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Abstract

Denoting by Dα
0|t the time-fractional derivative of order α (α ∈ (0, 1))

in the sense of Caputo, and by ∆H the Laplacian operator on the (2N +1)-
dimensional Heisenberg group HN , we prove some nonexistence results for
solutions to problems of the type

Dα
0|tu−∆H

(
a u

)
>

∣∣u∣∣p,
{

Dα
0|tu−∆H

(
a u

)
>

∣∣v∣∣p,
Dδ

0|tv −∆H
(
b v

)
>

∣∣u∣∣q,
in HN × R+, with a, b ∈ L∞(HN × R+).

For α = 1 (and δ = 1 in the case of two inequalities), we retrieve the
results obtained by Pohozaev-Véron [10] and El Hamidi-Kirane [3] corre-
sponding, respectively, to the parabolic inequalities and parabolic system.
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1. Introduction

Let us begin this section by recalling some known facts about the time-
fractional derivative Dα

0|t, the Heisenberg group HN and the operator ∆H
which will be useful later on.
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The left-sided derivative and the right-sided derivative in the sense of
Riemann-Liouville for ψ ∈ L1(0, T ), α ∈ (0, 1), are defined respectively as
follows: (

Dα
0|tψ

)
(t) =

1
Γ(1− α)

d

dt

∫ t

0

ψ(σ)
(t− σ)α

dσ,

(
Dα

t|T ψ
)

(t) = − 1
Γ(1− α)

d

dt

∫ T

t

ψ(σ)
(σ − t)α

dσ,

where Γ is the Euler gamma function.

For ψ′ ∈ L1(0, T ), the Caputo derivative of order α ∈ (0, 1) is defined
by (

Dα
0|tψ

)
(t) =

1
Γ(1− α)

∫ t

0

ψ′(σ)
(t− σ)α

dσ,

and it is related to the Riemann-Liouville derivative by

Dα
0|tψ(t) = Dα

0|t
{
ψ(t)− ψ(0)

}
.

Recall also the integration by parts formula
∫ T

0
ϕ(t)

(
Dα

0|tψ
)

(t) dt =
∫ T

0

(
Dα

t|T ϕ
)

(t) ψ(t) dt.

For more details concerning fractional derivatives, one can refer to books as
[9], [11].

The (2N + 1)-dimensional Heisenberg group HN is the space

R2N+1 =
{
η = (x, y, τ) ∈ RN × RN × R}

,

equipped with the group operation ”◦” defined by

η ◦ η̃ =

(
x + x̃, y + ỹ, τ + τ̃ + 2

N∑

i=1

(
xiỹi − x̃iyi

)
)

, (1.1)

where
η = (x, y, τ) =

(
x1, ..., xN , y1, ..., yN , τ

)
,

η̃ = (x̃, ỹ, τ̃) =
(
x̃1, ..., x̃N , ỹ1, ..., ỹN , τ̃

)
.

This group multiplication endows HN with a structure of a Lie group.
The subelliptic Laplacian ∆H over HN is obtained from the vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂τ
and Yi =

∂

∂yi
− 2xi

∂

∂τ
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by the following

∆H =
N∑

i=1

(
X2

i + Y 2
i

)
. (1.2)

An explicit computation gives us the expression

∆H =
N∑

i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2

i + y2
i )

∂2

∂τ2

)
. (1.3)

The operator ∆H is a degenerate elliptic operator satisfying the Hörman-
der condition of order 1 (see [5]). It is invariant with respect to the left
multiplication in the group since

∆H
(
u
(
η ◦ η̃

))
=

(
∆Hu

)(
η ◦ η̃

)
, ∀(η, η̃

) ∈ HN ×HN .

An intrinsic distance of the point η to the origin can be defined on HN by
setting

∣∣η∣∣
H =

(
τ2 +

N∑

i=1

(
x2

i + y2
i

)2

)1/4

.

It is also important to observe that η → |η|H is homogeneous of degree one
with respect to the natural group of dilatations

δλ(η) =
(
λx, λy, λ2t

)
. (1.4)

Remark also, by virtue of (1.3), that the operator ∆H is homogeneous of
degree 2 with respect to the dilatation δλ defined in (1.4), namely

∆H = λ2 δλ

(
∆H

)
.

