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Abstract

We study the solvability of a perturbed quadratic integral equation of
fractional order with linear modification of the argument. This equation is
considered in the Banach space of real functions which are defined, bounded
and continuous on an unbounded interval. Moreover, we will obtain some
asymptotic characterization of solutions. Finally, we give an example to
illustrate our abstract results.
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1. Introduction

In this paper, we are interested in the existence and the asymptotic be-
haviour of solutions to the perturbed quadratic fractional integral equation

x(t) = g(t, x(t)) +
f(t, x(t))

Γ(β)

∫ t

0

v(t, s, x(s))
(t− s)1−β

ds, (1.1)
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where t ∈ R+ = [0, +∞) and 0 < β < 1. Throughout, g : R+ × R+ → R,
f : R+ ×R → R and v : R+ ×R+ ×R×R → R are functions which satisfy
special assumptions that will be given in detail in Section 3. Let us recall
that the functions f = f(t, x) and g = g(t, x) involved in Eq. (1.1) generate
superposition operators F and G, respectively, defined by

(Fx)(t) = f(t, x(t)) and (Gx)(t) = g(t, x(t)), (1.2)
where x = x(t) is an arbitrary function defined on R+; see [1].

We remark that:

• If g(t, y) = p(t) in Eq. (1.1), then we have an equation studied by
Banaś and O’Regan in [12].

• If g(t, y) = a(t) and v(t, s, x) = u(s, x) in Eq. (1.1), then we have an
equation studied by Banaś and Rzepka in [11].

• If g(t, y) = a(t), f(t, y) = y and v(t, s, x) = u(s, x) in Eq. (1.1), then
we have an equation studied by Darwish in [23].

Consider the limit case where β = 1. Let g(t, x) = h(t), f(t, x) = −x,
and v(t, s, x) = k(t, s)x. Then Eq. (1.1) takes the form

x(t) + x(t)
∫ t

0
k(t, s) x(s) ds = h(t), t ∈ [0, 1]. (1.3)

Eq. (1.3) is the nonlinear particle transport equation when removal effects
are dominant, where t is the particle speed, the known term h(t) is the
intensity of the external source, and the unknown function x(t) is related
to the particle distribution function y(t) by

x(t) = Q(t) y(t),
where Q is the positive macroscopic removal collision frequency of the host
medium. Finally, the kernel k(t, s) is given by

k(t, s) =
1

2tQ(t)Q(s)

∫ t+s

|t−s|
v q(v) dv,

where q is the macroscopic removal collision frequency of the particles
amongst themselves; see [15, 16, 17, 42]. On the other hand, Eq. (1.3)
is a generalization of the Chandrasekhar H−equation in transport theory,
in which t ranges from 0 to 1, h(t) = 1, x must be identified with the
H−function, and

k(t, s) = − tφ(s)
t + s

for a nonnegative characteristic function φ; see [22, 34, 36, 42].
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Moreover, quadratic integral equations have numerous other useful ap-
plications in describing events and problems in the real world. For example,
quadratic integral equations are often applicable in the kinetic theory of
gases, in the theory of neutron transport, and in traffic theory; see [15, 16,
17, 29, 32, 34].

In the last 35 years or so, many authors have studied the existence of
solutions for several classes of nonlinear quadratic integral equations with
nonsingular kernels. For example, see the papers by Argyros [2], Banaś et al.
[5, 7, 10], Banaś and Martinon [9], Benchohra and Darwish [14], Caballero
et al. [18, 19, 20, 21], Darwish [25], Hu and Yan [33], Leggett [36], Liu and
Kang [37], Stuart [41] and Spiga et al. [42].

More recently, following the appearance of the paper [23], there has been
significant interest in the study of the existence of solutions for singular
quadratic integral equations or fractional quadratic integral equations; see
[11, 12, 13, 24, 26, 27, 28].

It is worth mentioning that up to now only the two papers by Banaś and
D. O’Regan [12] and Darwish [26] have dealt with the study of quadratic
integral equation of singular kernel in the space of real functions which are
defined, continuous and bounded on an unbounded interval. The proofs in
[12] and [26] depend on a suitable combination of the technique of measures
of noncompactness and the Schauder fixed point principle.

