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Abstract

The popular elastic law of Fung that describes the non-linear stress-
strain behavior of soft biological tissues is extended into a viscoelastic ma-
terial model that incorporates fractional derivatives in the sense of Ca-
puto. This one-dimensional material model is then transformed into a
three-dimensional constitutive model that is suitable for general analysis.
The model is derived in a configuration that differs from the current, or
spatial, configuration by a rigid-body rotation; it being the polar config-
uration. Mappings for the fractional-order operators of integration and
differentiation between the polar and spatial configurations are presented
as a theorem. These mappings are used in the construction of the proposed
viscoelastic model.
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1. Definitions

Liouville [37, §5, Eq. A] and Riemann1 defined fractional-order integra-
tion as an analytic continuation of Cauchy’s n-fold integral by replacing its
factorial with the Gamma function, noting the identity Γ(n) = (n − 1)!,
n ∈ IN , thereby introducing

Jαy(x) =
1

Γ(α)

∫ x

0

(
x− x′

)α−1 y(x′) dx′, (1)

where α, x ∈ IR+, with Jα being called the Riemann-Liouville integral op-
erator of order α, which obeys J0y(x) = y(x).

From this single definition for fractional integration, one can construct
several definitions for fractional differentiation (cf., e.g., with Podlubny [41]
and Samko et al. [44]). The special operator Dα

? chosen for use herein
requires the dependent variables, e.g., y and z below, to be continuous and
dαe-times differentiable in the independent variable x, and is defined by

Dα
? y(x) = Jdαe−αDdαey(x), (2)

with properties
Dα

? Jαy(x) = y(x), (3)

JαDα
? y(x) = y(x)−

bαc∑

n=0

xn

n!
Dny(0+), (4)

Dα
? (ay + bz)(x) = aDα

? y(x) + bDα
? z(x), (5)

and
Dα

? c = 0 for any constant c, (6)

wherein a, b, c ∈ IR; α ∈ IR+; and where Dn, n ∈ IN , denotes the classic
differential operator. Whether or not we have the relation

Dα
? Dβ

? y(x) = Dβ
? Dα

? y(x) = Dα+β
? y(x) (7)

for α, β ∈ IR+ cannot be said directly. The answer to this question depends
on the exact nature of the function y, and on the values of α and β. Given
that x > 0, we also have

lim
α→n−Dα

? y(x) = Dny(x) (8)

1Riemann’s pioneering work in the field of fractional calculus was done during his
student years, but published posthumous—forty-four years after Liouville first published
in the field [43].
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in a pointwise sense, where α → n− means α approaches n from below;
however, this relation does not hold at x = 0 because, from its definition in
Eq. (2), one always has

Dα
? y(0) = 0, (9)

whenever α is not an integer and y has dαe continuous derivatives.
It has become accepted practice to call Dα

? the Caputo2 differential
operator of order α, since Caputo [8] was amongst the first to use this
operator in applications, and to study some of its properties.

Remark 1. The chain rule and the Leibniz product rule, as they
pertain to the Caputo derivative, do not reduce to simple forms like their
classic analogs from integer calculus. For example, for the case where 0 <
α < 1, the Leibniz product rule takes on the form

Dα
? (y × z)(x) =

y(0+)
Γ(1− α)

× z(x)− z(0+)
xα

+ Dα
? (y)(x)× z(x)

+
∞∑

k=1

(
α

k

)
Jk−α(y)(x)×Dk(z)(x), (10)

wherein, unlike the Leibniz product rule for integer-order derivatives, the
binomial coefficients

(
α

k

)
=

α(α− 1)(α− 2) · · · (α− k + 1)
k!

, with
(

α

0

)
= 1, (11)

k ∈ IN , do not become 0 whenever k > α because α 6∈ IN , and as such,
the binomial sum is now of infinite extent. An infinite binomial sum is
also present in the chain rule for Caputo’s derivative. These infinite sums
make the chain rule and the Leibniz product rule impractical for use in most
applications.

2Actually, Liouville [37, §6, Eq. B] introduced this operator in his historic first pa-
per on the topic. Still, nothing in Liouville’s collection of works suggests that he ever
saw any difference between Dα

∗ = Jdαe−αDdαe and Dα = DdαeJdαe−α, with the latter
being his accepted definition (first formula on pg. 10 of [37]) that today is called the
Riemann-Liouville differential operator of order α. Liouville freely interchanged the order
of integration and differentiation, because the class of problems that he was interested in
happened to be a class where such an interchange is legal, and he made only a few terse
remarks about the general requirements on the class of functions for which his fractional
calculus works (Lützen, private communication, 2001).

Rabotnov [42, p. 129] introduced this same differential operator into the Russian vis-
coelastic literature the year before Caputo’s paper was published.
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2. History

In the 1940’s, Scott Blair [45] and Gerasimov [31] independently pro-
posed a material model that is bound between a Hookean solid (α = 0) and a
Newtonian fluid (α = 1). Their FDE (fractional differential equation), now
called the fractional Newton model, can be written as σ(t) = µταDα

? ε(t),
where σ and ε denote stress and strain, respectively, and are considered to
be causal functions of time t. The coefficient η = µτ ∈ IR+ represents a gen-
eralized viscosity (the modulus µ has units of stress, and the characteristic
relaxation time τ has units of time) while exponent α ∈ (0, 1) is a dimen-
sionless material parameter. Experimental results motivated Scott Blair’s
model development. Mathematics, on the other hand, motivated Gerasi-
mov, who was the first to consider an Abel (i.e., power law) kernel for the
relaxation function in Boltzmann’s integral equation for viscoelasticity.

Bagley and Torvik [3] demonstrated that the molecular theory of Rouse
(derived for dilute solutions of non-crosslinked polymer molecules residing in
Newtonian solvents) has a polymer contribution to stress that corresponds
to a fractional Newton element whose order of evolution is a half, i.e., α =
1
2 . They also state (without proof) that the molecular theory of Zimm
(derived for dilute solutions of crosslinked polymer molecules residing in
Newtonian solvents) has a polymer contribution to stress that corresponds
to a fractional Newton element whose order of evolution is two thirds, i.e.,
α = 2

3 . Most synthetic polymers have an α that lies within this range.
Gemant [30] was the first to propose a viscoelastic model of fractional

order. He extended the notion of a Maxwell fluid by replacing its first-order
derivative on stress with the semi-derivative, and in doing so, he proposed
that (1 +

√
η/µD

1/2
? )σ(t) = ηDε(t), where η, µ ∈ IR+ are the material

constants. The FOV (fractional-order viscoelastic) fluid , often referred to as
the fractional Maxwell model, is a spring in series with a fractional Newton
element, and is described by a slightly different FDE