Concerning the action of ∆H on functions u depending only on ρ :=
∣∣η∣∣
H,

it is easy to show that

∆Hu(ρ) = a(η)
(

d2u

dρ2
+

Q− 1
ρ

du

dρ

)
,

where the function a is defined by

a(η) =
N∑

i=1

x2
i + y2

i

ρ2
and Q = 2N + 2.
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This last number Q is called the homogeneous dimension of HN .

We escort the paper of Kirane, Laskri and Tatar [7] but taking into
account of the Laplacian on the Heisenberg group. The critical exponent
found here is the same determined in [7] for the case of a single equation
as well as for a system of two equations; of course, with some appropriate
modification coming from the replacement of the fractional power of the
Laplacian by the Laplacian on the Heisenberg group.

Nonexistence results for solutions of semilinear inequalities of the type

∂u

∂t
−∆H(au) >

∣∣η∣∣γ
H|u|p (1.5)

were studied by Pohozaev and Véron [10], and they proved that no weak
solution u exists provided
∫

R2N+1

u(η, 0) dη > 0, γ > −2 and 1 < p 6 pc :=
Q + 2 + γ

Q
. (1.6)

In this paper, we generalize this result to evolution inequalities with
temperal fractional derivative. More precisely, let a be a bounded and
measurable function defined in HN × R+, then we prove that there exists
no locally integrable function u defined in whole HN × R+, such that u ∈
Lp

loc

(
HN × R+,

∣∣η∣∣γ
Hdηdt

)
, satisfying

Dα
0|t(u)−∆H(au) >

∣∣η∣∣γ
H|u|p (1.7)

whenever 1 < p <
Q + 2

α + γ

Q + 2
(

1
α − 1

) , for an arbitrary α ∈ (0, 1). And thus, for

α = 1, we retrieve the critical exponent introduced in (1.6).

In [3], El Hamidi and Kirane presented similar results for system of
m parabolic semilinear inequalities. Their results have been generalized,
by El Hamidi and Obeid [4], to systems of m-semilinear inequalities with
higher-order time derivative.

Concerning nonexistence results to elliptic semilinear inequalities and
systems, one can refer to [1], [2], [6] and [8].
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2. Case of single inequality

We first consider single inequality of the following type




Dα
0|tu−∆H(au) >

∣∣η∣∣γ
H|u|p, for (η, t) ∈ HN × R+,

u(η, 0) = u0(η) > 0, for η ∈ HN ,

(2.1)

where a = a(η, t) is a bounded and measurable function defined in R2N+1×
R+, γ and p > 1 are two real numbers. We identify points in HN with
points in R2N+1. We also recall that the natural Haar measure in HN is
identical to the Lebesgue measure dη = dxdydτ in R2N+1 = RN ×RN ×R.

Definition 2.1. A local weak solution u of the differential inequal-
ity (2.1) in QT (QT := R2N+1 × (0, T )) with positive initial data u0 ∈
L1

loc(R2N+1) is a locally integrable function such that u ∈ Lp
(
QT ;

∣∣η∣∣γ
Hdηdt

)
which satisfies

∫

QT

(
−uDα

t|T ϕ + a u ∆Hϕ +
∣∣η∣∣γ
H
∣∣u∣∣pϕ + u0 Dα

t|T ϕ
)

dηdt 6 0, (2.2)

for any nonnegative test function ϕ ∈ C2,1
η,t (QT ) verifying ϕ(., T ) = 0.

The integrals in the above definition are supposed to be convergent. If
in the definition T = +∞, the solution is called global.

Theorem 2.1. Let N > 1 and p > 1. Assume

1 < p <
Q + 2

α + γ

Q + 2
(

1
α − 1

) , (2.3)

then there exists no global weak solution of (2.1) other than the trivial one.