The aim of this paper is to prove the existence of solutions to Eq. (1.1)
in the space of real functions which are defined, continuous and bounded
on an unbounded interval. Moreover, we will obtain some asymptotic char-
acterizations of the solutions of Eq. (1.1). Our proof depends on a suitable
combination of the technique of measures of noncompactness and the Darbo
fixed point principle. Also, we give an example for indicating the natural
realizations of our abstract theory presented in the paper.

2. Preliminaries

This section is devoted to collecting some definitions and results which
will be needed further on. First we recall the definition of the Riemann-
Liouville fractional integral; see [31, 35, 38, 39, 40] for more information.

Definition 2.1. Let f ∈ L1(a, b), 0 ≤ a < b < ∞, and let β > 0 be
a real number. The Riemann-Liouville fractional integral of order β of the
function f(t) is defined by

Iβf(t) =
1

Γ(β)

∫ t

0

f(s)
(t− s)1−β

ds, a < t < b.
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Now, let (E, ‖ · ‖) be an infinite dimensional Banach space with zero
element 0. Let B(x, r) denotes the closed ball centered at x with radius r.
The symbol Br stands for the ball B(0, r).

If X is a subset of E, then X and ConvX denote the closure and convex
closure of X, respectively. Moreover, we denote by ME the family of all
nonempty and bounded subsets of E, and by NE its subfamily consisting
of all relatively compact subsets.

Next we give the concept of a measure of noncompactness [3].

Definition 2.2. A mapping µ : ME → R+ = [0,∞) is said to be a
measure of noncompactness in E if it satisfies the following conditions:

1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and Kerµ ⊂
NE .

2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3) µ(X) = µ(ConvX) = µ(X).

4) µ(λX + (1− λ)Y ) ≤ λ µ(X) + (1− λ) µ(Y ) for 0 ≤ λ ≤ 1.

5) If Xn ∈ ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, . . .
and lim

n→∞µ(Xn) = 0, then ∩∞n=1Xn 6= φ.

The family kerµ described above is called the kernel of the measure of
noncompactness µ. Let us observe that the intersection set X∞ from 5)
belongs to kerµ. In fact, since µ(X∞) ≤ µ(Xn) for every n, then we have
that µ(X∞) = 0.

In what follows we will work in the Banach space BC(R+) consisting
of all real functions defined, bounded and continuous on R+. This space is
equipped with the standard norm

‖ x ‖ = sup{|x(t)| : t ≥ 0}.
Now, we recollect the construction of the measure of noncompactness in

BC(R+) which will be used in the next section (see [4, 6]).
Let us fix a nonempty and bounded subset X of BC(R+) and numbers

ε > 0 and T > 0. For arbitrary function x ∈ X, let us denote by ωT (x, ε)
the modulus of continuity of the function x on the interval [0, T ], i.e.,

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.
Further, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
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ωT
0 (X) = lim

ε→0
ωT (X, ε),

and
ω∞0 (X) = lim

T→∞
ωT

0 (X, ε).

Moreover, for a fixed number t ∈ R+, let us define

X(t) = {x(t) : x ∈ X}

and diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.
Finally, let us define the function µ on the family MBC(R+) by

µ(X) = ω∞0 (X) + c(X), (2.1)

where c(X) = lim sup
t→∞

diamX(t). The function µ is a measure of noncom-

pactness in the space BC(R+); see [4].
The concept of the asymptotic stability of a solution x(t) of Eq. (1.1)

is understood in the following sense given by Banaś and Rzepka [8].

Definition 2.3. For any ε > 0 there exist T (ε) > 0 and r(ε) > 0
such that, if x, y ∈ Br and x(t), y(t) are solutions of Eq. (1.1), then
|x(t)− y(t)| ≤ ε for t ≥ T (ε).

We will make use of a fixed point theorem due to Darbo [30]. Before
quoting this theorem, we need the following definition.

Definition 2.4. Let M be a nonempty subset of a Banach space E
and let P : M → E be a continuous operator which transforms bounded
sets onto bounded ones. We say that P satisfies the Darbo condition (with
a constant k ≥ 0) with respect to a measure of noncompactness µ, if for any
bounded subset X of M , we have

µ(PX) ≤ k µ(X).