(1 + ταDα
? )σ(t) = ητα−1Dα

? ε(t), σ0+ =
η

τ
ε0+ , (12)

where η ∈ IR+ is the viscosity, τ ∈ IR+ is the characteristic relaxation
time, and exponent α ∈ (0, 1) is the fractional order of evolution, which is
considered to have the same value for both stress and strain. Parameters σ0+

and ε0+ are the initial states of stress and strain at time t = 0+, thereby
allowing for a finite inhomogeneity in the stress-strain response at time
zero—a characteristic that Gemant’s model does not possess. The FOV
fluid was first discussed in the manuscript of Caputo and Mainardi [9] as a
special case to their viscoelastic solid (Eq. 13 below).
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Caputo [8] introduced a fractional Voigt solid σ(t) = E(1+ραDα
? )ε(t) to

model the dynamic response of Earth’s crust when excited by earthquakes,
which is nearly rate-insensitive over large ranges in frequency, wherein E, ρ ∈
IR+ and α ∈ (0, 1) are the material constants. As a mechanical model, this
is a spring in parallel with a fractional Newton element. A more appropriate
representation of solid behavior is the FOV solid , which is a spring in parallel
with a fractional Maxwell element. This material model was introduced by
Caputo and Mainardi [9] and has the form

(1 + ταDα
? )σ(t) = E(1 + ραDα

? )ε(t), σ0+ = E
(ρ

τ

)α
ε0+ , (13)

where E ∈ IR+ is the rubbery modulus, E(ρ/τ)α (> E) is the glassy modu-
lus, τ ∈ IR+ is the characteristic relaxation time, ρ (> τ) is the characteristic
retardation time, and exponent α ∈ (0, 1) is the fractional order of evolution.
This model, unlike Caputo’s original model, allows for a finite discontinuity
in the stress-strain response at time zero.

Bagley and Torvik [4] have demonstrated that the fractional orders of
evolution in stress and strain ought to be the same, as originally proposed in
Eqs. (12) and (13) by Caputo and Mainardi, in order that a material model
of fractional order comply with the second law of thermodynamics; specif-
ically, to assure non-negative dissipations whenever cyclic loading histories
are imposed on a material. Furthermore, Bagley and Calico [2] have also
shown that the differential orders need to be the same for both stress and
strain in order to ensure that wave fronts, like sound, propagate at finite
speed.

Drozdov [20] was the first to construct a FOV constitutive model suit-
able for finite deformation analysis in 3-space. Specifically, he extended two
1D viscoelastic models: the fluid model (1+(η/µ)αDα

? )σ(t) = ηDε(t), which
is a generalization of Gemant’s [30] fractional Maxwell model; and the solid
model σ(t) = µ(1+ραDα

? )ε(t), which is Caputo’s [8] fractional Voigt model.
The authors [24, 26] have extended the 1D FOV fluid and solid models of
Caputo and Mainardi [9], Eqs. (12) and (13), to 3-space. In these three doc-
uments, a fractional-order continuation of the upper-convected derivative of
Oldroyd [40] was employed. In another study, Adolfsson and Enelund [1]
analytically continued the internal state-variable theory for viscoelasticity of
Simo and Hughes [46] to fractional order. In their paper, fractional deriva-
tives were applied to Lagraingian fields. Like Drozdov’s solid constitutive
model, the constitutive model of Adolfsson and Enelund is an extension of
Caputo’s fractional Voigt model for 3-space.
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3. Introduction

3.1. Basic concepts

The authors of this paper are particularly interested in constructing a
viscoelastic model for soft biological tissues. Soft tissues differ from the
solid material models listed above in two important ways. First, the strains
can be large, and second, the stress-strain curves can be highly non-linear.

Finite strains necessitate that one distinguish between Lagrangian (or
engineering) stress s = f/A0 and Eulerian (or true) stress σ = f/A, where
f is the applied force and A is the current cross-sectional area of a loaded
specimen whose initial stress-free area was A0. For incompressible materials,
like soft tissues, A = A0/λ, and therefore σ = λs, where λ = `/`0 is the
stretch within which ` denotes the current gage length whose initial length
was `0. Either set of variables, Lagrangian or Eulerian, can be used in the
construction of a constitutive formula; however, one choice may lead to a
simpler constitutive relationship over the other, as is the case for biological
tissues.

We are guided by Fung’s [28] empirical formula for the elastic response
of tissue; it being the simple, linear, ODE

ds(λ)
dλ

= E + βs(λ), s(1) = 0. (14)

This formula is a relationship between Lagrangian stress s and stretch λ,
not strain, with two material constants: E, β ∈ IR+, where E has units of
stress, and β is dimensionless. When integrated, its solution

s(ε) =
E

β
(eβε − 1), (15)

which obviously is not linear in strain ε, can be expanded as a power series
of the form s(ε) = E

(
ε + 1

2βε2 + 1
6β2ε3 + · · ·) that associates E with the

elastic modulus of infinitesimal strain ε = λ−1, while β controls the strength
of non-linearity in the stress-strain response, which is an exponential growth
in stress with increasing strain.

Equivalently, via the chain rule, Fung’s elastic law, Eq. (14), can be
rewritten as the hypo-elastic equation

Ds(t) = (E + βs(t))Dε(t), (16)
where s(0) = ε(0) = 0 now specifies the initial condition.

Fung’s law was derived from experimental observations, and has become
the defacto standard for modeling the elastic response of soft tissues. There
have been numerous extensions of Fung’s one-dimensional law to three-
dimensional space by others, e.g., [10, 11, 47, 51, 52], each incorporating
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a different function when expressing a scalar representation of ε in terms
of some deformation tensor. Later, in Section 6, we will put forward yet
another scenario for extending Fung’s law to three-dimensional space.

3.2. The FOV tissue model

Soft tissues are viscoelastic, with a peculiarity of being nearly rate in-
sensitive, yet exhibiting significant stress relaxation. The approach taken
herein to construct a suitable viscoelastic model for tissue is very different
from the approach taken by Fung [29]. His viscoelastic model, known as
QLV (quasi-linear viscoelasticity), employs two exponential integrals in its
relaxation function to represent the time-dependent response of tissues. The
viscoelastic characteristics of tissue, as shown by Doehring et al. [19], can
be handled equally well, if not better, by utilizing a Mittag-Leffler function
as the relaxation kernel, which is the relaxation function for the FOV, fluid
and solid, material models, Eqs. (12) and (13), [9]. Or, as we have shown
[25], by utilizing a modified power law for the relaxation function, which
leads to a regularized fractional derivative.