P r o o f. The method is based on a suitable choice of the test function.
We assume that problem (2.1) has a nontrivial global weak solution, namely
u. Let T , R and θ > 1 (will be determined later) be three positive reals
and let ϕ be a smooth nonnegative test function. Since the initial data u0

is nonnegative, the variational formulation (2.2) implies
∫

Q
TR4/θ

∣∣η∣∣γ
H
∣∣u∣∣pϕdηdt 6

∫

Q
TR4/θ

u Dα
t|TR4/θϕdηdt −

∫

Q
TR4/θ

a u∆Hϕdηdt.

(2.4)
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The test function ϕ is chosen so that
∫

Q
TR4/θ

{∣∣Dα
t|T ϕ

∣∣p′ + ∣∣∆Hϕ
∣∣p′

}(∣∣η∣∣γ
Hϕ

)−p′/p
dηdt < ∞.

In order to estimate the right-hand side of (2.4), we apply Young’s
inequality for an arbitrary ε > 0. It follows




∫

Q
TR4/θ

uDα
t|TR4/θϕdηdt 6 ε

∫

Q
TR4/θ

∣∣η∣∣γ
H
∣∣u∣∣p ϕdηdt

+Cε

∫

Q
TR4/θ

∣∣∣Dα
t|TR4/θϕ

∣∣∣
p′ (∣∣η∣∣γ

Hϕ
)−p′

p dηdt,

and



∫

Q
TR4/θ

a u ∆Hϕdηdt 6 ε

∫

Q
TR4/θ

∣∣η∣∣γ
H
∣∣u∣∣p ϕdηdt

+Cε ‖a‖p′
L∞

∫

Q
TR4/θ

|∆Hϕ|p′ (∣∣η∣∣γ
Hϕ

)−p′
p dηdt.

Choosing ε small enough, we get
∫

Q
TR4/θ

∣∣η∣∣γ
H
∣∣u∣∣pϕ 6 Cε

∫

Q
TR4/θ

{∣∣∣Dα
t|TR4/θϕ

∣∣∣
p′

+ |∆Hϕ|p′
} (∣∣η∣∣γ

Hϕ
)−p′

p .

(2.5)
Now we take

ϕ(η, t) = ϕ
(
x, y, τ, t

)
= Φ

(
τ2 + |x|4 + |y|4 + tθ

R4

)
,

where Φ ∈ D(R+) satisfies 0 6 Φ 6 1 and

Φ(r) =





0 if r > 2,

1 if 0 6 r 6 1.
(2.6)

Then



∆Hϕ (η, t) =
4(N + 4) Φ′(ρ)

R4

[
|x|2 + |y|2

]

+
16 Φ′′(ρ)

R8

[
(|x|6 + |y|6) + τ2

(|x|2 + |y|2) + 2 τ 〈x, y〉(|x|2 − |y|2)
]
,

(2.7)
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where

ρ =
τ2 + |x|4 + |y|4 + tθ

R4
.

In order to estimate the right-hand side of (2.7), we perform the change
of variables

t̃ = R−4/θt, τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y.

Let
ρ̃ = τ̃2 + |x̃|4 + |ỹ|4 + t̃

θ
,

and

Ω =
{

(η̃, t̃) = (x̃, ỹ, τ̃ , t̃) ∈ R2N+1 × R+, τ̃2 + |x̃|4 + |ỹ|4 + t̃
θ 6 2

}
.

Then
∣∣∆Hϕ (η̃, t̃)

∣∣ 6 C

R2
, ∀ (η̃, t̃) ∈ Ω. (2.8)

Since dηdt = R2N+2+4/θ dη̃dt̃ and
∣∣η∣∣
H = R

∣∣η̃∣∣
H, we derive from (2.8) that





∫

Q
TR4/θ

∣∣∆Hϕ
∣∣p′ (∣∣η∣∣γ

Hϕ
)−p′/p

6 R
−2p′+2N+2+ 4

θ
−γ p′

p

∫

Ω

∣∣∆HΦ ◦ ρ̃
∣∣p′

(∣∣η̃∣∣γ
HΦ ◦ ρ̃

)−p′/p
dη̃dt̃.