If P satisfies the Darbo condition with k < 1, then P is called a con-
traction operator with respect to µ.

Theorem 2.5. Let Q be a nonempty, bounded, closed and convex
subset of the space E and let

P : Q → Q

be a contraction with respect to the measure of noncompactness µ. Then
P has a fixed point in the set Q.
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3. Existence theorem

In this section we will study Eq. (1.1) assuming that the following
hypotheses are satisfied:

(h1) g : R+×R → R is continuous and the function t → g(t, 0) is bounded
on R+ with g∗ = sup{|g(t, 0)| : t ∈ R+}. Moreover, there exists a
continuous function l(t) = l : R+ → R+ such that

|g(t, x)− g(t, y)| ≤ l(t)|x− y|

for all x, y ∈ R and for any t ∈ R+.

(h2) f : R+ ×R → R is continuous and there exists a continuous function
m(t) = m : R+ → R+ such that

|f(t, x)− f(t, y)| ≤ m(t)|x− y|

for all x, y ∈ R and for any t ∈ R+.

(h3) v : R+ × R+ × R → R is a continuous function. Moreover, there
exist a function n(t) = n : R+ → R+ being continuous on R+ and a
function Φ : R+ → R+ being continuous and nondecreasing on R+,
with Φ(0) = 0 and such that

|v(t, s, x)− v(t, s, y)| ≤ n(t)Φ(|x− y|)

for all t, s ∈ R+ such that t ≥ s and for all x, y ∈ R.

For further purpose, let us define the function v∗ : R+ → R+ by
v∗(t) = max{|v(t, s, 0)| : 0 ≤ s ≤ t}.

(h4) The functions φ, ψ, ξ, η : R+ → R+ defined by, respectively, φ(t) =
m(t) n(t) tβ, ψ(t) = m(t) v∗(t) tβ, ξ = n(t)|f(t, 0)|tβ and η(t) =
v∗(t)|f(t, 0)|tβ, are bounded on R+, and the functions φ and ξ vanish
at infinity, i.e. lim

t→∞φ(t) = lim
t→∞ ξ(t) = 0.

(h5) There exists a positive solution r0 of the inequality

(l∗r + g∗)Γ(β +1)+ [φ∗rΦ(r)+ψ∗r + ξ∗Φ(r)+ η∗] ≤ r Γ(β +1) (3.1)

and l∗Γ(β+1)+φ∗Φ(r0)+ψ∗ < Γ(β+1), where l∗ = sup{l(t) : t ∈ R+},
φ∗ = sup{φ(t) : t ∈ R+}, ψ∗ = sup{ψ(t) : t ∈ R+}, ξ∗ = sup{ξ(t) : t ∈
R+} and η∗ = sup{η(t) : t ∈ R+}.
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Now, we are in a position to state and prove our main result.

Theorem 3.1. Let the hypotheses (h1) − (h5) be satisfied. Then Eq.
(1.1) has at least one solution x ∈ BC(R+) and is asymptotically stable on
the interval R+.

P r o o f. Denote by F the operator associated with the right-hand side
of equation (1.1), i.e., equation (1.1) takes the form

x = Fx,

where (F x)(t) = (Gx)(t) + (Fx)(t) · (V x)(t), (3.2)

and
(V x)(t) =

1
Γ(β)

∫ t

0

v(t, s, x(s))
(t− s)1−β

ds. (3.3)

Solving Eq.(1.1) is equivalent to finding a fixed point of the operator F
defined on the space BC(R+).

