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Abstract

We consider ordinary fractional differential equations with Caputo-type
differential operators with smooth right-hand sides. In various places in
the literature one can find the statement that such equations cannot have
smooth solutions. We prove that this is wrong, and we give a full charac-
terization of the situations where smooth solutions exist. The results can
be extended to a class of weakly singular Volterra integral equations.
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1. Introduction

We consider initial value problems for fractional differential equations
of the form

Dey(@) = gz, y(@), ¥ =y, j=01,...,[al-1, (1)
where
Dy(x) = JleI=o DIy ()
denotes the usual Caputo-type differential operator [4]. Here, for m € IV,
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D™ is the classical differential operator of order m, and J? is the Riemann-
Liouville integral operator of order 3 > 0 defined by J° being the identity
operator and

T8 () = 1>/0x(x—t)ﬂ_1z(t)dt

IN(E)
for 6 > 0. Our main interest is to give a description of the smoothness
properties of the solutions of such equations, both at the point x = 0 and
on the interval (0,X) with some suitable X > 0, under certain smooth-
ness assumptions on the given function g, i.e. the right-hand side of the
differential equation (1).

Equations of the form (1) have proven to be an adequate and very useful
way of modeling many phenomena in physics and engineering. We refer to
[5, 9] and the references cited therein for a survey of the many applications.
It has been shown in [5] that the initial value problem (1) is equivalent to

the Volterra equation
)

ye) = 3 B+ Il yO)), 2)
j=0
if the function g is continuous, and indeed it is this fractional integral equa-
tion formulation of the problem that will be the basis of our analysis.

Section 2 will be devoted to a description of global smoothness properties
of the solution such as, e.g., results concerning the differentiability of the
solution on intervals like (0, X] or [0, X|. Moreover we will demonstrate that
the above statement on equivalence can fail if the condition of continuity
for g is relaxed.

In fact, eq. (2) is a special case of the more general weakly singular
Volterra equation ) N

— a—1
) = 1)+ g [ @0 kG o) ar,
and it turns out that most of our methods and results can be carried over
to this generalized problem. We discuss such a generalization in Section 3.

We will restrict ourselves to real-valued solutions for notational conve-
nience, but the ideas can be generalized straightforwardly to equations for
functions y : [0, X] — IR".

The questions of existence, uniqueness and continuation of continuous
solutions are not discussed here. There are a number of accounts on this
topic, for example [1, 2, 3, 5, 6, 7, 10]. Local existence and uniqueness can
be proved assuming restrictions on g which correspond to those found in
standard text books for ordinary differential equations. In particular, we
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know that a unique continuous solution y : [0, X| — IR exists for some X > 0
if, in a suitable domain, g is continuous and fulfils a Lipschitz condition with
respect to the second variable [5]. This is sufficient for our purpose.

2. Global smoothness properties

As indicated above, we shall make use of the fact that the given Caputo-
type initial value problem (1) is equivalent to the weakly singular Volterra
equation (2) if g is continuous. Before we start the main part of our analysis
we want to show the significance of the continuity assumption for g. To this
end, we look at the following special case.

EXAMPLE 2.1. For a € (1,2) consider the initial value problem
1
Diy(z) = ———, y(0) =1, ¥/ (0) = 0. 3
@ =g 0= 1LJ0) 3)

If we ignore the discontinuity of g(z,y) = (y — 1)~! at the initial point
(z0,y0) = (0,1) and apply the standard theory for continuous g, then we
arrive at the integral equation
1 /[ L1
yac:1+/ x—1) ———dt. 4
SRS Yl O W
Equation (4) is solved by the functions

V F(l - Oé/2) xa/Q’ (5)
I'l+a/2)

which is readily verified by substitution. However, both these solutions have

unbounded first derivatives at 0, and hence they do not satisfy the second

initial condition of (3). Thus they cannot be considered solutions of the

original initial value problem (3).