We seek a viscoelastic extension of Fung’s elastic law in the form of an
ODE, and after that, its analytic continuation into a FDE. We begin by
recalling Kelvin’s viscoelastic solid

(1 + τD)σ(t) = E(1 + ρD)ε(t) (17)
as our point of departure, otherwise referred to in the literature as the
standard viscoelastic solid [54] that Caputo and Mainardi [9] continued to
fractional order—see Eq. (13).

We first exchange the quasi-static asymptote in Kelvin’s material model
σ(t) ³ Eε(t)—a Hookean elastic solid—with s(t) ³ E

β (eβε(t) − 1), which is
Fung’s elastic solid, Eq. (15). We then exchange the dynamic asymptote in
Kelvin’s model Dσ(t) ³ E ρ

τ Dε(t) with Ds(t) ³ (E + βs(t)) ρ
τ Dε(t), which

is the hypo-elastic representation of Fung’s elastic solid, Eq. (16). Through
these exchanges, a sense of uniformity is maintained with respect to mate-
rial non-linearity in the stress response over the frequency range spanning
between rubbery and glassy behaviors. Recall that E is the rubbery (or
quasi-static) modulus, and that E ρ

τ is the glassy (or dynamic) modulus in
Kelvin’s model. Accordingly, we arrive at an ODE that one could use to
describe the viscoelastic characteristics of soft tissues

(1 + τD)s(t) =
E

β
(eβε(t) − 1) + ρ(E + βs(t))Dε(t), (18)

which has four material parameters: E, β, ρ, τ ∈ IR+, where E has units of
stress, β is dimensionless, and ρ and τ have units of time with ρ > τ . The
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problem with this model is that it predicts a greater rate sensitivity than
is experimentally observed, because its kinetics are of first order where, in
actuality, there is an increasing body of evidence to suggest that the kinetics
of tissues are of fractional order—see the references cited in our paper [25].

The quasi-static asymptote of Eq. (18) is in good accord with experi-
mental evidence; it is the dynamic component that needs to be adjusted.
Being mindful of the observation of Bagley et al. [2, 4] that the order of
differentiation be the same for both variables, while following the example
of Caputo et al. [8, 9] for the analytic continuation of an ODE to a FDE, we
analytically continue the dynamic asymptote τDs(t) ³ ρ(E+βs(t))Dε(t) of
Eq. (18) to one of fractional order ταDα

? s(t) ³ ρα(E+βs(t))Dα
? ε(t), thereby

resulting in the FDE

(1 + ταDα
? )s(t) =

E

β
(eβε(t) − 1) + ρα(E + βs(t))Dα

? ε(t), (19)

which is our proposed material model for soft biological tissues. It has
five material parameters, namely E,α, β, ρ, τ , all of which must be strictly
greater than zero. The parameter E has units of stress, α and β are dimen-
sionless with 0 < α < 1, and ρ and τ have units of time with ρ > τ .

In what follows, some of the characteristics of Eq. (19) are first explored
by numerical methods. Then, in Section 5, a new set of fractional-order dif-
ferential operators are derived that can be used in viscoelastic constitutive
developments that the authors believe to be more appropriate, in a physical
sense, than those that we and others have used in the past. Finally, in Sec-
tion 6 these new operators are used to extend Eq. (19) into three-dimensional
space, where finite deformations and/or rotations are permitted, with the
overall method of development being quite similar to that which we have
used in the above one-dimensional construction.

4. Numerical examples

Numerical methods are called upon in order to gain solutions to Eq.
(19). Of the numerical methods that exist for solving FDEs, most are
restricted to linear FDEs. Our algorithm [16, 17, 18] was the first numerical
method to be developed that is capable of solving non-linear FDEs. Since
then, other schemes have also been proposed [6, 7, 21]; however, it is not our
intent to review these methods here. Actually, it is also not necessary to use
a general-purpose routine here because we are interested in computing the
dynamic stress response s(t) by solving Eq. (19), where the strain function
ε(t) is assumed to be given. A simple rearrangement of terms reveals that
the fractional differential equation (19) can be rewritten in the form
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Dα
? s(t) = τ−αE

( 1
β

(eβε(t)− 1)+ ραDα
? ε(t)

)
+ τ−α(ραβDα

? ε(t)− 1)s(t) (20)

which, evidently, is a linear differential equation. The second quantity of
interest is the quasi-static stress response, also denoted by s, that is obtained
from Eq. (15) by direct computation using the same strain function ε.

The algorithm of [15] turned out to be a very useful choice to solve the
differential equation. The discretization of the Caputo differential operator
that is underlying this algorithm has also been used to compute the values
of Dα

? ε on the right-hand side of Eq. (20) numerically.
For our numerical simulations, the five material parameters appearing

in (20) have been chosen as:
α = 0.33,
β = 12.4,
E = 1 MPa,
τ = 10µs,
ρ = 10 ms.

(21)

From many investigations by the authors and their colleagues, e.g., [19], it
is known that this value of α is indicative of collagen behavior, which is
a class of materials that we were highly interested in when developing our
model. Our choice of β has been taken from the experimental data of Fung
[28]. The value for the rubbery modulus E was taken so that a quasi-static
stress of about a half an MPa is obtained at a strain of 0.15, which agrees
well with Fung’s original data [28]. The choice of τ was also made in an
attempt to be representative of actual experimental data. Finally, the FOV
solid predicts that the glassy modulus is E(ρ/τ)α, which is about 10 times
larger than the rubbery modulus E in elastin3. With α having the value
stated above, this property is achieved by choosing ρ = 1000τ . With this
background, we have simulated three classical experiments. All of these
experiments were taken to start from a specimen in its virgin state, i.e. the
initial condition for the differential equation (20) was

s(0) = 0. (22)

The first simulation was for a tension test, where

ε(t) = kt, t ∈ [0, Tmax], (23)
3Unpublished data. Elastin is a biological molecule that often coexists with collagen

in tissue structures. We know of no like data for collagen based materials from which to
estimate the ratio between rubbery and glassy moduli.
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Figure 1: Stress vs. strain for tension test.

with a fixed strain rate k. Actually, this test has been run three times,
with k = 0.1 s−1, 0.01 s−1, and 0.001 s−1, respectively. The upper bound
Tmax of the interval of interest was always chosen such that ε(Tmax) = 0.15.
In Fig. 1 we have displayed the results in the form of a plot of stress vs.
strain. We can see very nicely that the quasi-static response exhibits the
smallest stresses, and that the stresses in the dynamic responses increase as
the strain rate increases. This is well in line with experimental observations.