We claim that for any function x ∈ BC(R+) the operator F is continu-
ous on R+. To establish this claim, it suffices to show that, if x ∈ BC(R+)
then Vx is continuous function on R+, thanks to (h1) and (h2). So, let us
take an arbitrary X ∈ BC(R+) and fix ε > 0 and T > 0. Assume that
t1, t2 ∈ R+ are such that |t2 − t1| ≤ ε. Without loss of generality we can
assume that t2 > t1. Then we get

|(Vx)(t2)− (Vx)(t1)|

=
∣∣∣∣

1
Γ(β)

∫ t2

0

v(t2, s, x(s))
(t2 − s)1−β

ds
1

Γ(β)

∫ t1

0

v(t1, s, x(s))
(t1 − s)1−β

ds

∣∣∣∣

≤
∣∣∣∣

1
Γ(β)

∫ t2

0

v(t2, s, x(s))
(t2 − s)1−β

ds− 1
Γ(β)

∫ t1

0

v(t2, s, x(s))
(t2 − s)1−β

ds

∣∣∣∣

+
∣∣∣∣

1
Γ(β)

∫ t1

0

v(t2, s, x(s))
(t2 − s)1−β

ds− 1
Γ(β)

∫ t1

0

v(t1, s, x(s))
(t2 − s)1−β

ds

∣∣∣∣

+
∣∣∣∣

1
Γ(β)

∫ t1

0

v(t1, s, x(s))
(t2 − s)1−β

ds− 1
Γ(β)

∫ t1

0

v(t1, s, x(s))
(t1 − s)1−β

ds

∣∣∣∣

≤ 1
Γ(β)

∫ t2

t1

|v(t2, s, x(s))|
(t2 − s)1−β

ds

+
1

Γ(β)

∫ t1

0

|v(t2, s, x(s))− v(t1, s, x(s))|
(t2 − s)1−β

ds

+
1

Γ(β)

∫ t1

0
|v(t1, s, x(s))| [(t1 − s)β−1 − (t2 − s)β−1]ds.
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Therefore, if

ωT
d (v, ε) = sup{|v(t2, s, y)− v(t1, s, z)| : s, t1, t2 ∈ [0, T ],

t1 ≥ s, t2 ≥ s, |t2 − t1| ≤ ε, and y, z ∈ [−d, d]},

then we obtain

|(Vx)(t2)− (Vx)(t1)|

≤ 1
Γ(β)

∫ t2

t1

|v(t2, s, x(s))− v(t2, s, 0)|+ |v(t2, s, 0)|
(t2 − s)1−β

ds

+
1

Γ(β)

∫ t1

0

ωT
‖x‖(v, ε)

(t2 − s)1−β
ds

+
1

Γ(β)

∫ t1

0
[|v(t1, s, x(s))− v(t1, s, 0)|+ |v(t1, s, 0)|]

×[(t1 − s)β−1 − (t2 − s)β−1]ds

≤ 1
Γ(β)

∫ t2

t1

n(t2)Φ(|x(s)|) + v∗(t2)
(t2 − s)1−β

ds +
ωT
‖x‖(v, ε)

Γ(β + 1)
[tβ2 − (t2 − t1)β]

+
1

Γ(β)

∫ t1

0
[n(t1)Φ(|x(s)|) + v∗(t1)] [(t1 − s)β−1 − (t2 − s)β−1]ds

≤ n(t2)Φ(‖x‖) + v∗(t2)
Γ(β + 1)

(t2 − t1)β +
ωT
‖x‖(v, ε)

Γ(β + 1)
tβ1

+
n(t1)Φ(‖x‖) + v∗(t1)

Γ(β + 1)
[tβ1 − tβ2 + (t2 − t1)β].

Thus

ωT (Vx, ε) ≤
2εβ[n̂(T )Φ(‖x‖) + v̂(T )] + T βωT

‖x‖(v, ε)

Γ(β + 1)
, (3.4)

where we denoted
n̂(T ) = max{n(t) : t ∈ [0, T ]}

and
v̂(T ) = max{v∗(t) : t ∈ [0, T ]}.

In view of the uniform continuity of the function v on [0, T ] × [0, T ] ×
[−‖x‖, ‖x‖], we have that ωT

‖x‖(v, ε) → 0 as ε → 0. From the above in-
equality we infer that the function Vx is continuous on the interval [0, T ]
for any T > 0. This yields the continuity of Vx on R+, and consequently,
the function Fx is continuous on R+.
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Now, we show that Fx is bounded on R+. Indeed, in view of our
hypotheses for arbitrary x ∈ BC(R+) and for a fixed t ∈ R+, we have

|(Fx)(t)| ≤
∣∣∣∣g(t, x(t)) +

f(t, x(t))
Γ(β)

