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Abstract

In this paper, we establish real Paley-Wiener theorems for the Dunkl
transform on IRd. More precisely, we characterize the functions in the
Schwartz space S(IRd) and in L2

k(IR
d) whose Dunkl transform has bounded,

unbounded, convex and nonconvex support.
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1. Introduction

In the last few years there has been a great interest to the study of the
spectrum of functions, i.e. the support of the transform of these functions
relatively to certain integral transforms. These results have been called
in some papers ”real Paley-Wiener theorems”. See [13] for an overview
references and details for this question.

In this paper we consider the Dunkl operators Tj , j = 1, ..., d, which are
the differential-difference operators introduced by C.F. Dunkl in [6]. These
operators are very important in pure mathematics and in physics. They
provide useful tool in the study of special functions with root systems.

In [7] (see also [8]), C.F. Dunkl has studied a Fourier transform FD,
called Dunkl transform defined for a regular function f by
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∀x ∈ IRd, FDf(x) =
∫

IRd

K(−ix, y)f(y)ωk(y)dy,

where K(−ix, y) represents the Dunkl kernel and ωk a weight function.
The purpose of this paper is to prove real Paley-Wiener theorems on

the Schwartz space S(IRd) and on L2
k(IR

d). More precisely, we consider first
the Paley-Wiener spaces associated with the Dunkl operators:

PW 2
k (IRd) = {f ∈ E(IRd)/∀n ∈ IN, 4n

kf ∈ L2
k(IR

d) and R4k
f < +∞},

PWk(IRd) being the space of f ∈ E(IRd) such that for all n, m ∈ IN, (1 +
||x||)m4n

kf belongs to L2
k(IR

d) and R4k
f < +∞, where E(IRd) is the space

of C∞-functions on IRd,4k =
d∑

j=1

T 2
j the Dunkl-Laplacian operator, L2

k(IR
d)

the space of square integrable functions with respect to the measure ωk(x)dx,

||.||k,2 its norm and R4k
f = lim

n→∞ ||4
n
kf ||

1
2n
k,2.

We establish that FD is a bijection from PW 2
k (IRd) onto L2

k,c(IR
d) (the

space of functions in L2
k(IR

d) with compact support), and from PWk(IRd)
onto D(IRd) (the space of C∞-functions on IRd with compact support).

Next, we characterize the L2
k(U)-functions by their Dunkl transform,

where U is respectively a disk, a symmetric body, a nonconvex and an
unbounded domain in IRd. These results are the real Paley-Wiener theorems
for square integrable functions with respect to the measure ωk(x)dx.

We generalize also a theorem of H.H. Bang [3] by characterizing the
support of the Dunkl transform of functions in S(IRd) by an Lp growth
condition. More precisely, these real Paley-Wiener theorems can be stated
as follows:

• The Dunkl transform FD(f) of f ∈ S(IRd) vanishes outside a polyno-
mial domain UP = {x ∈ IRd, P (x) ≤ 1}, with P a non constant polynomial,
if and only if

limn→+∞||Pn(iT )f ||
1
n
k,p ≤ 1, 1 ≤ p ≤ ∞,

with T = (T1, ..., Td) and ||.||k,p is the norm of the space Lp
k(IR

d) of pth

integrable functions on IRd with respect to the measure ωk(x)dx.
• A function f ∈ S(IRd) is the Dunkl transform of a function vanishing

in some ball with radius r centered at the origin, if and only if

lim
n→∞ ||

∞∑

m=0

(n4k)m f

m!
||

1
n
k,p ≤ exp(−r2), 1 ≤ p ≤ ∞.
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This paper is arranged as follows:
In Section 2 we recall the main results about the harmonic analysis as-

sociated to the Dunkl operators. Section 3 is devoted to study the functions
such that the supports of their Dunkl transform are compact, and to estab-
lish the real Paley-Wiener theorems for FD on the Schawrz space S(IRd).
In Section 4 we characterize the functions in S(IRd) such that their Dunkl
transforms vanish outside a polynomial domain. In Section 5 we give a
necessary and sufficient condition for functions in L2

k(IR
d) such that their

Dunkl transforms vanish in a disk. We study in Section 6 the functions such
that their Dunkl transforms satisfy the symmetric body property, and we
derive a real Paley-Wiener type theorem for these functions.

2. Harmonic analysis associated to the Dunkl operators

In the first two subsections we collect some notations and results on
Dunkl operators, the Dunkl kernel and the Dunkl intertwining operators
(see [6],[7],[8]).

2.1. Reflection groups, root system
and multiplicity functions

We consider IRd with the Euclidean scalar product 〈., .〉 and ||x|| =√
〈x, x〉. On ICd, ||.|| denotes also the standard Hermitian norm while for

all z = (z1, ..., zd), w = (w1, ..., wd) ∈ ICd, 〈z, w〉 =
d∑

j=1

zjwj .