The second simulation was a stress relaxation test where we have taken
the given function in Eq. (20) as

ε(t) =
{

0.1 s−1 · t for t ∈ [0 s, 1.5 s],
0.15 for t ∈ [1.5 s, 1000 s],

(24)

i.e., strain was chosen to grow at a constant rate up to a maximum value,
once again taken to be 0.15, and then held constant for a very long time.
For such an experiment it is common to calculate the normalized dynamic
stress response s(t)/max{s(t′) : 0 ≤ t′ ≤ 1000 s}, with the dynamic stress
s computed from Eq. (20), and to plot it against time. When we do so
we obtain the result shown in Fig. 2 that, as above, compares very nicely
with experimental data, cf., e.g., [19]. The normalized stress rises to its
maximum value of 1 during the (relatively short) loading phase, which ends
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Figure 2: Normalized dynamic stress vs. time for stress relaxation test.

after 1.5 s in a response that mimics the upper curve in Fig. 1, and then a
decrease begins which is very fast at first and then rapidly slows down.

Our last simulation refers to a cyclic test, where now the strain is a
periodic function oscillating between 0 and the maximum value εmax = 0.15.
To be precise, we have chosen

ε(t) =
1
2
εmax

(
1− cos

2π

T
t
)
. (25)

The parameter T , i.e. the length of the period of the oscillations, was taken
as T = 4.7 s in order to arrive at maxt |dε(t)/dt| ≈ 0.1 which coincides with
the corresponding value of the stress relaxation test. In Fig. 3 we again
compare the dynamic response as computed using Eq. (20) with the quasi-
static response of Eq. (15). Both of these functions are plotted against time
for 10 loading cycles. As in the two previous simulations, we once again find
a good agreement between the numerical solution and the response that was
to be expected from the experience gained by experimental observation [19].
Such a testing protocol is often employed in the biomechanics literature be-
fore running the ‘desired’ experiment. It is called preconditioning, with the
desired effect being the damping out of the transient behavior observed in
the dynamics response from cycle to cycle. The number of preconditioning
cycles is usually in the neighborhood of ten, which agrees with our result.

Based on these computations, we strongly believe our model to be a
useful tool for investigating the mechanical behavior of viscoelastic tissues.
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Figure 3: Dynamic and static stress vs. time for cyclic loading test.

We conclude this section by drawing the reader’s attention to a special
case of Eq. (20). Specifically, by using the strain function

ε(t) =
tα

ραβΓ(1 + α)
, (26)

we find that the coefficient of s(t) on the right-hand side of Eq. (20) vanishes
identically. This effectively removes the influence of stress from the response.
The fact that such a situation is possible is interesting in its own right. For
this special case, our FOV tissue model (20) reduces to

Dα
∗ s(t) =

E

βτα
exp(βε(t)) (27)

which is like a fractional Newton model, but with cause and effect being
switched: In the fractional Newton model, stress is a function of strain and
its history whereas here we may solve Eq. (27) for ε(t) to find

ε(t) =
1
β

ln
(

βτα

E
Dα
∗ s(t)

)
(28)

which clearly demonstrates that, in this case, strain can be interpreted as a
function of stress and its history.
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5. Continuum fields and operators

Scalars are typeset in italics, e.g., z. Vectors are typeset in lower-case
bold, e.g., z = ziei. And tensors are typeset in upper-case bold, e.g., Z =
Zijei⊗ ej wherein ⊗ signifies a vector product. Components zi and Zij are
also typeset in italics, and are quantified in a Cartesian basis {e1, e2, e3}.
Exceptions to this notation are minimal, but they do arise, both from the use
of conventional notations, and from the need to introduce multiple variables
of similar nature. Components map from one set of coordinates {e1, e2, e3}
into another set of coordinates {ẽ1, ẽ2, ẽ3} according to the rules z̃i = Qiaza

and Z̃ij = QiaQjbZab, with QikQjk = QkiQkj = δij wherein δij denotes the
Kronecker delta function.

The identity tensor is defined as I = δijei ⊗ ej = ei ⊗ ei. It maps vec-
tors, e.g., y, into themselves, viz., y = I · y, wherein the dot ‘·’ denotes a
contraction over a pair of indices in that yi = δijyj . Repeated component
indices are summed over from 1 to 3 in accordance with the summation
convention of Einstein. We omit the dot in dot notation whenever a tensor
contracts with a vector, e.g., y = Iy, and whenever two tensors are con-
tracted together, e.g., YZ = YikZkjei ⊗ ej . Here contractions are implicit.
However, the dot notation is retained whenever two vectors are contracted
together, e.g., ‖y‖2

2 = y · y = yiyi.
A tensor Y = Yijei⊗ej has a transpose of YT = Yjiei⊗ej and, whenever

it exists, an inverse of Y−1 = Y −1
ij ei ⊗ ej such that Y −1

ij 6= (Yij)−1. The
symmetric operator, sym(Y) = 1

2 (Yij + Yji) ei⊗ej , and the skew-symmetric
operator, skew(Y) = 1

2 (Yij − Yji) ei ⊗ ej , obey Y = sym(Y) + skew(Y).
The trace operator, tr(Y) = Yii, sums the diagonal elements of the tensor,
while det(Y) = 1

3(trY3− 3
2trYtrY2 + 1

2(trY)3) signifies the determinant of
Y.

5.1. Kinematics

Any modern textbook that addresses the mechanics of continua can be
used as a reference book. A particularly good one was written by Holzapfel
[35].

Consider a mass point in a Cartesian coordinate frame (1, 2, 3) with base
vectors {e1, e2, e3} whose original location in some reference configuration
κ0 of a body affiliated with time t = 0, say, is given by the position vector
X = Xiei. Its current location affiliated with time t, specified by a different
configuration κ of the body, is given by the position vector x = xiei that
moves with a velocity of v = viei whose components are vi = ẋi = ∂xi/∂t.
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It is supposed that the motion of this mass point through space can be
described by a continuous one-parameter family of locations x = χ(X, t),
which is considered to be sufficiently differentiable so as to allow a defor-
mation gradient to be defined according to

F = Fijei ⊗ ej , with Fij =
∂χi(X, t)

∂Xj
, (29)

whose inverse F−1 = F−1
ij ei⊗ej exists because J = detF = V/V0 = ρ0/ρ >

0 from the conservation of mass, wherein J is the relative volume change at
a mass point, with V0 and V representing volumes, and ρ0 and ρ denoting
mass densities, each referring to the reference or current states, respectively,
of the mass point. Therefore, the motion map χ can be inverted to read as
X = χ−1(x, t) so that F−1

ij = ∂χ−1
i (x, t)/∂xj .

