17)

is a g-wavelet associated with the g-Bessel operator in Lg7a(Rq7+) (resp.
Siq(Ry)) and we have

<. xb 2 dqx
Cosne=a [ (1 (Z:)) 1 s P 2. 19

Proof. Asg,isin Laa(Rq,Jr) (resp. Siq(Ry)), Remark 1 shows that the
relation (17) defines an element of L2 (R, 1) (resp. S.q(Ry)). Furthermore,
from the relations (16) and (7), we have for all A € Ry 4,

Faa(Gan).a)N) = Va i (0X; ¢*) Faq(g)(al).

This relation implies (18).
On the other hand, as g # 0, we deduce from (18) and Theorem 3 that

C # 0. Moreover, from the relation (13) and the fact that

9(a,b),a

.(3 1 a
SUDPgeRr, |]c(t )(x§q2)| < @ e deduce that Ca»g(a,b),a < (¢ 2% Cag;
I o0

which gives the result. ]
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PROPOSITION 3. Let g be a g-wavelet associated with the g-Bessel
operator in L7 (Rq.+). Then the mapping F : (a,b) — g(44),o i continuous
from Ry 4 X @%Jr into Lg’a(Rq’Jr).

Proof. Itis clear that F' is a mapping from R, 4 X Hiq7+ into Lia (Rg,+)
and it is continuous at all (a,b) € Ry x Ry 4. The properties of the
generalized g-Bessel translation, Theorem 3 and the Lebesgue theorem prove
that I’ is continuous at all points (a,0), a € Ry ;. ]

DEFINITION 2. Let g be a g-wavelet associated with the ¢g-Bessel oper-
ator in L?]’a(Rq#). We define the continuous g-wavelet transform associated
with the g-Bessel operator, for f € L;O[(Rq#), by

\Ilg,g(f)(av b) = Ca,q/o f(x)g(a,b),a(x)xzaJrldqx? ac Rq,—i—v be IfREq;I—- (19)
REMARK 3. The relation (19) can also be written in the form

Vo (F)(ab) = vaf x5 ga(b) = Vag "> Faq [Faq(f)-Faq(Ga)] (b)-
We give some properties of ¥¢ in the following proposition.

PROPOSITION 4. Let g be a g-wavelet associated with the q-Bessel op-
erator in L7 (Rq,4) and f € L2 (Rq 1), then, for all a € Ry, y, the function

b— Vg (f)(a,b) is continuous on ]qu7+, bli)ngo v, (f)(a,b) =0 and

™ « Caz
Vb e Ry, [ WG y(f)(ab)[< <—q||f| 200l9l2.0q-  (20)

¢ ¢?)2 a0 t1/?

I

Additionally, if f and g are in S.4(Ry), then for all a € R, 1, the function
b= Vg (f)(a,b) is in Siq(Ry).

P r o o f. The result follows from the properties of the generalized ¢-
Bessel translation, the properties of the normalized g-Bessel function, the
properties of the g-Bessel convolution product and Theorem 3. ]

THEOREM 6. Let g € Lia(Rq,Jr) be a g-wavelet associated with the
operator A, 4.
i) Plancheral formula for V¢ : For f € L;a(Rq,Jr), we have

1o 1 dobdya
/O /0 |00 (F)(a.b) P o2 Bt e g

Ca,g a

ii) Parseval formula for ¥ : For fi, fo € L2 (R, ), we have
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(T oo __ dyadyb
/Ofl(f'f)fz(x)ﬂ?%‘ﬂdqx: ! /0\Ilgﬂg(fl)(a,b)\I/gg(fQ)(a?b)b?aHqazq‘

Ca,g 0 a
(22)

P r oo f. i) By using Fubini’s theorem, Theorem 3, Remark 3 and the
relations (16) and (11), we get the relation (21).
ii) The result is easily deduced from (21). n

THEOREM 7. Let g be a g-wavelet associated with the g-Bessel operator
in L;a(Rqﬂr), then for all f € Lg?a(Rq#), we have

Ca, a1 dqadqb
= [ (D e a@B T SR e Ry (23)
7g

a

Proof For fe L2, (Ryy) and z € Ry, take in (22) fi = f and
fo = 0,. The result follows then from the definitions of \118‘79 and the ¢-
Jackson’s integral. ]

4. Coherent states

Theorem 6 shows that the continuous g-wavelet transform associated
with the g-Bessel operator U | is isometry from the Hilbert space L;a (Rg+)

into the Hilbert space LE(RH X Rq+,b2°‘+1 dquqi) (the space of square
1 dqadqb)

integrable functions on R, 4 x Rq + with respect to the measure b2+ T

For the characterization of the image of ¥g' /., we consider the vectors g(q p) s

0,97
(a,b) € Ry + XRqu as a set of coherent states in the Hilbert space Lg,a (Rg+)

(see [11]).