For α ∈ IRd\{0}, let σα be the reflection in the hyperplane Hα ⊂ IRd

orthogonal to α, i.e. σα(x) = x− 2 〈α,x〉
||α||2 α.

A finite set R ⊂ IRd\{0} is called a root system, if R ∩ IR.α = {α,−α}
and σαR = R for all α ∈ R. For a given root system R the reflection
σα, α ∈ R, generate a finite group W ⊂ O(d), the reflection group associated
with R. We denote by |W | its cardinality. All reflections in W correspond
to suitable pairs of roots. For a given β ∈ IR\∪α∈RHα, we fix the positive
subsystem R+ = {α ∈ R /〈α, β〉 > 0}, then for each α ∈ R, either α ∈ R+

or −α ∈ R+.
A function k : R −→ IC on a root system R is called a multiplicity func-

tion, if it is invariant under the action of the associated reflection group
W . If one regards k as a function on the corresponding reflections, this
means that k is constant on the conjugacy classes of reflections in W . For
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abbreviation, we introduce the index γ = γ(k) =
∑

α∈R+

k(α), and the weight

function ωk(x) =
∏

α∈R+
|〈α, x〉|2k(α), which is W -invariant and homoge-

neous of degree 2γ.
We introduce the Mehta-type constant

ck = (
∫

IRd

exp(−||x||2)ωk(x) dx)−1. (1)

Remark. For d = 1 and W = Z2, the multiplicity function k is a single
parameter denoted γ > 0 and we have for all x ∈ IR, ωk(x) = |x|2γ .

2.2. Dunkl operators. The Dunkl kernel
and the Dunkl intertwining operator

Notations. We denote by
- Cp(IRd) (resp. Cp

c (IRd)) the space of functions of class Cp on IRd (resp.
with compact support).
- E(IRd) the space of C∞-functions on IRd.
- S(IRd) the space of C∞-functions on IRd which are rapidly decreasing as
their derivatives.
- D(IRd) the space of C∞-functions on IRd which are of compact support.
We provide these spaces with the classical topology .
- E ′(IRd) the space of distributions on IRd with compact support. It is the
topological dual of E(IRd).
- S ′(IRd) the space of tempered distributions on IRd. It is the topological
dual of S(IRd).

The Dunkl operators Tj , j = 1, ..., d, on IRd associated with the finite
reflection group W and the multiplicity function k are given by

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉 , f ∈ C1(IRd). (2)

In the case k = 0, the Tj , j = 1, ..., d, reduce to the corresponding partial
derivatives. In this paper, we will assume throughout that k ≥ 0 and γ > 0.

The Dunkl Laplacian 4k on IRd is defined by

4kf =
d∑

j=1

T 2
j f = 4f + 2

∑

α∈R+

kαδα(f), f ∈ C2(IRd), (3)

where 4 =
d∑

j=1

∂2
j is the Laplacian on IRd and

δα(f)(x) =
〈∇f(x), α〉
〈α, x〉 − f(x)− f(σα(x))

〈α, x〉2 ,
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with ∇f the gradient of f .
For f in C1

c (IRd) and g ∈ C1(IRd) we have
∫

IRd

Tjf(x)g(x)ωk(x) dx = −
∫

IRd

f(x)Tjg(x)ωk(x) dx, j = 1, ..., d. (4)

For y ∈ IRd, the system



Tju(x, y) = yju(x, y), j = 1, ..., d,

u(0, y) = 1, for all y ∈ IRd.

admits a unique analytic solution on IRd, denoted by K(x, y) and called
Dunkl kernel. This kernel has a unique holomorphic extension to ICd × ICd.

Example. If d = 1 and W = Z2, the Dunkl kernel is given by

K(z, w) = jγ− 1
2
(izw) +

zw

2γ + 1
jγ+ 1

2
(izw), z, w ∈ IC, (5)

where for α ≥ −1
2 , jα is the normalized Bessel function of index α defined

by

jα(z) = 2αΓ(α + 1)
Jα(z)

zα
= Γ(α + 1)

∞∑

n=0

(−1)n( z
2)2n

n!Γ(α + 1 + n)
, (6)

where Jα is the Bessel function of first kind and index α.

The Dunkl kernel possesses many properties, in particular, the following
proposition gives some of them:

Proposition 2.1. i) For all z, w ∈ ICd we have

K(z, w) = K(w, z); K(z, 0) = 1; K(λz,w) = K(z, λw), for all λ ∈ IC.

ii) For all ν ∈ INd, x ∈ IRd and z ∈ ICd, we have

|Dν
zK(x, z)| ≤ ||x|||ν| exp(||x||||Rez||), (7)

and for all x, y ∈ IRd : |K(ix, y)| ≤ 1, (8)

with Dν
z = ∂ν

∂z
ν1
1 ...∂z

νd
d

and |ν| = ν1 + ... + νd.