y(z) =1+

Now we come to the main results of this section that deal with the
smoothness of solutions of (1) in the case of a continuous function g. The
inspection of classical results concerning the asymptotic expansion of the
solution of (1) at the origin [8, 11] clearly shows that the solutions will not be
smooth (as functions of the independent variable z only) in general, even if
g is smooth. Therefore the question arises if there are special problems with
smooth solutions. A remark in [8] states that it is not possible for g and y to
be analytic simultaneously. But this cannot be entirely correct, as is seen by
the trivial counterexample g = 0 in which case ¥y is a polynomial and hence
analytic. Another simple counterexample is provided in the introduction of
[11]. A small modification for arbitrary « in our notation is given next.
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ExXAMPLE 2.2. Consider
0 k
Dfy(r) =1-y(x), vy’ =1 9" =0 (k=12 [a]=1). (6)
The solution of this problem is y(z) = 1.

In equation (6), both g and y are entire functions. It is possible to give
a precise account of the situations in which simultaneous analyticity of g
and the solution y can occur, and we do so in our first theorem.

THEOREM 2.1. Counsider the initial value problem (1) with o > 0 and
a ¢ IN. Let the function f be defined with the help of the given initial
values as

[a]-1 y(k)
- 0 k
f(z) = Z T
k=0
(i.e. f is the Taylor polynomial of degree [a] — 1 of y at the point 0).
Assume that g is analytic on [0, X|xG, where G C IR contains the range of
fon[0,X]. Then,y is analytic if and only if g(z, f(x)) = 0 for all x € [0, X].

The condition g(z, f(z)) = 0 is easy to check in practice because it only
involves given functions.

Theorem 2.1 shows that the occurence of an analytic solution to an
equation of the form (1) with analytic right-hand side is a rare event. Nev-
ertheless it can be used as guideline to construct problems with smooth
solutions, for example if one needs test cases for numerical algorithms.

P r oo f. We first note that the analyticity of g implies the existence of
a unique solution on some interval [0, X], with X > 0.

The direction “<” can be seen in the following way. In view of (2), the
condition g(z, f(x)) = 0 implies that a solution (and hence, by uniqueness,
the solution) of the initial value problem is y = f. Since f (and hence also
y) is a polynomial, we have an analytic solution.

For the other direction, we assume gy to be analytic. Then, since ¢ is
analytic at (0, f(0)), the function z : [0, X] — R with z(x) := g(z,y(z)) is
analytic at 0 because of y(0) = f(0). Hence we can represent it in the form

o0
z(x) = Z zpat
k=0

with certain coefficients zj. It follows from (2) that

0o (k) [a]—1 (k) i
. Tk +1 o
> L;Zv b =ylx) - Y yg—'xk =J%(x) =) F(()ZkSL“kJr :
k=[a] k=0 k=0



SMOOTHNESS OF SOLUTIONS OF CAPUTO- ... 155

The left-hand side of (7) clearly is an analytic function at the point 0, so
its right-hand side must be analytic there too. Since we assumed « ¢ IN,
this is true if and only if 2 = 0 for all k, which is equivalent to saying that
0 = z(z) = g(x,y(z)) for all z. Thus the integral equation form (2) of our
initial value problem reduces to

y(z) = f(z) + J%2(x) = f(z),
and hence we have, for all z,

0=g(z,y(x)) = gz, f(2)).

An inspection of the proof of Theorem 2.1 immediately reveals another
important property:

COROLLARY 2.2. Assume the hypotheses of Theorem 2.1. If the given
initial value problem has an analytic solution y then y = f, i.e. y is the
polynomial from the kernel of the Caputo differential operator that fits the
initial conditions.

Another direct consequence of these results is the following statement.
COROLLARY 2.3. Consider the initial value problem (1) with o > 0 and

a ¢ IN. If the solution y of this problem is analytic but not a polynomial
then the function g is not analytic.

If we do not want to require the given function g to be analytic then
we can still prove some useful results about the differentiability properties
of the solution of the initial value problem (1) on the interval where the
solution exists.

