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Abstract

By making use of the fractional differential operator 22 (0 < A < 1) due
to Owa and Srivastava, a new subclass of univalent functions denoted by
k—SPy (0 < k < o0) is introduced. The class k—SP, unifies the concepts of
k-uniformly convex functions and k-starlike functions. Certain basic prop-
erties of k — SPy such as inclusion theorem, subordination theorem, growth
theorem and class preserving transforms are studied.
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1. Introduction and definitions

Let A denote the class of functions analytic in the open unit disc

U:={z:2€Cand|z] <1}
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and let Ag be the class of functions f in A given by the normalized power
series

f(z) zz—l—Zanz" (zel). (1.1)
n=2

The class S consists of univalent functions in Ag. For fixed k£ (0 < k <
o0), the function f € Ay is said to be in k — UCV; the class of k-uniformly
convez functions in U, if the image of every circular arc v contained in U,
with center £, where |£| < k, is a convex arc (cf. [7]). The class k — SP is
defined from k — UCV via the Alezander’s transform (see [8]), i.e.

fE€k—-UCY < g€ k—SP, where g(2) = 2f'(z) (2 €U).

It is well known (cf. [7]) that f € k—UCV (respectively k —SP) if and only
if the values of , /
2f"(2) 2f'(2)
p(z) =1+
G =T e

lie in the conic region ) in the w-plane, where

) (zelU)

<respectively

Qe ={w=u+iveC:u®>k*(u—1)*>+k*v*%0 < k < 0o}. (1.2)

The purpose of the present note is to study some basic properties of the
class k —UCY and k — SP in a more general setting of fractional calculus.
We need to remind the following definitions.

If f and g are functions in A and given by the power series f(z) =
Yool oanz" and g(z) = Y07 (b2 (2 € U), then the Hadamard product (or
convolution) of f and g denoted by f x g, is defined by

(f*9)(2) =Y anbz" = (g% f)(z) (2 €U).
n=0

Note that f % g € A. The Carlson-Shaffer [2] operator L(a,c) is defined in
terms of the Hadamard product by
(L(a,c)f)(z) :=®(a,c;2) * f(z) (z €U, feA), (1.3)

where

D(a,c;z) = Z (((gnznﬂ (z ceU,c¢ Ny ={0}u{-1,-2,-3,... }) (1.4)
n=0 m
and (A)p is the Pochhammer symbol (or shifted factorial) defined in terms
of the gamma function, by
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_T+n) 1 (n=0)
(Mn '_1"()\)_{ Aoo.A+n—-1) (neN:={1,2,...}).

DEFINITION 1. (cf. [12],[13], see also [20],[21]) Let the function f be
analytic in a simply connected region of the z-plane containing the origin.
The fractional derivative of f of order X is defined by

A I Y A (9]
(DZf)(Z)_I‘(l—)\)dz/o (z—g)AdC 0< A< 1),

A is removed by requiring log(z — ¢) to be

where the multiplicity of (z — ()
real when (z — ¢) > 0.

Using Definition 1 and its known extensions involving fractional deriva-
tive and fractional integral, Owa and Srivastava [13] introduced the frac-
tional differintegral operator ) : Ag — Ag defined by

@) =T@-NADGE) (A£25. zell)
Note that QUf(z) = f(2), QLf(2) = zf'(z) and
@) = (L@2- NN O0<A<L zeU).  (15)

If f and g are functions in A, we say that f is subordinate to g, written
symbolically as f < g in U or f(z) < g(2) (z € U), if there exits a function
w € A satisfying the conditions of the Schwarz lemma such that f(z) =
g(w(z)),(z € U). Tt is well known [4] that if g is univalent in U, then f < g
in U is equivalent to f(0) = g(0) and f(U) C g(U). We now introduce the
following class of functions.