2.3. The Dunkl transform

Notations. We denote by Lp
k(IR

d) the space of measurable functions
on IRd such that
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||f ||k,p = (
∫

IRd

|f(x)|pωk(x) dx)
1
p < +∞, if 1 ≤ p < +∞,

||f ||k,∞ = ess supx∈IRd |f(x)| < +∞.

The Dunkl transform of a function f in D(IRd) is given by

∀y ∈ IRd, FD(f)(y) =
∫

IRd

f(x)K(−iy, x)ωk(x)dx. (9)

Further, we give some properties of this transform (see [7],[8]):

i) For all f in L1
k(IR

d) we have

||FD(f)||k,∞ ≤ ||f ||k,1. (10)

ii) For all f in S(IRd) we have

∀y ∈ IRd, FD(Tjf)(y) = iyjFD(f)(y) , j = 1, ..., d. (11)

iii) For all f in L1
k(IR

d) such that FD(f) is in L1
k(IR

d), we have the
inversion formula

f(y) =
c2
k

4γ+ d
2

∫

IRd

FD(f)(x)K(ix, y)ωk(x) dx, a.e. (12)

Theorem 2.2. The Dunkl transform FD is a topological isomorphism:
i) From S(IRd) onto itself.
ii) From D(IRd) onto H(ICd) (the space of entire functions on ICd, rapidly

decreasing and of exponential type.)
The inverse transform F−1

D is given by

∀y ∈ IRd, F−1
D (f)(y) =

c2
k

4γ+ d
2

FD(f)(−y), f ∈ S(IRd). (13)

Theorem 2.3. i) Plancherel formula for FD: For all f in S(IRd) we
have ∫

IRd

|f(x)|2ωk(x) dx =
c2
k

4γ+ d
2

∫

IRd

|FD(f)(ξ)|2ωk(ξ) dξ. (14)

ii) Plancherel theorem for FD: The renormalized Dunkl transform

f → 2−(γ+ d
2
)ckFD(f) can be uniquely extended to an isometric isomorphism

on L2
k(IR

d).
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Proposition 2.4. Let 1 ≤ p ≤ 2. The Dunkl transform FD can be
extended to a continuous mapping from Lp

k(IR
d) into Lq

k(IR
d), with q the

conjugate component of p.

Definition 2.5. i) The Dunkl transform of a distribution τ in S ′(IRd)
is defined by

< FD(τ), φ >=< τ,FD(φ) >, φ ∈ S(IRd). (15)

ii) We define the Dunkl transform of a distribution τ in E ′(IRd) by
∀ y ∈ IRd, FD(τ)(y) = 〈τx,K(−ix, y)〉. (16)

Theorem 2.6. The Dunkl transform FD is a topological isomorphism:
i) From S ′(IRd) onto itself.
ii) From E ′(IRd) onto H(ICd)(the space of entire functions on ICd, slowly

increasing and of exponential type.)

Let τ be in S ′(IRd). We define the distribution Tjτ , j = 1, ..., d, by

< Tjτ, ψ >= − < τ, Tjψ >, for all ψ ∈ S(IRd). (17)

This distribution satisfies the following properties:

FD(Tjτ) = iyjFD(τ), j = 1, ..., d. (18)
FD(4kτ) = −||y||2FD(τ). (19)

We consider f in L2
k(IR

d). The distribution Tfωk
given by the function

fωk belongs to S ′(IRd) and the relation (19) is written in this case in the
form

FD(4kTfωk
) = −||y||2FD(Tfωk

). (20)

Notations. We denote by
- L2

k,c(IR
d) the space of functions in L2

k(IR
d) with compact support.

- HL2
k
(ICd) the space of entire functions f on ICd of exponential type such

that f|IRd belongs to L2
k(IR

d).

Theorem 2.7. The Dunkl transform FD is bijective from L2
k,c(IR

d) onto

HL2
k
(ICd).

P r o o f. i) We consider the function f on ICd given by

∀ z ∈ ICd, f(z) =
∫

IRd

g(x)K(−ix, z)ωk(x)dx, (21)
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with g ∈ L2
k,c(IR

d).
By derivation under the integral sign and by using the inequality (7),

we deduce that the function f is entire on ICd and of exponential type.
On the other hand, the relation (21) can also be written in the form

∀ y ∈ IRd, f(y) = FD(g)(y).