DEFINITION 3. A set of coherent states in a Hilbert space H is a subset
{91} 1 of H such that:

i) £ is a locally compact topological space and the mapping | — g is
continuous from £ into H.

ii) There is a positive Borel measure dl on £ such that, for f € H,

| £ 1P= /L (Fogp 12 di

where (.,.) and || . || are respectively the scalar product and the norm of H.

Let now H = Lzya(Rq,Jr), L = Ry4 x ]Eqﬂr equipped with the in-
duced topology of R?. Choose a nonzero function g € Laa(Rq#) and let
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91 = 9(ab),ar | = (a,b) € L be given by the relation (17). Then we have a set
of coherent states. Indeed, i) of Definition 3 is satisfied, because of Propo-
1 dgadgb (see

a?Cla.q
Theorem 6). By adaptation of the approach introduced by T.H. Koorn-
winder in [11], we obtain the following result:

sition 3, and ii) of Definition 3 is satisfied for the measure b?*"

THEOREM 8. Let F be in L2(Ry 4 x Ry 4; b2 1% dq“dq 2). Then F belongs
to ImWy . if and only if

d,a’d b
Cag/ / (a',b') (/ 9 b)a(T )g(a,b),a(x)xzwdqfﬂ) (b')zaﬂﬁ-

5. Inversion formulas for the ¢g-Riemann-Liouville
and the ¢-Weyl operators

F(a,b)=

In the sequel, we will use the following spaces:

° S*q,a( ) {f € S*q / f 2k+2a+1dql’ = 0, ]{3 = 0, 1, } .
o 82 (R,) = {fES*q( )i DZf(0) =0, k:_O,l,...}

The ¢-Riemann-Liouville transform R, 4 is defined on D,,(R;) by (see

[6])
Raq (f) (z) =

(14T (a+1) / CED) o fonae. (@
( "

T ()T (a+3) t2g20+1; ¢2)

The g-Weyl transform is defined on D,,(R,) by (see [6])

_ 1
q(1+q7h) “+2Fq2(04+1)/°° (22/t2¢% ¢*)
2+ 3) (P22 /125 ¢%) oo

Wa,q(f)(z)= FE) % d,t.

(25)
On D,,(R,) we have the relations (see [6])

Aavq o Ravq = ROMZ o Aq and Ra,q(f *q g) = Ra,q(f) *B Ra,q(g)v

”

where ”x,” is the g-even convolution product associated with the operator
Ay f = D2(f)(g".) studied in [5].

The g-Fourier-cosine transform F, (studied in [5]) and the g-Bessel
transform are linked by the following relation (see [6]):
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PROPOSITION 5. For f € §,4(Ry), we have
Foq(f) = Fg o Way(f) (26)

We state the following results, useful in the sequel.

THEOREM 9. The g-Fourier-cosine transform F, is a topological iso-
morphism from S, _1/2(Ry) into 89 (Ry).

P r oo f. The result follows from the Plancheral formula of F; (see [2])
and the fact that D2 cos(z; ¢*) = — cos(qz; ¢*). [

Similarly, we have the following result.

THEOREM 10. The g-Fourier-Bessel transform F, 4 is a topological iso-
morphism from S.q.o(Ry) into 8P, (Ry).

COROLLARY 1. The g-Weyl transform W, , is a topological isomor-
phism from Sy (Ry) into S,q _1/2(Ry).

P r oo f. We deduce the result from the relation ¥, , = F4, 0 W, 4 and
Theorems 9 and 10. [ ]

PROPOSITION 6. For f in S,y _1/2(Ry) (resp. Siga(Ry)) and g in S.q(Ry)
the function f *q g (resp. fxp g) belongs to S,y _1/2(Ry) (resp. Siqa(Ry)).