∫ t

0

v(t, s, x(s))
(t− s)1−β

ds

∣∣∣∣
≤ |g(t, x(t))− g(t, 0)|+ |g(t, 0)|

+
1

Γ(β)
[|f(t, x(t))− f(t, 0)|+ |f(t, 0)|]

×
∫ t

0

|v(t, s, x(s))− v(t, s, 0)|+ |v(t, s, 0)|
(t− s)1−β

ds

≤ l(t)‖x‖+ |g(t, 0)|

+
m(t)‖x‖+ |f(t, 0)|

Γ(β)

∫ t

0

n(t)Φ(|x(s)|) + v∗(t)
(t− s)1−β

ds

≤ l(t)‖x‖+ |g(t, 0)|
+

m(t)‖x‖+ |f(t, 0)|
Γ(β + 1)

[n(t) Φ(‖x‖) + v∗(t)] tβ

≤ l∗‖x‖+ g∗ +
1

Γ(β + 1)
[φ(t)‖x‖Φ(‖x‖)

+ψ(t)‖x‖+ ξ(t)Φ(‖x‖) + η(t)].

Hence, Fx is bounded on R+, thanks to hypothesis (h4). This assertion,
in conjunction with the continuity of Fx on R+ allows us to conclude that
the operator F maps BC(R+) into itself. Moreover, from the last estimate
we have

‖Fx‖ ≤ l∗‖x‖+ g∗ +
1

Γ(β + 1)
[φ∗‖x‖Φ(‖x‖) + ψ∗‖x‖+ ξ∗Φ(‖x‖) + η∗].

Linking this estimate with hypothesis (h5), we deduce that there exists
r0 > 0 such that the operator F transforms the ball Br0 into itself.

In what follows let us take a nonempty set X ⊂ Br0 . Then, for arbitrary
x, y ∈ X and for a fixed t ∈ R+, we obtain

|(Fx)(t)− (Fy)(t)|
≤ |g(t, x(t))− g(t, y(t))|

+
∣∣∣∣
f(t, x(t))

Γ(β)

∫ t

0

v(t, s, x(s))
(t− s)1−β

ds− f(t, y(t))
Γ(β)

∫ t

0

v(t, s, y(s))
(t− s)1−β

ds

∣∣∣∣

≤ l(t)|x(t)− y(t)|+ |f(t, x(t))− f(t, y(t))|
Γ(β)

∫ t

0

|v(t, s, x(s))|
(t− s)1−β

ds
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+
|f(t, y(t))|

Γ(β)

∫ t

0

|v(t, s, x(s))− v(t, s, y(s))|
(t− s)1−β

ds

≤ l(t)|x(t)− y(t)|

+
m(t)|x(t)− y(t)|

Γ(β)

∫ t

0

|v(t, s, x(s))− v(t, s, 0)|+ |v(t, s, 0)|
(t− s)1−β

ds

+
m(t)|y(t)|+ |f(t, 0)|

Γ(β)

∫ t

0

n(t) Φ(|x(s)− y(s)|)
(t− s)1−β

ds

≤ l(t)|x(t)− y(t)|

+
m(t)|x(t)− y(t)|

Γ(β)

∫ t

0

n(t)Φ(|x(s)|) + v∗(t)
(t− s)1−β

ds

+
m(t)|y(t)|+ |f(t, 0)|

Γ(β)

∫ t

0

n(t)Φ(|x(s)|+ |y(s)|)
(t− s)1−β

ds

≤ l(t)|x(t)− y(t)|

+
m(t)n(t)(|x(t)|+ |y(t)|)

Γ(β)

∫ t

0

Φ(|x(s)|)
(t− s)1−β

ds

+
m(t)v∗(t)|x(t)− y(t)|

Γ(β)

∫ t

0

ds

(t− s)1−β

+
m(t)n(t)|y(t)|

Γ(β)

∫ t

0

Φ(|x(s)|+ |y(s)|)
(t− s)1−β

ds

+
n(t)|f(t, 0)|

Γ(β)

∫ t

0

Φ(|x(s)|+ |y(s)|)
(t− s)1−β

ds

≤ l(t)diamX(t) +
2m(t)n(t)r0Φ(r0)