Thus from Theorem 2.3, the function f|IRd belongs to L2
k(IR

d). Thus f ∈
HL2

k
(ICd).

ii) Reciprocally, let ψ be in HL2
k
(ICd). From Theorem 2.6 ii), there exists

S belonging to E ′(IRd) with support in the ball B(o, a) of center o and radius
a, such that

∀ y ∈ IRd, ψ(y) = 〈Sx,K(−ix, y)〉. (22)

On the other hand as ψ|IRd belongs to L2
k(IR

d), then from Theorem 2.3 there
exists h ∈ L2

k(IR
d) such that

ψ|IRd = FD(h). (23)

Thus from (22), for all ϕ ∈ D(IRd) we have
∫

IRd

ψ(y)FD(ϕ)(y)ωk(y)dy = 〈Sx,

∫

IRd

K(−ix, y)FD(ϕ)(y)ωk(y)dy〉.

Thus using (13) we deduce that∫

IRd

ψ(y)FD(ϕ)(y)ωk(y)dy =
4γ+ d

2

c2
k

〈S, ϕ〉. (24)

On the other hand, (23) implies

∫

IRd

ψ(y)FD(ϕ)(y)ωk(y)dy =
∫

IRd

FD(h)(y)FD(ϕ)(y)ωk(y)dy.

But from Theorem 2.3 we deduce that

∫

IRd

FD(h)(y)FD(ϕ)(y)ωk(y)dy=
4γ+ d

2

c2
k

∫

IRd

h(y)ϕ(y)ωk(y)dy=
4γ+ d

2

c2
k

〈Thωk
, ϕ〉.
(25)

Thus the relations (24),(25) imply

S = Thωk
.

This relation shows that the support of h is compact. Then h ∈ L2
k,c(IR

d).
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3. Functions with compact spectrum

We begin this section by the following definition.

Definition 3.1. i) We define the support of g ∈ L2
k(IR

d) and we
denote it by supp g, the smallest closed set such that the function g vanishes
almost everywhere outside it.

ii) We denote by Rg the radius of the support of g given by

Rg = sup
λ∈suppg

||λ||.

Remark. It is clear that Rg is finite if and only if, g has compact
support.

Proposition 3.2. Let g be in L2
k(IR

d) such that for all n ∈ IN , the
function ||λ||2ng(λ) belongs to L2

k(IR
d). Then,

Rg = lim
n→∞

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

. (26)

P r o o f. We suppose that ||g||k,2 6= 0, otherwise Rg = 0 and formula
(26) is trivial.

Assume now that g has compact support with Rg > 0. We have

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

≤
{∫

||λ||≤Rg

|g(λ)|2ωk(λ)dλ

} 1
4n

Rg.

Thus,

lim
n→∞

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

≤ Rg. (27)

On the other hand, for any positive ε we have∫

Rg−ε≤||λ||≤Rg

|g(λ)|2ωk(λ)dλ > 0.

Hence

limn→∞

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

≥ Rg − ε. (28)

Then we deduce (26) from (27) and (28).
We prove now the assertion in the case where g has unbounded support.

Indeed, for any positive N , we have

limn→∞

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n
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≥ limn→∞

{∫

||λ||≥N
||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

≥ N.

Thus,

limn→∞

{∫

IRd

||λ||4n|g(λ)|2ωk(λ)dλ

} 1
4n

= ∞.

Notations. We denote by
- L2

k,R(IRd) := {g ∈ L2
k,c(IR

d)/Rg = R}, for R ≥ 0.
- DR(IRd) := {g ∈ D(IRd)/Rg = R}, for R ≥ 0.

Definition 3.3. We define the Paley-Wiener spaces PW 2
k (IRd) and

PW 2
k,R(IRd) as follows:
i) PW 2

k (IRd) is the space of functions f ∈ E(IRd) satisfying
a) 4n

kf ∈ L2
k(IR

d) for all n ∈ IN .

b) R4k
f := lim

n→∞ ||4
n
kf ||

1
2n
k,2 < ∞.

ii) PW 2
k,R(IRd) := {f ∈ PW 2

k (IRd)/R4k
f = R}.

The real L2-Paley-Wiener theorem for the Dunkl transform can be for-
mulated as follows:

Theorem 3.4. The Dunkl transform FD is a bijection:

i) From PW 2
k,R(IRd) onto L2

k,R(IRd).
ii) From PW 2

k (IRd) onto L2
k,c(IR

d).

P r o o f. i) Let g be in PW 2
k,R(IRd). From the relation (20) the function

FD(4n
kg)(ξ) = (−1)n||ξ||2nFD(g)(ξ) belongs to L2

k(IR
d) for all n ∈ IN . Thus

from Theorem 2.3 we deduce that

lim
n→∞

{∫

IRd

||ξ||4n|FD(g)(ξ)|2ωk(ξ)dξ

} 1
4n

= lim
n→∞

{∫

IRd

|4kg(x)|2ωk(x)dx

} 1
4n

= R.

Using Proposition 3.2, we conclude that FD(g) has compact support with
RFD(g) = R.