Because F is represented in any orthogonal spatial triad {e1, e2, e3}
by a positive-definite matrix Fij , a consequence of detF > 0, the polar
decomposition theorem from linear algebra can be applied to it, allowing
one to write

F = VR = RU, (30)
where

V = VT ,U = UT , and R−1 = RT with detR = +1, (31)

wherein R is a proper orthogonal tensor, while V and U are called the
left- and right-stretch tensors, respectively, whose matrix representations
are symmetric positive-definite, and are so named because they reside on
that particular side of the rotation tensor in the polar decomposition of F.

Associated with the deformation gradient are the respective left- and
right-deformation tensors defined by

B = FFT = V2 and C = FTF = U2, (32)
which are also symmetric positive-definite, with components Bij = FikFjk

and Cij = FkiFkj .
Akin to the deformation gradient tensor F is the velocity gradient tensor

L = Lijei ⊗ ej , wherein Lij =
∂vi

∂xj
so that L = ḞF−1, (33)

whose symmetric and skew-symmetric parts,

D = sym(L) and W = skew(L), (34)

are called the stretching and vorticity tensors, respectively, with W quanti-
fying the rotation rate of the principal axes of D. Tensor D is also referred
to in the literature as the rate-of-deformation tensor, and as the strain-rate
tensor.
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5.2. Polar fields

From a modeler’s perspective, by constructing constitutive equations in
what Dienes [13, 14] calls the polar configuration κ̄, a modeler can create
material models in terms of kinematic variables that depend only on stretch
and stretching, not on the rotation or vorticity, thereby mitigating the need
to handle R and W within the model itself. This is a huge advantage when
developing material models that are suitable for finite deformation analysis.
So powerful is this design philosophy that all constitutive models that come
with the Pronto finite-element code are solved in the polar configuration
[23].

Dienes [13, 14] refers to any spatial field, e.g., vector y = yiei or tensor
Y = Yijei ⊗ ej , that is mapped via the rotation tensor R into an alternate
configuration κ̄ (which, like κ, is affiliated with current time t) as a polar
field ; specifically,

ȳ = RTy and Ȳ = RTYR. (35)
It immediately follows that

ē1 = RTe1, ē2 = RTe2, and ē3 = RTe3, (36)
i.e., R maps the polar axes {ē1, ē2, ē3} into the spatial axes {e1, e2, e3};
consequently,

ȳ = yiēi and Ȳ = Yij ēi ⊗ ēj . (37)
Although Dienes’ terminology came later, beginning in [13], the above math-
ematical constructs appeared earlier in [12]. In all of his documents, Dienes
distinguishes polar fields, e.g., ȳ and Ȳ, from their spatial counterparts,
viz., y and Y, with a bar. How the three configurations κ0, κ̄, and κ relate
to one another is depicted in Fig. 4.

5.2.1. Polar rates

In his first document on the topic, Dienes [12] determined that the
material time derivatives of polar fields obey the following mappings

Dȳ = RT ŷ wherein ŷ = Dy −Ωy, (38)
DȲ = RT ŶR wherein Ŷ = DY −ΩY + YΩ, (39)

with Dy = ẏ +∇y · v defining the material derivative of y, which contains
partial derivatives in time ẏ = ∂yi

∂t ei and space ∇y = ∂yi

∂xj
ei⊗ ej , and where

Ω = ṘRT (40)
quantifies the rate of polar rotation at a material point, i.e., it is the rate of
rigid-body rotation. Like W, Ω is skew symmetric; therefore, ΩT = −Ω.
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Figure 4: Mappings between the reference κ0, polar κ̄, and current κ con-
figurations of a body.

The spatial derivatives ŷ and Ŷ are objective rates, with Ŷ being commonly
called the Green-Naghdi rate [32]. Instead, following the naming convention
of Dienes [13, 14], we shall call DȲ the material rate of polar tensor Ȳ,
and Ŷ the polar rate of spatial tensor Y.

Other objective rates that are commonly employed in the standard vis-
coelastic literature include the corotational rate (Y)◦ = DY−WY + YW
of Zaremba [53] (often credited to Jaumann [36]), and the respective lower-
and upper-convected rates (Y)O = DY + LTY + YL and (Y)M = DY −
LY −YLT of Oldroyd [40], which are actually Lie derivatives taken in the
direction of the velocity vector v.

Remark 2. In accordance with Eqs. (30), (35), and (39), Dienes
[12, 13, 14] argues that there is in fact just one physical4 stretch tensor; it
being V, because

V̄ = RTVR ≡ U and DV̄ = RT V̂R ≡ DU, (41)
with V̄ and DV̄ denoting the polar stretch and stretching tensors, respec-
tively, i.e., the right-stretch tensor U is synonymous with the polar stretch
tensor V̄, viz., U = Vij ēi⊗ ēj . Continuing along this same line of reasoning,
Dienes argues that there is just one physical deformation tensor; it being
the deformation tensor B of Finger [22] with

4In Dienes’ papers [12, 13, 14], a ‘physical field’ is any vector or tensor field defined in
the spatial configuration κ that has ‘physical’ meaning, not just mathematical meaning,
e.g., the tensor fields for Cauchy stress and stretching, when contracted together, give the
rate at which work is being done by the straining of atomic bonds.
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B̄ = RTBR ≡ C and DB̄ = RT B̂R ≡ DC, (42)
wherein

B̂ = DB−ΩB + BΩ ≡ 2VDV, (43)
whereby tensors B̄ and DB̄ denote the polar deformation and its rate, and
as such, the right-deformation tensor C of Green [33] is synonymous with
the polar deformation tensor B̄, viz., C = Bij ēi ⊗ ēj .

In light of the above remark, we will hereafter break with traditional
notation and terminology, and adopt the notation and terminology of Di-
enes, as we find it useful in helping keep straight in one’s own mind what
configuration a particular field or equation belongs to.

5.2.2. Polar operators of fractional order

In earlier documents [24, 26], the authors considered operators for both
the Riemann-Liouville fractional integral and the Caputo fractional deriva-
tive of covariant or contravariant body-tensor fields [38] of vector or tensor
kind. These operators were then mapped into their associated Eulerian and
Lagrangian fields, which are defined in spatial frames of reference. The Ca-
puto derivatives of body fields, when mapped into fractional rates in the
Eulerian frame, were found to extend the convected rates of Oldroyd [40]
(stated above) into the fractional domain.

In this document, the operators for Riemann-Liouville integration and
Caputo differentiation are applied to both vector and tensor polar fields,
which are subsequently mapped into their associated spatial fields. The
outcome is a new set of objective spatial operators of fractional order that
are presented in the theorem below.