Γ(β)

∫ t

0

ds

(t− s)1−β

+
m(t)v∗(t)diamX(t)

Γ(β)

∫ t

0

ds

(t− s)1−β

+
m(t)n(t)r0Φ(2r0)

Γ(β)

∫ t

0

ds

(t− s)1−β

+
n(t)|f(t, 0)|Φ(2r0)

Γ(β)

∫ t

0

ds

(t− s)1−β

≤ 2φ(t)r0Φ(r0)
Γ(β + 1)

+
(

l(t) +
ψ(t)

Γ(β + 1)

)
diamX(t)

+
φ(t)r0Φ(2r0)

Γ(β + 1)
+

ξ(t)Φ(2r0)
Γ(β + 1)

.

Hence, we can easily deduce the following inequality
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diam(FX)(t) ≤ 2φ(t)r0Φ(r0)
Γ(β + 1)

+
(

l(t) +
ψ(t)

Γ(β + 1)

)
diamX(t)

+
Φ(2r0)

Γ(β + 1)
(φ(t)r0 + ξ(t)).

Now, taking into account hypothesis (h4), we obtain

c(FX) ≤ k c(X), (3.5)

where we denoted k = l∗ + φ∗Φ(r0)+ψ∗
Γ(β+1) ≥ l∗ + ψ∗

Γ(β+1) . Obviously, in view of
hypothesis (h5), we have that k < 1.

In what follows, let us take arbitrary numbers ε > 0 and T > 0. Choose
a function x ∈ X and take t1, t2 ∈ [0, T ] such that |t2 − t1| ≤ ε. Without
loss of generality we can assume that t2 > t1. Then, taking into account
our hypotheses and (3.4), we have

|(Fx)(t2)− (Fx)(t1)|
≤ |g(t2, x(t2))− g(t1, x(t1))|+ |(Fx)(t2)(Vx)(t2)− (Fx)(t1)(Vx)(t2)|

+ |(Fx)(t1)(Vx)(t2)− (Fx)(t1)(Vx)(t1)|
≤ |g(t2, x(t2))− g(t2, x(t1))|+ |g(t2, x(t1))− g(t1, x(t1))|

+
|f(t2, x(t2))− f(t1, x(t1))|

Γ(β)

×
∫ t2

0

|v(t2, s, x(s))− v(t2, s, 0)|+ |v(t2, s, 0)|
(t2 − s)1−β

ds

+
|f(t1, x(t1))− f(t1, 0)|+ |f(t1, 0)|

Γ(β + 1)

×
{

2εβ[n̂(T )Φ(‖x‖) + v̂(T )] + T βωT
‖x‖(v, ε)

}

≤ l(t2)|x(t2)− x(t1)|+ ωT
g (ε)

+
m(t2)|x(t2)− x(t1)|+ ωT

f (ε)
Γ(β)

∫ t2

0

n(t2)Φ(|x(s)|) + v∗(t2)
(t2 − s)1−β

ds

+
m(t1)|x(t1)|+ |f(t1, 0)|

Γ(β + 1)

{
2εβ[n̂(T )Φ(‖x‖) + v̂(T )] + T βωT

‖x‖(v, ε)
}

≤ l(t2)ωT (x, ε) + ωT
g (ε)

+
φ(t2)Φ(r0) + ψ(t2)

Γ(β + 1)
ωT (x, ε) +

n(t2)Φ(r0) + v∗(t2)
Γ(β + 1)

tβ2 ωT
f (ε)
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+
m̂(T )r0 + f̂(T )

Γ(β + 1)

{
2εβ[n̂(T )Φ(r0) + v̂(T )] + T βωT

r0
(v, ε)

}

≤ ωT
g (ε) +

(
l∗ +

φ∗Φ(r0) + ψ∗

Γ(β + 1)

)
ωT (x, ε) +

n̂(T )Φ(r0) + v̂(T )
Γ(β + 1)

T βωT
f (ε)

+
m̂(T )r0 + f̂(T )

Γ(β + 1)

{
2εβ[n̂(T )Φ(r0) + v̂(T )] + T βωT

r0
(v, ε)