Conversely, let f be in L2
k,R(IRd). Then ||ξ||nf(ξ) ∈ L1

k(IR
d) for any

n ∈ IN , and F−1
D (f) ∈ E(IRd). On the other hand, from Theorem 2.3 we

have
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lim
n→∞

{∫

IRd

|4n
k(F−1

D f)(x)|2ωk(x)dx

} 1
4n

= lim
n→∞

{∫

IRd

||ξ||4n|f(ξ)|2ωk(ξ)dξ

} 1
4n

= R.

Thus F−1
D (f) ∈ PW 2

k,R(IRd).
ii) We deduce ii) from i).

Corollary 3.5. The Dunkl transform FD is a bijection from PW 2
k (IRd)

onto HL2
k
(ICd).

P r o o f. We deduce the result from Theorem 3.4 ii) and Theorem 2.7.

Definition 3.6. i) The Paley-Wiener space PWk(IRd) is the space of
functions f ∈ E(IRd) satisfying

a) (1 + ||x||)m4n
kf ∈ L2

k(IR
d) for all n,m ∈ IN .

b) R4k
f := lim

n→∞ ||4
n
kf ||

1
2n
k,2 < ∞.

ii) We have PWk,R(IRd) := {f ∈ PWk(IRd)/R4k
f = R}, for R ≥ 0.

Remark. We notice that the only difference between PW 2
k (IRd) and

PWk(IRd) is the extra requirement of polynomial decay to help ensuring
that FD(f) belongs to E(IRd).

The real Paley-Wiener theorem for the Dunkl transform of functions in
the preceding spaces is the following:

Theorem 3.7. The Dunkl transform FD is a bijection:
i) From PWk,R(IRd) onto DR(IRd).
ii) From PWk(IRd) onto D(IRd).

P r o o f. i) Let g be in PWk,R(IRd) ⊂ PW 2
k,R(IRd). Then FD(g) ∈

E(IRd) since g has polynomial decay, and by Theorem 3.4 the function FD(g)
has compact support with RFD(g) = R.

Conversely, let f ∈ DR(IRd), then F−1
D (f) ∈ S(IRd) and F−1

D (f) ∈
PW 2

k,R(IRd) by Theorem 3.4. So it only remains to show that F−1
D (f) sat-

isfies the polynomial decay condition for any f ∈ DR(IRd). For this, we use
the following identity which is easy to prove:

For a suitable functions f and g, we deduce from relations (3),(4),(9),(13)
that

(1 + ||x||2)nF−1
D (f)(x) =

∫

IRd

(I −4k)nf(ξ)K(ix, ξ)ωk(ξ)dξ.
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Thus we obtain the result.
ii) We deduce the result from the i).

4. Dunkl transform of functions with polynomial domain support

Theorem 4.1. Let P (x) be a non-constant polynomial on IRd. For any
function f ∈ S(IRd) the following relation holds:

lim
n→∞ ||P

n(iT )f ||
1
n
k,p = sup

y∈suppFD(f)
|P (y)|, 1 ≤ p ≤ ∞, (29)

with T = (T1, ..., Td).

P r o o f. We consider f 6= 0 in S(IRd). Set q = p
p−1 if 1 < p < ∞, and

q = 1 or ∞ if p = ∞ or 1. The proof is divided in several steps.
In the following three steps we suppose that

0 < sup
y∈suppFD(f)

|P (y)| < ∞. (30)

First step: In this step we shall prove that
lim

n→∞||P
n(iT )f ||

1
n
k,p ≤ sup

y∈suppFD(f)
|P (y)|, 1 ≤ p ≤ ∞.

• Let 2 ≤ p < ∞. By applying Proposition 2.4, there exists a positive
constant C such that

||Pn(iT )f ||k,p ≤ C||Pn(ξ)FD(f)||k,q, (31)

≤ C( sup
y∈suppFD(f)

|P (y)|)n||FD(f)||k,q. (32)

Thus
lim

n→∞||P
n(iT )f ||

1
n
k,p ≤ sup

y∈suppFD(f)
|P (y)|. (33)

• Suppose now that 1 ≤ p < 2. For r > 2γ + d Hölder’s inequality gives

||f ||pk,p =
∫

IRd

(1 + ||x||2)−rp|(1 + ||x||2)rf(x)|pωk(x)dx

≤ ||(1 + ||x||2)rf ||pk,2||(1 + ||x||2)−rp||k, 2
2−p

.