Taking into account the definition of the time derivative in the sense of
Riemann-Liouville, we obtain




∫

Q
TR4/θ

∣∣∣Dα
t|TR4/θϕ

∣∣∣
p′ (∣∣η∣∣γ

Hϕ
)−p′/p

6 R
− 4 α

θ
p′+2N+2+ 4

θ
−γ p′

p

∫

Ω

∣∣∣Dα
t̃|T Φ ◦ ρ̃

∣∣∣
p′(∣∣η̃∣∣γ

HΦ ◦ ρ̃
)−p′/p

dη̃dt̃.

In order to get the same exponent in R, we take θ = 2α and deduce
∫

Q
TR2/α

∣∣η∣∣γ
H
∣∣u∣∣pϕdηdt 6 C R

−2p′+2N+2+ 2
α
−γ p′

p , (2.9)

where

C = Cε

∫

Ω

{∣∣∣Dα
t̃|T Φ ◦ ρ̃

∣∣∣
p′

+ |∆HΦ ◦ ρ̃|p′
} (∣∣η̃∣∣γ

HΦ ◦ ρ̃
)−p′

p dη̃dt̃.
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Now, in the case where

1 < p <
2N + 2 + γ + 2

α

2N + 2
α

=
Q + 2

α + γ

Q + 2
(

1
α − 1

) ,

the exponent of R in (2.9) is negative. Letting R go to infinity and using
Fatou’s lemma, we deduce that

∫

R+

∫

R2N+1

∣∣η∣∣γ
H
∣∣u∣∣pdηdt = 0, (2.10)

which implies that u ≡ 0. This contradicts the fact that u is a nontrivial
weak solution of (2.1), which achieves the proof.

Remark 2.1. When α = 1, we recover the case of parabolic inequality
of the type

∂u

∂t
−∆H(au) >

∣∣η∣∣γ
H|u|p, (2.11)

studied by Pohozaev and Véron in [10].

3. System of two inequalities

We consider the following system:




Dα
0|tu−∆H

(
a u

)
>

∣∣η∣∣β
H

∣∣v∣∣p, in HN × R+,

Dδ
0|tv −∆H

(
b v

)
>

∣∣η∣∣γ
H

∣∣u∣∣q, in HN × R+,
(3.1)

where Dα
0|t (resp. Dδ

0|t) denotes the time-fractional derivative of order α, α ∈
(0, 1) (resp. δ, δ ∈ (0, 1)), in the sense of Caputo.

The functions a and b introduced in (3.1) are supposed to be measurable
and bounded functions on HN × R+. While the exponents p, q > 1 and
β, γ are real numbers.

Denoting by Dα
0|t (resp. Dδ

0|t) the time-fractional derivative of order α

(resp. δ) in the sense of Riemann-Liouville, we adopt the following

Definition 3.1. A local weak solution
(
u, v

)
of the system (3.1) in

QT := R2N+1×(0, T ) with positive initial conditions
(
u0, v0

) ∈ L1
loc(R2N+1)

is a couple of locally integrable functions
(
u, v

)
such that(

u, v
) ∈ Lq

loc

(
QT , |η|γHdηdt

)
× Lp

loc

(
QT , |η|βHdηdt

)
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satisfying




∫

QT

(
−uDα

t|T ϕ + a u∆Hϕ +
∣∣η∣∣β
H
∣∣v∣∣pϕ + u0 Dα

t|T ϕ
)
dηdt 6 0,

∫

QT

(
−v Dδ

t|T ϕ + b v ∆Hϕ +
∣∣η∣∣γ
H
∣∣u∣∣qϕ + v0 Dδ

t|T ϕ
)
dηdt 6 0,

(3.2)
for any nonnegative test function ϕ ∈ C2,1

η,t

(
QT

)
, such that ϕ(., T ) = 0.

As in Definition 2.1, we assume that the integrals in (3.2) are convergent.
If in the definition T = +∞, the solution is called global.