P roof. The result follows from Theorem 9 (resp. Theorem 10) and the

fact that fx,9=7F,(F4(f).-Fq(g)) (resp. f*Bg:q_4a_2~7:a,q(}-a,q(f)-fa,q(g))-
n

PROPOSITION 7. The operator K, 41 defined by

T (1/2)

K, =
,q,l(f) q3a+3/2(1 + q)(a+1/2)rq2 (Oé + 1)

F AP Fo ()

is a topological isomorphism from S, _1/2(R,) onto itself.

P r o o f. The multiplication operator
£ Tg2 (1/2) A2 £
3ot3/2(1 4 q) @ /2AT 2 (o + 1)
is a topological isomorphism from 89 (R,) into itself. The inverse is given

3a+3/2(1 (a+1/2)T
by f — g F( ;i)/z)l/\lmﬁz(aﬂ)f. The result follows then from Theorem
q

9. [
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PROPOSITION 8. The operator K, 42 defined by

T2 (1/2)

—1 )\ 2a+1 o
1+ q)@H1/2T (o + 1)7:a7q<‘ |7 Fag()) (@)

Kag2(f)(x) = 3o+

is a topological isomorphism from S.q.(R,) onto itself.

P roof. From the relation 7, , = F,0W, 4 and the definition of K, 41,
we have for all f € Sy a(Ry)

Ka7q72 = WOZ; o Ka’q71 o qu. (27)
We deduce the result from Proposition 7 and Corollary 1. ]

PROPOSITION 9. i) For all f € S,y _1/2(Ry) and g € Sy¢(R,), we have
Ka»q71(f *q g) = Ka’qvl(f) *q g'
ii) For all f € S.¢q.0(Ry) and g € Sy4(R,), we have

Ka,qﬂ(f *B g) = Ka,qﬂ(f) *B G-

P r o o f. The result follows from the properties of the g-convolution
products and the definitions of K, 41 and K, 42. [ ]

THEOREM 11. For all f € S.qa(Ry), we have the following inversion
formulas for the operator R, 4

f = Rayq o Kayq’l 0 Wa»q(f)’ (28)
f=RaqgoWaq0Kag2(f) (29)

P r o o f. Using the properties of the operator R4, studied in [6],
Theorem 3 and Proposition 5, we obtain for x € R, 4,

(2(2) = g /0 " (DO (s )02
Rus [ca,q / " Fud OV cos( qQ)W“qu] ()
0

= Ra,q {0(347(]}.(1_1 [)\2a+1fq o Wa,q(f)] } (l‘)

_ q4a+2Ra,q o Ka,q,l o Wa,q(f)(x)'

We deduce the second from the first relation and the the relation (27). =
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COROLLARY 2. The operator R, is a topological isomorphism from
Siq—-1/2(Rg) into Suga(Ry).

P r o o f. We deduce the result from Proposition 7, Corollary 1 and
relation (28). [

Similarly, we have the following result.

THEOREM 12. Forall f € S,y _1/2(Ry), we have the following inversion
formulas for the operator Wy 4

f = Wa7q 0 Ravq 0 Ka7q71(f)7 (30)
f = Wa7q 0 Ka7q72 ° Ra»q(f)' (31)

Proof For f €S, _1/2(Ry), Corollary 1 (resp. Corollary 2) implies
that Wa_;(f) (resp. Raq(f)) belongs to Siga(Ry). Then by writing the
relation (28) (resp. (29)) for W, 2(f) (resp. Raq(f)), we obtain the result.

COROLLARY 3. i) For all f,g € Siqa(Ry), we have

Waq (f*Bg) = Wa,q(f) *q Wa,q(g)- (32)

ii) For all f,g € S,q_1/2(R;) we have

Ra,q (f *q 9) = Ra,q (f) *B Wo:; (9) (33)

6. Inversion formulas for the ¢g-Riemann-Liouville
and the ¢-Weyl operators using wavelets

In this section, we assume that the reader is familiar with the notions
and notations presented in [3]. In particular, we recall the following two
notations:

dqa

(g) and cg:/ooo Fy(g)|2(a) 222

a

_ L
Va

We begin by the next useful and easily verified result.