≤ C||(1 + ||x||2)rf ||pk,2. (34)

Thus, from the relation (20) we obtain

||f ||pk,p ≤ C||(I −4k)r[FD(f)]||pk,2,
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where C is a positive constant.
Consequently for all n ∈ IN , we deduce that

||Pn(iT )f ||k,p ≤ C
1
p ||(I −4k)r[Pn(ξ)FD(f)]||k,2. (35)

To estimate the second member, we use the following relation given in
Proposition 5.1 of [9]: For all µ ∈ INd\{0}, there exists a positive con-
stant C satisfying: For all x ∈ IRd there exist ξp(x, α), p = 1, ..., |µ|, and
α ∈ R+, such that

|Tµu(x)| ≤ |Dµu(x)|+ C
∑

α∈R+

∑

|β|=|µ|

|µ|∑

p=1

|Dβu(ξp(x, α))|. (36)

From this relation one can deduce that

||Pn(iT )f ||k,p ≤ C
1
p n2r sup

y∈suppFD(f)
|P (y)|n−2r||ϕn||k,2

with suppϕn ⊂ suppFD(f) and ||ϕn||k,2 ≤ C1, where C1 is a constant
independent of n. Hence,

||Pn(iT )f ||k,p ≤ C
1
p C1n

2r sup
y∈suppFD(f)

|P (y)|n−2r. (37)

Thus

lim
n→∞||P

n(iT )f ||
1
n
k,p ≤ sup

y∈suppFD(f)
|P (y)|. (38)

• Let now p = ∞. From the relation (13) We have

||f ||∞,k ≤
c2
k

4γ+ d
2

||FD(f)||k,1.

On the other hand, from Cauchy-Schawrz’s inequality we obtain

||FD(f)||k,1 ≤ C0||(1 + ||ξ||2) 2γ+d
2 FD(f)(ξ)||k,2,

where C0 is a positive constant.
Combining the previous inequalities and replacing f by Pn(iT )f , we

deduce that there exists a positive constant C such that

||Pn(iT )f ||k,∞ ≤ C||Pn(ξ)(1 + ||ξ||2) 2γ+d
2 FD(f)(ξ)||k,2. (39)

Thus,

lim
n→∞||P

n(iT )f ||
1
n
k,∞ ≤ sup

y∈supp (1+||ξ||2)
2γ+d

2 FD(f)

|P (y)| = sup
y∈suppFD(f)

|P (y)|.

(40)
Using (33), (38) and (40) we obtain
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lim
n→∞||P

n(iT )f ||
1
n
k,p ≤ sup

y∈suppFD(f)
|P (y)|, 1 ≤ p ≤ ∞. (41)

Second step: In this step we want to prove that

lim
n→∞ ||P

n(iT )f ||
1
n
k,2 = sup

y∈suppFD(f)
|P (y)|.

For any ε, 0 < ε < sup
y∈suppFD(f)

|P (y)|, there exists a point x0 ∈ suppFD(f)

such that
|P (x0)| > sup

y∈suppFD(f)
|P (y)| − ε

2

As P is a continuous function, there exists a neighborhood Ux0 such that

|P (x)| > sup
y∈suppFD(f)

|P (y)| − ε, x ∈ Ux0

From Theorem 2.3 we deduce that

||Pn(iT )f ||k,2 = c2k

4γ+ d
2
||Pn(ξ)FD(f)||k,2

≥ c2k

4γ+ d
2
||Pn(ξ)FD(f)1Ux0

||k,2,

where 1Ux0
is the characteristic function of Ux0 .

Thus,

||Pn(iT )f ||k,2 ≥
c2
k

4γ+ d
2

( sup
y∈suppFD(f)

|P (y)| − ε)n||FD(f)1Ux0
||k,2 .

This inequality implies

limn→∞||Pn(iT )f ||
1
n
k,2 ≥ ( sup

y∈suppFD(f)
|P (y)| − ε) lim

n→∞ ||FD(f)1Ux0
||

1
n
k,2

≥ sup
y∈suppFD(f)

(|P (y)| − ε). (42)

But ε can be chosen arbitrarily small, thus from (41) and (42) the relation
(29) follows for p = 2.
Third step: In this step we shall prove that

limn→∞||Pn(iT )f ||
1
n
k,p ≥ sup

y∈suppFD(f)
|P (y)|, 1 ≤ p ≤ ∞.
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Since f ∈ S(IRd), the iteration of the relation (4) implies the relation
∫

IRd

Pn(iT )f(x)Pn(iT )f(x)ωk(x)dx =
∫

IRd

f(x)P 2n(iT )f(x)ωk(x)dx.

(43)
Hence, by Hölder’s inequality,

||Pn(iT )f ||2k,2 ≤ ||f ||k,q||P 2n(iT )f ||k,p. (44)

where q is the conjugate exponent of p. Thus,

lim
n→∞ ||P

n(iT )f ||
1
n
k,2 ≤ ( lim

n→∞ ||f ||
1
2n
k,q)limn→∞||P 2n(iT )f ||

1
2n
k,p (45)

≤ limn→∞||P 2n(iT )f ||
1
2n
k,p. (46)

Applying now the relation (29) with p = 2, we conclude that

sup
y∈suppFD(f)

|P (y)| = lim
n→∞ ||P

n(iT )f ||
1
n
k,2 ≤ limn→∞||P 2n(iT )f ||

1
2n
k,p. (47)

We replace in formula (44) the function f by P (iT )f and we obtain

||Pn+1(iT )f ||2k,2 ≤ ||P (iT )f ||k,q||P 2n+1(iT )f ||k,p. (48)
Thus,

sup
y∈suppFD(f)

|P (y)| = lim
n→∞ ||P

n+1(iT )f ||
1

n+1

k,2 ≤ limn→∞||P 2n+1(iT )f ||
1

2n+1

k,p .