Theorem 3.1. Assume that

Q < Q?
e := max

{
Q1, Q2

}
,

where 



Q1 =
α

(
1 + γ

2q

)
+ δ

q

(
1 + β

2p

)
−

(
1− 1

pq

)

α
2q′ + δ

2p′q
,

Q2 =
δ
(
1 + β

2p

)
+ α

p

(
1 + γ

2q

)
−

(
1− 1

pq

)

δ
2p′ + α

2q′p
.

(3.3)

Then, there exists no nontrivial global weak solution (u, v) of system (3.1).

P r o o f. As in the proof of Theorem 1, we argue by contradiction.
Suppose that (u, v) is a nontrivial weak solution which exists globally in
time. That is (u, v) exists in (0, T ?) for an arbitrary T ? > 0.

Let T and R be two positive real numbers such that 0 < TR < T ?.
Since initial conditions u0 and v0 are nonnegative, the variational for-

mulation (3.2) implies




∫

QTR

∣∣η∣∣β
H
∣∣v∣∣pϕ dηdt 6

∫

QTR

uDα
t|TRϕdηdt −

∫

QTR

a u∆Hϕ dηdt,
∫

QTR

∣∣η∣∣γ
H
∣∣u∣∣qϕdηdt 6

∫

QTR

v Dδ
t|TRϕdηdt −

∫

QTR

b v ∆Hϕdηdt.

(3.4)
Using Hölder’s inequality, it follows




∫

QTR

∣∣η∣∣β
H
∣∣v∣∣pϕ 6

(∫

QTR

|u|q|η|γHϕ

) 1
q
(∫

QTR

∣∣Dα
t|TRϕ

∣∣q′ (|η|γHϕ
)− q′

q

) 1
q′

+ ‖a‖L∞

(∫

QTR

|u|q|η|γHϕ

) 1
q
(∫

QTR

∣∣∆H ϕ
∣∣q′ (|η|γHϕ

)− q′
q

) 1
q′

,



10 K. Haouam, M. Sfaxi

and





∫

QTR

∣∣η∣∣γ
H
∣∣u∣∣qϕ 6

(∫

QTR

|v|p|η|βHϕ

) 1
p

(∫

QTR

∣∣Dδ
t|TRϕ

∣∣q′
(
|η|βHϕ

)− p′
p

) 1
p′

+ ‖b‖L∞

(∫

QTR

|v|p|η|βHϕ

) 1
p

(∫

QTR

∣∣∆H ϕ
∣∣p′

(
|η|βHϕ

)− p′
p

) 1
p′

.

In the sequel, C denotes a constant which may vary from line to line but is
independent of the terms which will take part in any limit processing. So
we have ∫

QTR

∣∣η∣∣β
H
∣∣v∣∣pϕ 6 C

(∫

QTR

|u|q|η|γHϕ

) 1
q

A , (3.5)

and ∫

QTR

∣∣η∣∣γ
H
∣∣u∣∣qϕ 6 C

(∫

QTR

|v|p|η|βHϕ

) 1
p

B, (3.6)

where

A :=
(∫

QTR

∣∣Dα
t|TRϕ

∣∣q′ (|η|γHϕ
)− q′

q

) 1
q′

+
(∫

QTR

∣∣∆H ϕ
∣∣q′ (|η|γHϕ

)− q′
q

) 1
q′

,

B :=

(∫

QTR

∣∣Dδ
t|TRϕ

∣∣p′
(
|η|βHϕ

)− p′
p

) 1
p′

+

(∫

QTR

∣∣∆H ϕ
∣∣p′

(
|η|βHϕ

)− p′
p

) 1
p′

.

Combining (3.5) and (3.6) we obtain

(∫

QTR

∣∣η∣∣β
H
∣∣v∣∣pϕ

)1− 1
pq

6 C B
1
q A , (3.7)

and (∫

QTR

∣∣η∣∣γ
H
∣∣u∣∣qϕ

)1− 1
pq

6 C A
1
p B. (3.8)

Now we take

ϕ(η, t) = ϕ(x, y, τ, t) = Φ
(

τ2θj + |x|4θj + |y|4θj + t4

R4

)
, j = 1, 2, (3.9)

where Φ is a smooth nonnegative nonincreasing function satisfying (2.6) and
θj > 1, j = 1, 2, will be determined later on.
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Then,