THEOREM 2.4. Consider the initial value problem (1) with o > 0 and
g being continuous and satisfying a Lipschitz condition with respect to its
second variable. Then, the solution y satisfies y € C[*1=1]0, X].

P roof. Inview of (2), the function y satisfies the Volterra equation

y(x) = p(x) + I, y()](2)
with p being some polynomial whose precise form is not of interest at the
moment. Now let k € {0,1,2...,[a] — 1} (this implies k& < «) and differ-
entiate this equation k times:
D*y(x) = D"p(x)+D*J*g(-y())](x)
= D"p(a) + D*J* I Fg(-,y())](2)
D*p(z) + I Flg(,y()))(@)



156 K. Diethelm

in view of the semigroup property of fractional integration and the classical
fundamental theorem of calculus. Now recall that y is continuous; thus the
argument of the integral operator J* ¥ is a continuous function. Hence, in
view of the polynomial structure of p and the well known mapping properties
of J*F the function on the right-hand side of the equation is continuous,
and so the function on the left, viz. D*y, must be continuous too. [ ]

THEOREM 2.5. Assume the hypotheses of Theorem 2.4. Moreover let
a>1,a¢ N andge CYG) with G = [y — K,y\” + K] x R. Then
y € C11(0, X]. Furthermore, y € C1*1]0, X] if and only ifg((),y(()o)) =0.

REMARK 2.1. Since the function g and the initial value y(()o) are given,

it is easy to check whether the condition g(0, y(()o)) = 0 is fulfilled or not.

REMARK 2.2. In the case of integer-order differential equations we
know that smoothness of the given function g implies smoothness of the
solution y on the closed interval [0, X]; however in the fractional setting
this holds only under certain additional conditions. The precise behaviour
of the solution at the starting point x = 0 is a very interesting question
in its own right. Some results in this respect are known [8, 11|, but the
investigations done in these papers contain a few small errors and are by no
means complete. We intend to discuss this matter in detail in a forthcoming
paper.

P roof. We introduce the abbreviation z(t) := g(¢,y(t)) and write out
the identity stated in the previous proof for k = [a] — 1:

DIl ly(z) = DI p(a) + g1t ()
_ oplal-iyy e L [T eTal s
DITp(w) + ey [ = 07 a0

We differentiate once again, recall that p is a polynomial of degree [a] — 1
and find
1 d

b d T aal,
MNa—TJal+1) d:c/o (z—1) (B)dt
_ b AT el — w)da
MNa—Jal +1) dw/o ( )
1

= T TTaTD <ma—fcﬂz(o) + /0 ’ w1l (¢ — u)du>

- = po-[a (0) a—[a]+1
Ta—Tal T 1)33 90,y ") +J Z'(x). (8)

DIly(x) = DI*lp(z) +
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Since a > 1 we deduce that [a] > 2, and thus Theorem 2.4 asserts that
y € C'0, X]. An explicit calculation gives that

() = 5ot 0(0) + 5oty (1)

Hence, by our differentiability assumption on g, the function 2’ is continuous,
and so Jo~[e1+12" € C[0, X] too. The fact that [a] > « then finally yields
that the right-hand side of (8), and therefore also the left-hand side of this
equation, i.e. the function Dmy, is always continuous on the half-open
interval (0, X] whereas it is continuous on the closed interval [0, X] if and

only if ¢(0, y(()o)) =0. [

By repeating the arguments used in the proof of Theorem 2.5, it is
possible to generalize this idea and to keep Remarks 2.1 and 2.2 valid:

THEOREM 2.6. Assume the hypotheses of Theorem 2.4. Moreover let
ke IN,a >k a¢ IN and g € C*G). Let z(t) := g(t,y(t)). Then,
y € Cl*1+5=1(0, X]. Furthermore, y € Cl®1*+=10, X] if and only if = has
got a k-fold zero at the origin.