(49)
Using (47) and (49) we deduce that

sup
y∈suppFD(f)

|P (y)| ≤ limn→∞||Pn(iT )f ||
1
n
k,p. (50)

Then formulas (50) and (42) give (29). Thus we have proved the theorem
under the condition (30).

Fourth step: Suppose now sup
y∈suppFD(f)

|P (y)| = +∞. Then for any N >

0 there exists a point x0 ∈ suppFD(f) such that |P (x0)| ≥ 2N . Since P
is a continuous function, there exists a neighborhood Ux0 of x0 on which
|P (x)| > N . Similarly to the previous calculation in the second step, we
obtain

limn→∞||Pn(iT )f ||
1
n
k,2 ≥ c2k

4γ+ d
2
limn→∞||Pn(ξ)FD(f)1Ux0

||
1
n
k,2,

≥ N limn→∞||f1Ux0
||

1
n
k,2 = N.
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We choose N large, and we obtain
lim

n→∞ ||P
n(iT )f ||

1
n
k,2 = ∞.

Finally, if sup
y∈suppFD(f)

|P (y)| = 0, the identity (29) is clear.

Hence the proof of the theorem is finished.

Definition 4.2. Let P be a non-constant polynomial and Up = {x ∈
IRd, |P (x)| ≤ 1}. The set UP is called a polynomial domain in IRd.

Remark. A disk is a polynomial domain. A polynomial domain may
be unbounded and nonconvex, for example the domain UP with P (ξ) =
ξ2
1 − ξ2

2 − ...− ξ2
d is neither bounded nor convex.

We have the following result.

Corollary 4.3. Let f be in S(IRd). The Dunkl transform FD(f)
vanishes outside a polynomial domain UP , if and only if,

lim
n→∞||P

n(iT )f ||
1
n
k,p ≤ 1, 1 ≤ p ≤ ∞. (51)

Remarks. i) If we take P (y) = −||y||2, then P (iT ) = 4k, and Theorem
4.1 and Corollary 4.3 characterize functions such that the support of their
Dunkl transform is a ball.

ii) Corollary 4.3 has been obtained for p = 2 by Vu Kim Tuan in [14].
iii) Theorem 4.1 and Corollary 4.3 generalize also the result obtained in

[4].

Corollary 4.4. Let g be in S ′(IRd). We assume that g and its Dunkl
transform FD(g) both have compact support. Then g = 0.

P r o o f. Assume first that g 6= 0 in D(IRd), with suppg ∈ B(0, R) for
some 0 < R < ∞, and RFD(g) < ∞. Choose ξ0 such that ||ξ0|| > RFD(g).
Then

lim
n→∞|

∫

IRd

4n
kg(x)K(iξ0, x)ωk(x)dx| 1n ≤ lim

n→+∞‖4
n
kg‖

1
n
k,1 = R2

FD(g).

On the other hand, we have

lim
n→∞|

∫

IRd

4n
kg(x)K(iξ0, x)ωk(x)dx| 1n = lim

n→∞|
∫

IRd

g(x)4n
kK(iξ0, x)ωk(x)dx| 1n

= ||ξ0||2 lim
n→∞|

∫

IRd

g(x)K(iξ0, x)ωk(x)dx| 1n = ||ξ0||2 > R2
FD(g).
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This gives a contradiction.

Now let g be in S ′(IRd) with compact support. Let ψ be in D(IRd). Then
from Theorem 5.4 of [17] g ∗D ψ belongs to D(IRd) and FD(g ∗D ψ) =
FD(ψ)FD(g) has compact support. So g ∗D ψ = 0 for all ψ in D(IRd),
which implies that g = 0 (see [12],[16],[17] for the properties of the Dunkl
convolution).

5. Dunkl transform of functions vanishing on a ball

The following theorem gives the radius of the large disk on which the
Dunkl transform of functions in L2

k(IR
d) vanishes every where.