}
,

where we denoted

ωT
h (ε) = sup{|h(t2, x(t1))− h(t1, x(t1))| : t1, t2 ∈ [0, T ],

|t2 − t1| ≤ ε, x ∈ [−r0, r0]},

m̂(T ) = max{m(t) : t ∈ [0, T ]},
and

f̂(T ) = max{|f(t, 0)| : t ∈ [0, T ]}.
Now, keeping in mind the uniform continuity of the functions f = f(t, x)

and g = g(t, x) on the set [0, T ]× [r0, r0] and the uniform continuity of the
function v = v(t, s, x) on the set [0, T ]×[0, T ]×[r0, r0], from the last estimate
we derive the following one:

ωT
0 (FX) ≤ k ωT

0 (X).

Hence we have
ω∞0 (FX) ≤ k ω∞0 (X). (3.6)

From (3.5) and (3.6) and the definition of the measure of noncompactness
µ given by formula (2.1), we obtain

µ(FX) ≤ k µ(X). (3.7)

Now, the above established inequality together with the fact that k < 1
enables us to apply Theorem , and hence Eq. (1.1) has at least one solution
x ∈ BC(R+).

Moreover, it is easy to see from the above arguments that any solution
of Eq. (1.1) which belongs to the ball Br0 is asymptotically stable. This
completes the proof.

4. Example

Consider the following perturbed quadratic integral equation of frac-
tional order β = 1

3 ,
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x(t) =
1
2π

arctan(t + x(t)) +
t + t2x(t)

5Γ(1
3)

∫ t

0

|x(s)|e−3t−s + 1/(1 + 5t7/3)
(t− s)2/3

ds.

(4.1)
In this example, we have that g(t, x) = 4

π arctan(t + x) and this func-
tion satisfies hypothesis (h1) with l(t) = 1

2π and g∗ = 0.25. Moreover,
f(t, x(t)) = (t + t2x(t))/5 and satisfies hypothesis (h2) with m(t) = t2/5,
and |f(t, 0)| = f(t, 0) = t/5. Also, v(t, s, x) = xe−3t−s+1/(1+5t7/3) verifies
hypothesis (h3) with n(t) = e−3t, Φ(x) = x and v(t, s, 0) = 1/(1 + 5t7/3).
Now, we have

φ(t) =
1
5
t7/3e−3t, ψ(t) =

t7/3

5(1+5t7/3)
, ξ(t) =

1
5
t4/3e−3t, η(t) =

t4/3

5(1+5t7/3)
.

It is easy to see that the functions φ, ψ, ξ and η are bounded on R+ and
also lim

t→∞φ(t) = lim
t→∞ ξ(t) = 0. Hence, hypothesis (h4) is satisfied. Moreover,

we have
φ∗ = φ(7/6) =

1
5
(7/6)7/3e−7/2 = 0.0277897...,

ψ∗ = 0.04,

ξ∗ = ξ(4/9) =
1
5
(4/9)4/3e−4/3 = 0.0178811...

and
η∗ = η((4/15)3/7) = 0.0072288... .

In this case the inequality (3.1) has the form

(l∗r + g∗)Γ(
4
3
) + r2φ∗ + rψ∗ + rξ∗ + η∗ ≤ rΓ(

4
3
). (4.2)

Let us denote by H(r) the left hand side of the last inequality, i.e.,

H(r) = (l∗r + g∗)Γ(
4
3
) + r2φ∗ + rψ∗ + rξ∗ + η∗.

For r = 1 we obtain

H(1)=(l∗+ g∗)Γ(
4
3
)+φ∗+ψ∗+ ξ∗+η∗ = Γ(

4
3
) 0.4091549...+0.0928997... .

Hence, inequality (4.2) admits r0 = 1 as a positive solution since Γ(4
3) '

0.8929796. Moreover,

l∗Γ(
4
3
) + φ∗φ(r0) + ψ∗ ' 0.2099124 < Γ(

4
3
).

Therefore, Theorem 3.1 guarantees that equation (4.1) has a solution x =
x(t) in the space R+ belonging to the ball B1. Moreover, this solution is
asymptotically stable.
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