Proposition 1. Because the polar axes {ē1, ē2, ē3} of configuration κ̄
reside in space, but rigidly rotate with the body, and because physical pro-
cesses ‘experienced’ by a material are independent of rigid-body rotations,
inertial effects withstanding, the polar frame of reference is therefore an ideal
choice to select for the purpose of constructing constitutive relationships.

Definition 1. In accordance with the above proposition, and in ac-
cordance with the definitions for polar fields and polar rates given in Eqs.
(35)–(39), we consider mappings where the Caputo derivative, Eq. (2), and
the Riemann-Liouville integral, Eq. (1), are first applied in the polar frame
κ̄, and then mapped into the spatial frame κ, where such mappings obey
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Dα
∧y(t) = RDα

? ȳ(t) and Dα
∧(Y)(t) = RDα

? (Ȳ)(t)RT , (44)
Jα
∧y(t) = R Jαȳ(t) and Jα

∧ (Y)(t) = RJα(Ȳ)(t)RT . (45)

We call Dα∧ the fractional polar derivative of order α, and we call Jα∧
the fractional polar integral of order α. These are spatial operators
defined in κ that, respectively, associate with Caputo differentiation and
Riemann-Liouville integration taking place in the material frame κ̄.

Definition 2. It turns out that objectivity (in the integrands of Dα∧y,
Dα∧Y, Jα∧y, and Jα∧Y established in Eqs. (47)–(50) below) requires all
spatial fields, e.g., ŷ(t′), evaluated in κt′ = κ(t′) to be pushed forward
through a rotation R(t′, t) into the configuration of integration, viz., κ, so
that

R(t) = R(t′, t)R(t′). (46)
In other words, a material rotation R(t) = R(0, t) from κ0 to κ can be
decomposed into two rotations: the first rotation R(t′) = R(0, t′) goes
from κ0 to κt′ , and the second rotation R(t′, t) goes from κt′ to κ, wherein
0 ≤ t′ ≤ t, while noting that R(t′, t′) = I ∀ t′.

Theorem 1. For present purposes, and only in the case of fractional-
order differentiation, it is sufficient to constrain α so that 0 < α < 1, in
which case5

Dα
∧y(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

R(t′, t)ŷ(t′) dt′, (47)

Dα
∧Y(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

R(t′, t)Ŷ(t′)RT (t′, t) dt′. (48)

Likewise, for fractional-order integration, with no constraint on α other than
α ∈ IR+, one has

Jα
∧y(t) =

1
Γ(α)

∫ t

0
(t− t′)α−1R(t′, t)y(t′) dt′, (49)

Jα
∧Y(t) =

1
Γ(α)

∫ t

0
(t− t′)α−1R(t′, t)Y(t′)RT (t′, t) dt′, (50)

with J0∧y(t) = y(t) and J0∧Y(t) = Y(t) because R(t, t) = I.

5It is a straightforward matter to apply Caputo derivatives in the polar frame κ̄ for
those cases where α > 1. Their mappings into the spatial frame κ will result in derivatives
of the polar rates, i.e., derivatives of the derivatives in Eqs. (38) and (39), appearing in the
integrands of integrals that otherwise look like Eqs. (47) and (48) with their parameters
relating to α being modified according to Eq. (2).
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P r o o f. From the definitions for the Riemann-Liouville fractional-order
integral, Eq. (1), and the Caputo fractional-order derivative, Eq. (2), given
that 0 < α < 1, and in accordance with Proposition 1, it follows that the
Caputo derivative of an arbitrary polar vector field ȳ satisifes

Dα
? ȳ(t) = J1−αDȳ(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

Dȳ(t′) dt′,

which, upon substituting in Eq. (38), becomes

Dα
? ȳ(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

RT (t′)ŷ(t′) dt′.

Using the decomposition for rotations given in Eq. (46) in Definition 2, not-
ing that RT (0, t) depends only on the limits of integration and can therefore
be brought outside the integral, results in the first mapping found in Eq.
(44) of Definition 1, whose associated rate is the first formula in Theorem
1, viz., Eq. (47).

In like manner, also in accordance with Proposition 1, the Riemann-
Liouville fractional-order integral of an arbitrary, polar, vector field ȳ sat-
isfies

Jαȳ(t) =
1

Γ(α)

∫ t

0
(t− t′)α−1ȳ(t′) dt′,

which, upon substituting in Eq. (35), gives

Jαȳ(t) =
1

Γ(α)

∫ t

0
(t− t′)α−1R(t′)y(t′) dt′.

Once again, by using the rotation decompostion of Eq. (46) in Definition
2, one arrives at the first mapping found in Eq. (45) of Definition 1, whose
associated integral appears as the third formula in Theorem 1, viz., Eq.
(49).

Similar proofs apply to the case of an arbitrary polar tensor field Ȳ.

The fractional-order operators listed in Theorem 1 are new to the liter-
ature.

5.3. Kinetics

When addressing the reference configuration κ0, the rate at which work
is being done per unit volume is well known, and given by [35, 39]

dW = tr(SDEG) =
1
2
tr(SDC), (51)

where EG = 1
2(C−I) is the Green strain, and S is the second Piola-Kirchhoff

stress, which relates to Cauchy stress σ via the identity S = JF−1σF−T .
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Given that DC = D(V̄)V̄+V̄D(V̄), because C = V̄2, Eq. (51) becomes

dW =
1
2
tr(SDC)

=
1
2
tr

(
V̄−1RTTRV̄−1(D(V̄)V̄ + V̄D(V̄))

)

=
1
2
tr

(
T̄(V̄−1D(V̄) + D(V̄)V̄−1)

)

= tr(T̄DĒ)
= tr(RT̄RTRD(Ē)RT )
= tr(TÊ), (52)

where the polar stress T̄ and strain-rate DĒ tensors are defined by

T̄ = RTTR and DĒ = sym(D(V̄)V̄−1), (53)

with T = Jσ representing the Kirchhoff stress. Because dW = tr(TD)
[35, 39], it necessarily follows that

Ê ≡ D, and therefore, DĒ = RT ÊR ≡ RTDR. (54)

The spatial stress T and strain-rate Ê tensors are therefore synonyms for
the Kirchhoff stress and stretching tensors, respectively.