Let En, n ∈ IN\{0} be the Gauss kernel associated with the Dunkl
operators defined by

∀ y ∈ IRd, En(y) =
ck

(4n)γ+ d
2

e−
||y||2
4n ,

and En ∗D f the Dunkl convolution of En and f in L2
k(IR

d) given by

∀x ∈ IRd, En ∗D f(x) =
∫

IRd

τx(En)(y)f(y)ωk(y)dy, (52)

with

τx(En)(y) =
ck

(4n)γ+ d
2

e−
(||x||2+||y||2)

4n K(
x√
2n

,
y√
2n

). (53)

Theorem 5.1. Let f be in L2
k(IR

d). We consider the sequence

fn(x) = En ∗D f(x), x ∈ IRd, n ∈ IN\{0}. (54)

Then,

lim
n→∞

√
− 1

n
ln ||fn||k,2 = λFD(f), (55)

where
λFD(f) = inf {||ξ||, ξ ∈ suppFD(f)} . (56)

P r o o f. First we remark that from (52),(53) the function fn is well
defined. We assume that ||f ||k,2 > 0, otherwise the result is trivial. To
prove (55) it is sufficient to verify the equivalent identity

lim
n→∞ ||fn||

1
n
k,2 = exp(−λ2

FD(f)). (57)
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By a simple calculation we see that the Dunkl transform of fn(x) is
exp(−n||ξ||2)FD(f)(ξ) and then by applying Theorem 2.3 we obtain

||fn||k,2 =
ck

2γ+ d
2

|| exp(−n||ξ||2)FD(f)(ξ)||k,2 (58)

=
ck

2γ+ d
2

||f ||k,2{
∫

suppFD(f)
exp(−2n||ξ||2) |FD(f)(ξ)|2

||f ||2k,2

ωk(ξ)dξ} 1
2 .

On the other hand it is known that if m is the Lebesque measure on IRd

and U a subset of IRd such that m(U) = 1, then for all φ in the Lebesgue
space Lp(U, dm), 1 ≤ p ≤ +∞, we have

lim
p→∞ ||φ||Lp(U ;dm) = ||φ||L∞(U ;dm). (59)

By applying formula (59) with

U =suppFD(f), φ=exp(−||ξ||2), p=2n, and dm(ξ)=
|FD(f)(ξ)|2
||f ||2k,2

ωk(ξ)dξ,

and use the fact that lim
n→+∞(

ck||f ||k,2

2γ+ d
2

)
1
n = 1.

Thus we obtain
lim

n→∞ ||fn||
1
n
k,2 = sup

ξ∈suppFD(f)
exp(−||ξ||2) = exp(−λ2

FD(f)), (60)

which is the relation (57).
A function f ∈ L2

k(IR
d) is the Dunkl transform of a function vanishing

in a neighborhood of the origin, if and only if, λFD(f) > 0, or equivalently, if
and only if the limit (57) is less than 1. Thus we have proved the following
result.

Corollary 5.2. The condition

lim
n→∞ ||fn||

1
n
k,2 < 1, (61)

is necessary and sufficient for a function f ∈ L2
k(IR

d) to have its Dunkl
transform vanishing in a neighborhood of the origin.

Remark. From Theorem 3.3 and Corollary 5.2, it follows that the
support of the Dunkl transform of a function in L2

k(IR
d) is in the tore

λFD(f) ≤ ||ξ|| ≤ RFD(f), if and only if,

λFD(f) ≤ lim
n→∞

√
− 1

n
ln ||fn||k,2 ≤ lim

n→∞ ||4
n
kf ||

1
2n
k,2 ≤ RFD(f). (62)
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Theorem 5.3. For any function f ∈ S(IRd) the following relation holds

lim
n→∞ ||

∞∑

m=0

(n4k)m f

m!
||

1
n
k,p = exp(−λ2

FD(f)), 1 ≤ p ≤ ∞. (63)

In particular, a function f ∈ S(IRd) is the Dunkl transform of a function in
S(IRd) vanishing in the ball B(o, r) of center o and radius r, if and only if
we have

lim
n→∞ ||

∞∑

m=0

(n4k)m f

m!
||

1
n
k,p ≤ exp(−r2), 1 ≤ p ≤ ∞. (64)

P r o o f. It is similar to the proof of Theorem 4.1.

6. Dunkl transform of functions, vanishing
outside a symmetric body

A subset K of IRd is called a symmetric body, if −x ∈ K for all x ∈ K.
The set K∗ := {y ∈ IRd, 〈x, y〉 ≤ 1 for all x ∈ K} is called the polar set of
K. We state now another real Paley-Wiener theorem given in [14]:

Theorem 6.1. A function f ∈ E(IRd) is the Dunkl transform of a
function in L2

k(IR
d) vanishing outside a symmetric body K, if and only if,

Tµf belongs to L2
k(IR

d) for all µ = (µ1, ..., µd) ∈ INd, and for all n ∈ IN we
have

sup
a∈K∗

||(〈a, T 〉)nf ||k,2 ≤ ||f ||k,2, (65)

where T = (T1, ..., Td).

P r o o f. See [14], p.365-366.
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