∆H ϕ(η, t) =
16 θ2

j Φ′′(ρ)
R8

[
|x|2(4θj−1) + |y|2(4θj−1)

+2 τ2θj−1 〈x, y〉
(
|x|2(2θj−1) − |y|2(2θj−1)

)
+ τ2(2θj−1)

(
|x|2 + |y|2

)]

+
4 θj Φ′(ρ)

R4

[(
N + 2(2θj − 1)

)(
|x|2(2θj−1) + |x|2(2θj−1)

)

+2(2θj − 1) τ2(θj−1)
(
|x|2 + |y|2

)]
.

where ρ =
τ2θj + |x|4θj + |y|4θj + t4

R4
.

In order to estimate the right-hand side of the last equality, we apply
the scaling:

(
η, t

)
= (x, y, τ, t) 7→ η̃ = (x̃, ỹ, τ̃ , t̃)

x̃ = R
− 1

θj x, ỹ = R
− 1

θj y, τ̃ = R
− 2

θj τ, t̃ = R−1t. (3.10)
Let

Ω =
{(

η̃, t̃
)

=
(
x̃, ỹ, τ̃ , t̃

) ∈ HN × R+ : |τ̃ |2 + |x̃|4 + |ỹ|4 + t̃ θj < 2
}

.

Then, it follows that
∣∣∆H ϕ(η̃, t̃)

∣∣ 6 C

R
2
θj

, ∀ (
η̃, t̃

) ∈ Ω. (3.11)

Since
∣∣η∣∣
H = R

1
θj

∣∣η̃∣∣
H and dηdt = R

4N+1+ 2
θj dη̃dt̃, we derive the following

estimates:

• For j = 1, we choose θ1 such that the right-hand sides of



∫

QTR

∣∣∣Dα
t|TRϕ

∣∣∣
q′ (∣∣η∣∣γ

H ϕ
)− q′

q
dηdt

= R
−αq′−γθ1

q′
q

+ 2N+2
θ1

+1
∫

Ω

∣∣∣Dα
t̃|T Φ ◦ ρ̃

∣∣∣
q′ (∣∣η̃∣∣γ

HΦ ◦ ρ̃
)− q′

q
dη̃dt̃

and




∫

QTR

|∆H ϕ|q′
(∣∣η∣∣γ

H ϕ
)− q′

q
dηdt

6 C R
− 2

θ1
q′−γθ1

q′
q

+ 2N+2
θ1

+1
∫

Ω

(∣∣η̃∣∣γ
HΦ ◦ ρ̃

)− q′
q

dη̃dt̃,
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are of the same order in R. For this end, we take θ1 =
2
α

and we obtain

A 6 C R
−α−αγ

2q
+α

2
2N+2

q′ + 1
q′ .

• For j = 2, taking θ2 =
2
δ
, we get

B 6 C R
−δ− δβ

2p
+ δ

2
2N+2

p′ + 1
p′ .

And thus, from (3.7) and (3.8), it follows

(∫

QT

∣∣η∣∣β
H
∣∣v∣∣pϕdηdt

)1− 1
pq

6 C R
−α−αγ

2q
+α

2
2N+2

q′ + 1
q′+

1
q
{−δp′− δβ

2p
+ δ

2
2N+2

p′ + 1
p′ }

(3.12)
and

(∫

QT

∣∣η∣∣γ
H
∣∣u∣∣qϕdηdt

)1− 1
pq

6 C R
−δ− δβ

2p
+ δ

2
2N+2

p′ + 1
p′+

1
p
{−αq′−αγ

2q
+α

2
2N+2

q′ + 1
q′ }.

(3.13)

Thus, it suffices to assume




−α− αγ

2q
+

α

2
Q

q′
+

1
q′

+
1
q

{
−δp′ − δβ

2p
+

δ

2
Q

p′
+

1
p′

}
< 0

or

−δ − δβ

2p
+

δ

2
Q

p′
+

1
p′

+
1
p

{
−αq′ − αγ

2q
+

α

2
Q

q′
+

1
q′

}
< 0.