The relationship between DĒ and DV̄ present in Eq. (53), allowing for
differences in notation, can be found in the appendix of Hill [34]. He proved
that D(ln V̄) = DĒ+O(EGD(Ē)EG). In other words, the polar strain-rate
tensor DĒ is distinct from the Hencky strain-rate tensor D(ln V̄), but DĒ
approximates Hencky’s rate whenever

∥∥EGD(Ē)EG

∥∥ is sufficiently small.
An integration of the polar strain-rate tensor DĒ defines polar strain,

Ē = sym
∫ t

0
V̄−1(t′)DV̄(t′) dt′ ≡

∫ t

0
RT (t′)D(t′)R(t′) dt′. (55)

The stress-strain pair {T̄, Ē} belonging to the polar configuration κ̄ con-
stitutes a pair of conjugate thermodynamic variables in the sense that
dW = tr(T̄DĒ). The polar strain tensor Ē maps into the spatial con-
figuration κ according to Eqs. (35), (39), and (54), thereby establishing
from Eqs. (46) and (55) that

E = RĒRT =
∫ t

0
R(t′, t)D(t′)RT (t′, t) dt′, (56)

where, to the best of our knowledge, this spatial strain tensor E is distinct
from other strain measures found in the literature. Strain E is conjugate
to the stress T of Kirchhoff in the sense that dW = tr(TÊ). An analytic
expression for Ē(V̄), as suggested by Eqs. (53) and (55), does not exist, at
least that we are aware of.
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6. Constitutive formulæ for isotropic tissues

We follow a similar approach to the one taken to arrive at Eq. (19)
to derive a 3D viscoelastic model suitable for soft-tissue analysis. First, a
hyper-elastic model is constructed for the quasi-static component. Second, a
hypo-elastic model is constructed for the dynamic component, which is then
analytically continued into the fractional domain. Finally, a juxtaposition-
ing of these two components leads to the desired formula. It is beyond the
scope of this paper to discuss issues regarding stability and thermodynamic
admissibility of the proposed constitutive equation, or to present solutions
for various boundary-value problems.

6.1. Hyper-elasticity

Experimental evidence indicates that Lagrangian stress is a function of
stretch in soft biological tissues [28]. Finite-element codes, on the other
hand, typically utilize variational principles that are based on deformation,
not stretch. This leads to a dilemma that cannot be completely circumnav-
igated. Engineering judgment must therefore play a role.

The constitutive relation S = 2∂W/∂C is the most common represen-
tation for a hyper-elastic solid that one will encounter in the literature [39],
wherein the scalar field for the work being done W designates a potential
function. Recalling that S = F−1TF−T , F = RU, V̄ = U, B̄ = C, and
T̄ = RTTR, it then follows that this classic expression for a Green elastic
solid can be rewritten for the polar configuration κ̄ as

T̄ = 2V̄
∂W (B̄)

∂B̄
V̄. (57)

For isotropic soft-tissue modeling6, a commonly used function for the strain-
energy potential is

W =
α

β2
(eβE(IB,IIB) − 1)− ℘(IIIB − 1), (58)

where E(IB, IIB) is any function of the deformation that mimics strain,
wherein IB = trB = trB̄ and IIB = trB−1 = trB̄−1, with α and β being
material parameters, and with ℘ denoting a Lagrange multiplier7 that has

6This constitutive formulation is applicable to isotropic materials. The first author
is preparing another document for publication that will extend this class of constitutive
models to include anisotropic materials, which more accurately reflect biological tissues,
but which lies beyond the scope of the present paper.

7The Lagrange multiplier ℘ is indeterminate. It is a workless constraint of incompress-
ibility, viz., detB = 1, whose value can only be determined once the boundary conditions
become known.
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Authors Strain Functions E(IB, IIB)
Demiray [11] IIB − 3

Snyder [47] (IB − IIB +
√

I 2
B − 3IIB)/IIB

Veronda & Westmann [51] IB − 3
Vito [52] (IB − 3) + γ(IIB − 3)

Table 1: Some early strain functions used in the modeling of soft tissues.

been introduced to force a constraint of incompressibility, viz., det B̄ =
detB = IIIB = 1, which is a reasonable assumption to impose on soft
tissues. Therefore, the constitutive equation governing the elastic response
of soft tissues described by this strain energy function is

T̄ + ℘Ī =
α

β
eβE(E,IB̄− E,IIB̄−1), (59)

wherein E,I = ∂E/∂IB and E,II = ∂E/∂IIB. Tensor B̄−1 arises from the
gradient V̄(∂IIB/∂B̄)V̄, because IIB = 1

2((trB)2 − trB2) = trB−1 = IB−1

whenever IIIB = 1, which is a direct consequence of the Cayley-Hamilton
theorem. When rotated into the spatial configuration κ, Eq. (59) becomes

T + ℘I =
α

β
eβE(E,IB− E,IIB−1), (60)

which is expressed in terms of the Kirchhoff stress T. Some functions that
have been proposed for the strain function E(IB, IIB) are listed in Table 1.

Remark 3. The contribution
√

I 2
B − 3IIB ∈ IR in Snyder’s formula is

a scalar representation of three-dimensional strain that passes through zero
in the reference state IB = IIB = 3 and becomes negative in compression.
This introduces a difficulty in its application in that there is no scheme that
we are aware of that allows one to determine the correct sign to apply to this
square root based on a knowledge of just its two arguments. Consequently,
Snyder’s function is not a practical function to use for general applications
like finite elements.

By requiring that the work potential W be a quadratic function of some
arbitrary strain measure εij , as is the case in classical elasticity theories,
suggests that one consider a strain function of the form

E = εijεji = trε2. (61)
What remains to do then is to select an admissible measure for defining
strain ε, as strain is non-unique in finite deformation analysis. One par-
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ticular strain measure that we like, in that it is a second-order accurate
approximation to Hencky strain, cf. Bazant [5], is

ε =
1
2
(V −V−1) so that E =

1
4
(IB + IIB − 6), (62)

and therefore E,I = E,II = 1
4 . Given this definition, Eqs. (59) and (60)

become

T̄ + ℘Ī =
2µ

β
eβE 1

4
(B̄− B̄−1), (63)

T + ℘I =
2µ

β
eβE 1

4
(B−B−1), (64)

where 1
4(B − B−1) is yet another strain measure (it is the Eulerian repre-

sentation of the strain field used in [27]) and where α = 2µ with µ being
the shear modulus. In the above relationship, strain is a tensor with the
exponential modifying the modulus; whereas, in most soft-tissue models,
strain is a scalar field (an exponential minus one) multiplied by a constant
modulus that in turn operates on a deformation tensor.

6.2. Hypo-elasticity

In Dienes’ first paper [12], where he introduced the idea of polar fields for
use in constitutive development, he proposed the constitutive relationship

T̂ = ψ(T, Ê)
= ψ(RT̄RT ,RD(Ē)RT )
= Rψ(T̄, DĒ)RT , (65)

whose equivalent polar representation is the constitutive formula

DT̄ = ψ(T̄, DĒ). (66)
Equations (65) and (66) produce an elastic response (i.e., no relaxation
effects) whenever the tensor function ψ is linear in the strain rate, either Ê
or DĒ. Equations (35) and (54) allow line one to become line two in Eq.
(65). Invariant theory [48], along with properties of the trace, can be called
upon to go from line two to line three in Eq. (65). While Eqs. (39) and
(55) enable the third line in Eq. (65) to be rewritten as Eq. (66). Such a
material model is said to be hypo-elastic in the sense of Truesdell [50], who
proposed a similar constitutive class, viz., (T)M = ϕ(T,D) with ϕ being
linear in D.