3. Weakly singular Volterra equations

The Volterra integral equation (2) has been a very useful tool in our anal-
ysis so far because of its equivalence with the Caputo initial value problem
(1). By taking into consideration the well known definition of the Riemann-
Liouville integral operator, it is evident that (2) is a special case of the more
general singular Volterra equation

—ximx—aflx
W) = @)+ gy | =07 ko) ar o)

In particular, eq. (2) can be obtained from (9) by choosing f to be a poly-
nomial and k to be independent of the free variable x.

It is a natural generalization of the results developed in Section 2 to
ask the following question with respect to the general equation (9): Under
which conditions will the given functions f and k£ and the unknown solution
1y be smooth simultaneously? Of course a sufficient set of conditions is
immediately obtained from the results of Section 2, but our goal is to give
a characterization. Indeed it is possible to provide such a characterization,
and it is contained in the following statement.
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THEOREM 3.1. Consider the integral equation (9) with o > 0 and « ¢
IN. Assume that f is analytic in [0, X] and that k is analytic in T X G where
T:={(x,t): x € [0,X],0 <t <z} and G C IR contains the range of f on
[0, X]. Then, y is analytic if and only if

/z(x — 1) Yk (a,t, f(2))dt =0 (10)
for all z € [0, X]. ’

Once again we note that the condition (10) mentioned in the theorem
only involves given data and thus can be checked effectively.

P roof. Asin the proof of Theorem 2.1, we begin by noting that the
analyticity of f and k implies the existence of a unique solution on some
interval [0, X], with X > 0.

The direction “<” can be seen in the following way. The condition
(10) implies that a solution (and hence, by uniqueness, the solution) of the
Volterra equation is y = f. Since f is analytic by assumption, we have an
analytic solution.

For the other direction, we cannot use the same techniques as in the
proof of Theorem 2.1 in a straightforward way. Assuming y to be analytic,
we rather proceed as follows. Since k is analytic at (0,0, f(0)) and y is
analytic, the function z : T — IR with z(z,t) := k(x,t,y(t)) is analytic at
(0,0) because of y(0) = f(0). Hence we can represent it in the form of a

bivariate power series centered at (0,0), i.e.
o

z(x,t) = Z zjpattd
7,k=0
with certain coefficients zj;. It follows from (9) that

1 [ -
Ya) =10 = /0 (2 — ) a(a, 1) dt
IR /m a1y
— Z 4 ey ) (x — )21 dt (11)
7,k=0
v PU+YD e e~ PU+D 4y
_jéozjkr(j—'—l—i_a)x - jéozjkr(j‘i‘l‘f'a)x

(the interchange of summation and integration is allowed because of the
absolute and uniform convergence of the power series). The left-hand side
of (11) clearly is an analytic function at the point 0, so its right-hand side
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must be analytic there too. Since we assumed « ¢ IV, this is true if and only
if the infinite series vanishes identically. According to (11) this is equivalent

to the condition .

(z — )" 'k(z, t,y(t))dt =0
0
for all x € [0, X]. Thus the integral equation (9) reduces to y(z) = f(x)
which implies that we have, for all x,

0 :/ (2 =) k(z, t,y(1) dt = / (& =) k(. t, f(1)) dt,
0 0
i.e. condition (10) as required. [

REMARK 3.1. We note explicitly that it is not possible to conclude
from condition (10) that k(x,t,y(t)) vanishes identically. As a counterex-
ample we present the equation

e [ (s DO
o) =1+ g [ om0 (1= LG ) uie) e

This equation has an analytic and nonvanishing kernel £ and an analytic
(indeed, constant) function f, and it is easy to verify that its solution is
given by y(z) = 1, an analytic function.

We conclude by noting that the proof of Theorem 3.1 actually gives us
an analogue to Corollary 2.2.

COROLLARY 3.2. Assume the hypotheses of Theorem 3.1. If the given
weakly singular Volterra equation (9) has an analytic solution y then y = f.

The extension of Theorems 2.4, 2.5 and 2.6 to general Volterra equations
of the form (9) is possible under appropriate assumptions but is technically
very cumbersome and outside of the scope of this paper.
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