This condition is equivalent to

Q < Q?
e = max

{
Q1, Q2

}
,

where Q1 and Q2 are defined in (3.3).

Finally, letting R → ∞ and taking into account estimates (3.5) and
(3.8) or (3.6) and (3.7) , we obtain∫

R2N+1

∫

R+

∣∣η∣∣β
H
∣∣v∣∣p dηdt 6 0, (3.14)

and ∫

R2N+1

∫

R+

∣∣η∣∣γ
H
∣∣u∣∣q dηdt 6 0. (3.15)

We then conclude that v ≡ 0 and u ≡ 0, which is a contradiction.
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Remark 3.1. In [3], El Hamidi and Kirane show that the system




∂u

∂t
−∆H(a1u) >

∣∣η∣∣γ1

H
∣∣v∣∣p1 ,

∂v

∂t
−∆H(a2v) >

∣∣η∣∣γ2

H
∣∣u∣∣p2 ,

does not admit global solution other than the trivial one whenever

Q 6 Q??
e := max

{
γ1 + 2 + p1(γ2 + 2)

p1p2 − 1
,
γ2 + 2 + p2(γ1 + 2)

p1p2 − 1

}
.

Up to replace γ1 (resp. γ2) by β (resp. γ) and p1 (resp. p2) by p (resp. q),
the critical exponent Q??

e is nothing but the one introduced in Theorem 3.1
for α = δ = 1.

Remark 3.2. The analysis could be performed for the more general
system{

Dαi

0|tui −∆H(aiui) >
∣∣η∣∣γi+1

H
∣∣ui+1|pi+1 , η ∈ HN , t ∈ R+, 1 6 i 6 m,

um+1 = u1,

m > 2, pm+1 = p1, γm+1 = γ1, αi ∈ (0, 1) and ai ∈ L∞
(
HN × R+

)
for all

i ∈ {1, ..., m}.
Remark 3.3. We can also study the following problem

Dα
0|tu−∆H(au) >

∣∣η∣∣γ
H|u|p, (3.16)

where Dα
0|t denotes the Caputo fractional derivative of order α, α ∈ (1, 2).

Therefore, using the same techniques and escorting the scheme of the proof
of Theorem 2.1, we retrieve the critical exponent introduced in (2.3). Thus,
taking α = 2 in (2.3), i.e. when inequality (3.16) reduces to the hyperbolic
one

∂2u

∂t2
−∆H(au) >

∣∣η∣∣γ
H|u|p, (3.17)

we retrieve the critical exponent found by Pohozaev-Véron in [10] namely,

pc :=
Q + 1 + γ

Q− 1
.

Remark 3.4. If one let formally α to infinity, the critical exponent
introduced in (2.3) becomes

p∞c :=
Q + γ

Q− 2
,

which is nothing but the one determined in [10] for the case of elliptic
inequality.
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14 K. Haouam, M. Sfaxi

References
[1] I. Brindelli, I. Capuzzo Dolcetta, A. Cutri, Liouville theorems for semi-

linear equations on the Heisenberg Group. Ann. Inst. H. Poincaré 14
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[5] L. Hörmander, Hypoelliptic second order differential equation. Acta.
Math. 119, (1967), 147-171.

[6] A.G. Kartsatos, V.V. Kurta, On a comparison principle and the critical
exponents for solutions of semilinear parabolic inequalities. J. London
Math. Soc. 66, No 2 (2002), 351-360.

[7] M. Kirane, Y. Laskri, N.E. Tatar, Critical exponents of Fujita type
for certain evolution equations and systems with spatio-temporal frac-
tional derivatives. J. Math. Anal. Appl. 312 (2005), 488-501.

[8] E. Lanconelli, F. Uguzzoni, Asymptotic behaviour and nonexistence the-
orems for semilinear Dirichlet problems involving critical exponent on
unbounded domains of the Heisenberg group. Boll. Unione. Math.
Ital. 8 (1998), 139-168.

[9] I. Podlubny, Fractional Differential Equations, Math. Sci. Engrg., Aca-
demic Press, New York (1999).
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