DEFINITION 2. A function f € Ay is said to be in the class k—SPy (0 <
A<1, 0<k<o0),if Q) f € k—SP. Or, equivalently:

AN AR ()
%<G¥ﬁ@)>>k (@)

The class k — SP) unifies many classical and recently studied subclasses
of Ap related to S. Notably, for Kk = 0,A =0: 0 — 8Py := S*, the class of
univalent starlike functions (see [4]); for k =0,A=1:0— SP; :=CV, the
class of univalent convex functions (see [4]); for k = 0,A #0: 0—SP) := Sy
(see [19]); for k =1,A #0:1—SP) := SP) (see [18]); for k =1,A=0:
1 —8Po :=SP (see [15]); for k =1,A=1:1— 8Py :=UCV (see [6]); for
E#0,A=0:k—SPo:=k—SP (see [8]) and for k #0,\=1:k—SP; =
k—UCY (see [7]).

-1 (z€l).
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In the present article we investigate certain basic properties of the gen-
eral class k—SPy, such as inclusion theorem, subordination, growth theorem
and class preserving transforms. Our results generalize and include some
results found in [7], [8], [10] and [18].

2. Preliminary lemmas

We need the following results in our investigation:

LEMMA 1. ([16]) Let F' and G be univalent convex functions in . Then
their Hadamard product F = G is also a univalent convex function in U.

LEMMA 2. ([17]) Let the functions F' and G be univalent convex in U.
Alsolet f < Fand g <G inU. Then fxg<FxG inlU.

LEMMA 3. ([16]) Let each of the functions f and g be univalent starlike
of order 1/2. Then for every F € A

f(2) * (g(2)F(2))
f(2) % g(z)

where CH denotes the closed convex hull.

e CH{FU)}, (z€l),

LeEMMA 4. ([9]) Let the function h(z) = 1+hiz+hoz?+... be univalent
convex in Y. For 0 < A <1, if% < h(z), then

e %{5(2 = A, 2)[2h(2)]}.

z
The result is the best possible.
3. Main results

We have the following:

THEOREM 1. (Inclusion Theorem) If 0 < y < A <1 and 1 < k < oo,
then

k—8PyCk—-SP,.
Proof Let fek—SPyand0<p <A <1. Then, by (1.5) and (1.4)
(QUF)(2) = (2= N2 - p;2) * 2 f(2)
and Q1) (2) = B2 - X2 — i 2) x A(QF)(2) (2 €U,
where @ is the function defined by (1.4).
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It is well known (cf.[9]) that ®(2 — \,2 — u;2) € S*(1/2) and since
1 < k < oo, the function Q2 f € S*(1/2). Moreover, €, defined by (1.2) is
a convex region. Hence by Lemma 3, we get
_ — 2(Q26)'(2) oA
Z(ng),(Z) B @(2 >‘72 MVZ) *{ Q;f(z) sz(z)} . Q
FEflz) B2 — A2 ;2) % D f(2) ‘

for every z € U. Therefore f € k — SP,. The proof of Theorem 1 is
complete. ]
By taking A — 1 and p = 0, we have the following:

COROLLARY 1. If1 <k < oo and 0 <wv < 1, then
k—UCY Ck—-—SP,Ck—SPCSP and k—UCY CUCY C SP.

COROLLARY 2. If 1 <l <k<ooand 0< u < A<1, then k—SP) C
l — SP,. In particular, k — SP) C k — SPp.

P r o o f. Since kiﬂ is an increasing function of k, the result follows

from the geometry of the region . [

REMARK 1. Taking £ =1 in Theorem 1 we obtain an inclusion result
due to [18].