A sub-class of constitutive formulæ belonging to Eq. (66) considers ten-
sor function ψ to be described by the gradient ψ = ∂Ψ(T̄, DĒ)/∂(DĒ),
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which is expressed in terms of an otherwise arbitrary, scalar-valued, poten-
tial function Ψ; hence,

DT̄ =
∂Ψ(T̄, DĒ)

∂DĒ
, (67)

where, for hypo-elasticitity, Ψ must be quadratic in the strain rate DĒ.
Any potential function that is an isotropic function of two symmetric

tensor fields, as is the case in Eq. (67), can be expressed as a function of
at most ten scalar invariants (cf., e.g., Spencer [48, p. 81]); specifically:
tr(T̄), tr(T̄2), tr(T̄3), tr(DĒ), tr((DĒ)2), tr((DĒ)3), tr(T̄DĒ), tr(T̄2DĒ),
tr(T̄(DĒ)2), and tr(T̄2(DĒ)2). Imposing the elastic constraint that Ψ be
quadratic in DĒ, while also assuming that Ψ be at most linear in T̄, in
accordance with Fung’s law Ds(t) = (E + βs(t))Dε(t), allows one to write
down a general potential function for this material class of the form

Ψ =
1
2

(
α1(tr(DĒ))2 + α2tr((DĒ)2)

+α3tr(T̄)(tr(DĒ))2 + α4tr(T̄)tr((DĒ)2)

+2α5tr(T̄DĒ)tr(DĒ) + α6tr(T̄(DĒ)2)
)
, (68)

wherein α1, . . . , α6 are material constants.
Soft tissues are, to a good approximation, incompressible; therefore, the

above potential function can be further simplified to read as

Ψ = µtr((DĒ)2) +
β1

3
tr(T̄)tr((DĒ)2)

+β2tr(T̄(DĒ)2)− ℘(tr(DĒ)− 0), (69)

which produces the constitutive equation

DT̄ + ℘Ī = 2(µ− β1p)DĒ + 2β2sym(T̄DĒ), (70)
where µ, β1, β2 are now the material constants, and where

p = −1
3
trT̄ ≡ −1

3
trT (71)

defines hydrostatic pressure. As before, the Lagrange multiplier ℘ is an
indeterminate constraint of incompressibility, viz., tr(DĒ) = 0. A clear
distinction between the hydrostatic pressure p and the Lagrange multiplier ℘
exists in this construction, which does not occur in other classic constitutive
constructions, cf., e.g., Lodge [38].

Remark 4. By assigning β = β1 = β2, the material model in Eq.
(70) predicts the same stiffening ratios for β and µ as the neo-Hookean
solid does for µ, as they pertain to differences between the experiments of
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pure shear, uniaxial extension, and equi-biaxial extension (viz., 2, 3, and
6 [49]). At present, no consistent data set for tissue exists that suggests
otherwise. So, in what follows, we shall assume that β1 = β2 = β, keeping
in mind that hypo-elasticity permits a flexibility to adjust for hydrostatic
effects that goes beyond that of the classical neo-Hookean solid.

6.3. Viscoelasticity

A straightforward analytic continuation of Eq. (70) to fractional order,
taking into account Remark 4, and being mindful of the observations of
Bagley et al. [2, 4] regarding the fractional order of evolution, leads one
to consider ταDα

? T̄ ³ 2ρα((µ− βp)Dα
? Ē + βsym(T̄Dα

? Ē)) for the dynamic
component of our model. A juxtaposition of this hypo-elastic asymptote for
the dynamic component with the hyper-elastic formula in Eq. (60) for the
quasi-static component, in a manner that is consistent with the formulation
of our 1D model, Eq. (19), leads to the constitutive equation

(1 + ταDα
? )T̄ + ℘Ī =

2µ

β
eβ(IB+IB−1−6)/4 1

4
(B̄− B̄−1)

+2ρα((µ− βp)Dα
? Ē + βsym(T̄Dα

? Ē)), (72)

which is but one possible extension of Eq. (19) to 3-space. Equation (72),
like Eq. (19), has five material constants: α, β, µ, τ, ρ ∈ IR+, where α and
β are dimensionless with 0 < α < 1, µ has units of stress, and τ and ρ
have units of time with ρ > τ . As in Eqs. (59 and 70), ℘ is a Lagrange
multiplier used to enforce a constraint of incompressiblity, viz., det B̄ = 1,
or equivalently, tr(DĒ) = 0. Recall that E = 1

4(IB + IIB − 6) and that
IIB ≡ IB−1 .

From Eqs. (1) and (2), the fractional polar strain-rate is defined by

Dα
? Ē =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

DĒ(t′) dt′, (73)

hence, there is no need to integrate DĒ to get Ē whenever Caputo’s defi-
nition for fractional differentiation is adopted. Said differently, B̄ and DĒ
are the primative kinematic variables of our theory.

The FDE stated in Eq. (72) is written for the polar configuration κ̄.
Although it is not necessary to do so, we suggest that it be solved in this
configuration, with the resulting value for polar stress T̄ then being mapped
into the spatial configuration κ via Eq. (35) to get the Kirchhoff (or Cauchy)
stress T (= Jσ, where J = 1 is a direct consequence of incompressibility).
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Nevertheless, in accordance with Theorem 1, Eq. (72) maps into the
spatial configuration κ as

(1 + ταDα
∧)T + ℘I =

2µ

β
eβ(IB+IB−1−6)/4 1

4
(B−B−1)

+2ρα((µ− βp)Dα
∧E + βsym(TDα

∧E)). (74)

Equations (72) and (74) are equivalent material models. They are just de-
fined in different configurations, while employing alternate, but equivalent,
expressions for fractional rates.

7. Closing remarks

In this paper, Fung’s elastic law has been extended to one that is ap-
propriate for the viscoelastic representation of soft biological tissues, and
whose kinetics are of fractional order. To be able to use this one-dimensional
material model in applications, like a finite element-based simulation of a
mechanical process, this material model had to be generalized for three-
dimensional analysis, allowing for both finite deformations and finite rota-
tions in an objective manner. To accomplish this, a set of fractional-order
operators were derived that align themselves better with the physics of this
problem than the fractional operators that have been used previously in the
literature.
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