Ha(f)(x)

PROPOSITION 10. For alla € Ry and g € L?La(Rq&), we have

1 q—4a—2 1 )
ga:WHa(g):Tfa,qua—lo}—a,q(g) = ﬁWa,quaOWa,q(g)' (34)
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PROPOSITION 11. Let g be a g-wavelet associated with the g-Bessel
operator in S,qo(Ry). Then for all f in S.q(Ry), we have the following
relation

e (F)a,) =Wak [®gwno(e) Waqlf)) (a,.)], a€Ry. (35)

Proof. Letae€ Ry, from the properties of the continuous g-wavelet
transform (see [3]), and relations (32) and (34), we have

\I/g,g(f)(aﬂ ) = \/af *B Ja = ﬁWo:é [Wa,q(f) *q Wa,q(%)]
= WO:; [Wa,q(f) *q Hy 0 Wa,q(g)}
= W [20Wayte) Waa(£) (a;)]

THEOREM 13. Let g be a g-wavelet associated with the q-Bessel oper-
ator in Syq.o(Ry). Then:
1) For all f in Siq0(Ry), we have for a € R, 1, be Ry,

W3 (1)(0:8) = Raq [Pqw, o(0) (Bag(f)) (a,)] (B). (36)
2) For all f in 8,4 _1/2(Ry), we have fora € Ry 4, b€ Hﬂéqﬁr,
(I)q,Wa,q(g)(f)(aa b) = Wa,q [\Pg,g (Wa_,;(f)) (a> )] (b) (37)

P r o o f. We deduce the result from Corollary 3, the properties of the
continuous g-wavelet transform (see [3]) and the relation (34). [

PROPOSITION 12. 1) If g is a g-wavelet in S, _1/2(R,), then Ko 41(g)
is a g-wavelet in S, _1/2(Ry) and we have

1

Kag10Ha(g) = prres)

Ha o Ka7Q71(g)7 a e RQH" (38)
2) If g is a g-wavelet associated with the g-Bessel operator in Syq.o(Ry),
then K, 42(g) is a g-wavelet in Syq.o(Ry) and we have
1
Kaaq72(ga) = W(Kavq72(g))a’ a 6 RQ7+' (39)

Proof 1) Let g be a g-wavelet in S, _1/2(R;). From the definition
of Kq 4,1, we have for A € R 1,



340 A. Fitouhi, N. Bettaibi, W. Binous

L2 (1/2)
(1+ q)(aH/Z)qu (a+1)

Fq(Kag1(9))(A) = T AT F (9)(N).

Proposition 4 of [3], implies that K, 41(g) is a g-wavelet. On the other
hand, using the fact 7,0 H, = H,-10F,, a € R, and the above equality,
we obtain

Fq(Ha o Kag1(9))(N)

2041 [ (1/2)
q3a+3/2(1 —|—q)(a+1/2)rq2(a—|— 1)

=a

NOTLF (Ha(g)) (V),

which gives the result.

2) The same way of 1) leads to the result. [

THEOREM 14. Let g be a g-wavelet associated with the g-Bessel oper-
ator in Syq.o(Ry). Then for a € R, and b € Ry, we have:

1) For all f in Suqa(Ry),

W3 (1)) = ey R [Pyt Waa (D)@ )] () (40)

2) For all f in S, _1/2(Ry),
1
q)Q,Wa,q(g) (f)(aa b) = WWO"(] [\pgvKa,qﬂ(g) (Ra’q(f))(a7 ):| (b) (41)

Proof 1) Let f bein Sia(Ry), a € Ry4 and b € I@qﬂr. Using
Corollary 3, we obtain
Voo ()a,b) = Vaf x5 Ga(b) = VaRag [Waa(f) *q Rog(@a)] ().
So, Theorem 11, Proposition 12 and the relation (34), achieve the proof.
2) Follows from Corollary 3, Theorem 12 and Propositions 9 and 12. =

THEOREM 15. Let g be a g-wavelet associated with the q-Bessel oper-
ator in Syq.o(Ry). Then for all z € Ry 4

1) For all f in S,y _1/2(Ry), we have
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[e.e]

w1l _ Caq
(=g |

[e¢) 2a+1
X </0 Roq[®y ko g 10Wa o(g) ()@, )](b) X g(a,b),a<x)aga+3dqb) dqa.

2) For all f in Syqa(Ry), we have

RN = A (W [, (900)] Oeslo) 5255 ) o

P roof The result follows from the previous theorem, Theorem 7 and
([3], Theorem 7). [
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