For 0 < k < o0, let g be the Riemann map of U onto the region
satisfying ¢x(0) = 1, ¢ (0) > 0, where the region €, is defined by (1.2). We
define the function G on U by

Q(z):i[ﬁ(Q—/\,Q){z exp(/oz qk(t)t_ldt>}], (zel). (3.1)

THEOREM 2. Let 0 < A < 1,1 < k < oo and G be defined by (3.1).
Then G is a univalent convex function. Furthermore, if f € k — SPy, then

zeU), (3.2)

<G(r) (2 =7). (3.3)

(iii) arg()‘< max {arg(g(reif’))} (2l =7).  (3.4)

z " 0€[0,27]

Equality holds in (3.3) and (3.4) for some z # 0 if and only if f is a rotation
of z2@G.
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Proof Write

9(2) = exp </0 q’“(t)t_ldt)

A calculation shows that for z ¢ U

o wah(x) | b i
%{1+ b }—é)%{qk(z)—l—i-qk(zk)_l} >l >0

Thus ¢ is a univalent convex function. It is well known (cf. [3]) that

D(2—N,2;2) - . . . D(2—N,2;2
% is a univalent convex function. Since G(z) = % xg(z), (z €

U), by an application of Lemma 1 we get that G is univalent convex.
Next, let f € k —SPy, (0 <A< 1,1 <k < o), then by Definition 2,

2(22f)'(2)
(©22/)(2)
A result of Goluzin gives (cf. [5], also see [11, p.70], [14, p.51])

m;\f)(z)<exp(/z%(ti_1dt>.
z 0

Now using Lemma 4, we get

/(z)

z
This is precisely the assertion of (3.2). The estimates in (3.3) and (3.4) now
follow as consequences of Lindel6f’s principle of subordination. The proof
of Theorem 2 is complete. [ ]

<qr(z) (z€lU).

<G(z) (z€lU).

REMARK 2. Taking k=1 and k = 1,A\ — 1 in Theorem 2, we get the
subordination and growth theorems respectively in [18] and [10]. Theorem
2 also includes the subordination and growth theorems in [7] and [8], in
particular case A — 1 and A = 0 respectively.

THEOREM 3. If f € S$x(1/2) and g € k —SP,(A < p,1 <k < 00), then
QD f*Qfg € k—SP. In particular, if f € Sx(1/2) and g € k — SPy, then
QD f+xQgek—SP.

P r o o f. By the definition of the class Sy(1/2), the function Q2 f €
8§*(1/2). Also, since k > 1, Qg € S§*(1/2). Therefore by Lemma 3,
Q) f* Qg € k— SP. The proof of Theorem 3 is complete. [
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THEOREM 4. Let f € k—SP and g€ k—SP (0 <A< 1,1 <k < o0).
Then:

(a) fxge€k—SPy,

(b) the function Z(g) defined by the integral transform

1 z
o)) =50 [0l ceuy>-) @)
0

is also in the class k — SPy.

Proof. (a)Since k > 1,f € S*(1/2) and Q¢ € S*(1/2). Therefore,
by Lemma 3, f x g € k — SP).

(b) The integral transform defined by (3.7) can be written in terms of
the Carlson-Shaffer operator (cf. [2]) as Z(g)(z) = L(v + 1,7 + 2)g(2).
Therefore,

ADT(9)) (2) = By + 1y +2:2) + 2(Q9) (2)
Using a result of Bernardi [1], it can be verified that ®(y + 1,7 + 2;2) €
S*(1/2) and by hypothesis, Q)g € SP € §*(1/2) (1 < k < 00). Therefore
by Lemma 3, Z(g) € k — SPy. The proof of Theorem 4 is complete. [

Taking A — 1 in Theorem 4(a), we get the following:

COROLLARY 3. Let the functions f and g be k-uniformly convex in
U (k> 1). Then their Hadamard product f g is also k-uniformly convex
inl.

REMARK 3. Taking £k = 1 in Theorem 4, we readily get results found
n [18].

THEOREM 5. Let f; e k—SPrx(j=1,...,n; 0 <A <1; 0<k < o0)
and let g be defined by

Vg =[] 1), (3.8)
j=1
with a; >0 and )77 aj = 1. Then g € k — SP.

P r oo f. An application of the triangle inequality gives

A229)'(z) ‘ ak’ 2( R f)(2) _1‘ 2 1) (2)
(229)(2) (22 f1)(2) (2 fn)(2)

<m(§] LI (250 e eun

Thus by definition, g € K — SP). The proof of Theorem 5 is complete. m

k et ank

_1)
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